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Abstract 
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consequences in central and western Canadian boreal forests. 138 pp. 
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Tree mortality influences forest structure, composition and ecosystem functions. 
To assess how recent climate changes affected tree mortality, observational studies 
conducted in old-growth forests have shown that tree mortality has increased with recent 
global warming, increasing atmospheric CO2, and decreasing water availability in 
tropical, temperate, and boreal forests. These studies could lead to biased estimation of 
climate effects on boreal forests. Boreal forests are a mosaic of stands at various 
developmental stages, with old forests accounting for only a small portion of the 
landscape. Additionally, uncertainty exists whether the observed temporal increases in 
tree mortality are attributable to climate changes or stand developmental processes. The 
overall objective of this thesis was to investigate how recent climate changes affected 
North American boreal forests, encompassing the variety of of tree sizes, stand 
developmental stages and stand compositions which typify the boreal region. The 
aboveground biomass carbon pool had been examined and related to tree mortality. 

In the first tree mortality study, I examined how endogenous factors, such as 
competition, species interaction and aging, affect tree mortality. I simultaneously tested, 
using Boosted Regression Trees (BRT) models, the effects of an individual’s relative 
size, stand crowding, species interaction and ageing on mortality of Pinus banksiana 
Lamb., Populus tremuloides Michx., Betula papyrifera Marsh. and Picea mariana Mill. 
Data from 109 permanent sampling plots (PSPs) located in Ontario had been used for 
these analyses. I found that mortality increased significantly with decreasing relative 
size for all study species, and the size-dependent mortality was stronger for shade-
intolerant than for shade-tolerant species. With increasing stand basal area, mortality 
increased for Pinus banksiana, Populus tremuloides and Picea mariana, but decreased 
for Betula papyrifera. Mortality was higher in stands with more conspecific neighbours 
for Populus tremuloides, Betula papyrifera and Picea mariana, but was lower for Pinus 
banksiana. Mortality also increased with stand age for all species. Furthermore, the size-
dependent mortality was stronger in more crowded stands. These results suggest that tree 
mortality in boreal forest is driven by endogenous factors such as competition, aging, 
and species interaction. 

The objective of the second tree mortality study was to disentangle the effects of 
climate change and endogenous processes on tree mortality. I conducted individual 
mortality probability analyses for five major boreal tree species Populus tremuloides, 
Populus balsamifera L., Pinus banksiana, Picea mariana, and Picea glauca (Moench) 
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Voss, using Hierarchical Bayesian logistic regression model (HBLogit). The analyses 
were based on data from 887 PSPs that covered a wide range of stand developmental 
stages in the western boreal region, i.e., Alberta and Saskatchewan. I found that both 
climate change and forest development processes influenced temporal mortality 
increases. When endogenous factors were considered for all study species, the overall 
tree mortality increased during study period (1958-2007). Climate change-associated 
increases in tree mortality were significantly higher in young than old forests. I also 
found that, over the study period, annual temperature anomaly increased, and climate 
moisture index anomaly decreased, showing a global-change-type drought. Further 
analyses revealed that higher increases of tree mortality in younger forests were a result 
of their higher sensitivity to regional warming and drought. 

Additionally, I examined climate change-induced tree mortality using data from 
148 PSPs in Manitoba. I partitioned climate change effects from endogenous effects on 
tree mortality by developing individual tree mortality models using HBLogit. The 
analyses were conducted for five major boreal tree species Populus tremuloides, 
Populus balsamifera, Pinus banksiana, Picea mariana, and Picea glauca,. I found that 
tree mortality increased over the last three decades. Although there was significant 
warming in the Manitoba study area (i.e., annual temperature anomaly increased by 
0.038 o C year-1 over the study period), there was also an increase in annual climate 
moisture index anomaly, suggesting that the study area did not experience global-
change-type drought. Collectively, the mechanism that led to temporal increases of tree 
mortality in this area could be different from other areas of western North America 
where global-change-type drought may be the mechanism for observed increases in tree 
mortality. The neighborhood analyses provide the evidence that the temporal increases 
of temperature and water availability likely have increased tree-tree competition on tree 
mortality and led to a temporal increase of tree mortality. 

Finally, I investigated temporal changes of biomass carbon pool and related it to 
recent increases of tree mortality in western boreal forest region. Using data from 871 
permanent plots in Alberta and Saskatchewan, I found that aboveground biomass change 
(∆AGB) averaged at 1.11 (95% credible interval (CI), 1.02~1.21) Mg ha-1 yr-1 over 
study period (1958-2009), suggesting that the forests have been a strong carbon sink. 
After accounting for forest age-dependent decreases, I found that ∆AGB has declined at 
-0.031 (CI, -0.037~-0.024) Mg ha-1 yr-1 yr-1  due to increased tree mortality and reduced 
growth of surviving trees with no increase in recruitment. The highest decline rate was 
found for late-successional coniferous forests that dominated by shallow-rooted Picea 
spp. at a rate of -0.074 (CI, -0.093~-0.053) Mg ha-1 yr-1 yr-1. Further analyses indicated 
that regional warming and drought were likely contributors to shrinkage of forest 
aboveground biomass carbon sink in this region. 
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Chapter 1. General introduction 

Tree mortality is a natural process in forest ecosystems. Among three 

demographic attributes, i.e., mortality, recruitment and growth, mortality has long been 

the least understood component because of little available mortality data and relative 

longevity of tree species (Franklin et al. 1987, Lutz and Halpern 2006). Tree mortality is 

important in several ways. First, tree mortality affects forest structure and composition. 

Differences in mortality among tree sizes/ages lead to changes in stand structure (Chen 

and Popadiouk 2002, Busing 2005), while differences in mortality rates among tree 

species may lead to changes in species composition (Mueller et al. 2005, Lutz and 

Halpern 2006, Fauset et al. 2012). 

Tree mortality is also important to understanding coexistence of tree species and 

the maintenance of tree diversity (Janzen 1970, Harms et al. 2000, Condit et al. 2006, 

Comita et al. 2010). Tree mortality redefines the local community assemblages by 

altering micro-climatic conditions and creating habitats for newcomers. For instance, a 

forest gap created by death of large trees changes light condition, which in turn affects 

understory plant species diversity (Bartels and Chen 2010), while dead tree itself can 

serve as habitats for decomposers such as fungi (Franklin et al. 1987). 

As forest ecosystems play a key role in biosphere-atmosphere interactions, tree 

mortality likely influences forest ecosystem functions in several ways. Firstly, it could 

alter the forest surface energy fluxes by changing reflection of solar radiation and latent 

heat (Bonan 2008). Hydrological fluxes may also be affected by tree mortality through 

alteration of canopy evapotranspiration, ground drainage and runoff (Anderegg et al. 
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2013). Furthermore, tree mortality affects the forest carbon uptake and storage by 

changing forest productivity (Ma et al. 2012). 

The causes of individual tree mortality are complex because they involve 

multiple processes, which sometimes interact (Franklin et al. 1987). A tree could die 

because of carbon starvation that caused by the respiratory loss larger than 

photosynthetic gain (Guneralp and Gertner 2007), or failure to allocate sufficient energy 

to defend against disturbance agents such as pests and herbivores (Loehle 1988). 

Significant mechanical damages such as breaking, uprooting or crushing, can also lead 

to death of a tree (Lutz and Halpern 2006, Larson and Franklin 2010). Furthermore, 

xylem cavitation (hydraulic failure) also could be mechanism driving tree mortality 

when a tree is under drought condition (McDowell et al. 2008, McDowell et al. 2011). 

The factors that lead to tree mortality can be categorized into three groups: predisposing 

factors, inciting factors and contributing factors (Manion 1991). Predisposing factors 

stress the trees during years or decades, e.g., growth suppression by shading from large 

trees or poor edaphic location. The effect of predisposing factors on tree mortality is 

often indicated as a gradual decline of tree vigor or growth before death (e.g., Wyckoff 

and Clark 2002). Inciting factors lead to quick and intensive tree mortality, for example 

drought-induced tree mortality (Phillips et al. 2010). Contributing factors are those that 

could accelerate tree mortality by negatively influencing trees that are already stressed. 

For example, the presence of forest pests in drought area can lead to higher tree 

mortality (Marchetti et al. 2011, Gaylord et al. 2013). 

In the context of forest development, the causes of tree mortality can be divided 

into two groups, i.e., endogenous and exogenous factors (Luo and Chen 2011, 2013). 
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Endogenous factors are determined by the state of forest development. The endogenous 

factors include tree-tree competition, species interaction and aging (Lutz and Halpern 

2006). In contrast to endogenous factors, exogenous factors of tree mortality are 

independent from forest development such as recent climate changes (van Mantgem et al. 

2009). 

The goal of this thesis is to examine how the recent climate change has affected 

tree mortality and its consequences on forest carbon function in central and western 

boreal forests of North America. To achieve this goal, the aspects of the overarching 

objective have been disseminated into the following chapters. In chapter 2, I examined 

how tree mortality is affected by endogenous factors. Chapter 2 provided a foundation 

for the following two chapters. In chapters 3 and 4, I expanded the analyses by including 

exogenous factors to examine how recent climate change has affected tree mortality in 

western and central boreal forests. Finally, in chapter 5 I examined whether recent 

climate change had altered the biomass carbon pool in western boreal forests, and 

related the change of biomass carbon to tree mortality. 

In this thesis, I employed long-term measured data from permanent sampling 

plots (PSPs) in central and western boreal forests (Figure 1.1). Since data is longitudinal 

and violated the assumptions of conventional statistics, more sophisticated modeling 

methods were used to link tree mortality and its contributors. Boosted Regression Trees 

(BRT) approach was used in chapter 2. In chapters 3~5, the Bayesian Hierarchical 

models were used to account for the uncertainties associated with data and parameters. 
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Figure 1. 1. Study area and plot locations. An overview of study area in Canada (a), plot locations for chapter 3 and chapter 5 (b), for 

chapter 4 (c), and chapter 2 (d). 
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Chapter 2. Competition, species interaction and ageing control tree mortality in 

boreal forests 

Introduction 

Tree mortality is a critical process in forest ecosystems, influencing forest 

structure, composition and biodiversity (Laurance et al. 2004, Lutz and Halpern 2006, 

Phillips et al. 2009, Comita et al. 2010). The direct causes of tree mortality are generally 

understood to be carbon starvation caused by the respiratory losses larger than 

photosynthetic production (Guneralp and Gertner 2007), failure to allocate sufficient 

energy to defend against disturbance agents such as pests and herbivores (Loehle 1988), 

or mechanical damages such as breaking, uprooting or crushing (Lutz and Halpern 2006, 

Larson and Franklin 2010). A tree also could die as a result of hydraulic failure due to 

short of water supply (McDowell et al. 2008, McDowell et al. 2011). A major challenge 

for ecologists is to predict tree mortality over a wide range of environmental conditions. 

While the metabolic ecology theory predicts that tree mortality is scaled to -1/4 of body 

mass or -2/3 tree diameter in equilibrium forest communities, where mortality rates 

nearly equal fecundity rates (Brown et al. 2004, Enquist et al. 2009), in non-equilibrium 

boreal and temperate forests (Chen and Popadiouk 2002, Franklin et al. 2002), previous 

studies have focused on competition-driven mortality and typically have been restricted 

to a limited range of stand developmental stages (Lutz and Halpern 2006) or juvenile 

trees such as seedlings and saplings under forest canopy (e.g., Kobe et al. 1995, Wyckoff 

and Clark 2002). Few studies have considered a wide range of tree sizes, stand 

developmental stages and stand composition types to identify how tree mortality is 

affected by multiple mechanisms such as competition, species interaction, ageing and 
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their interactions with minor disturbances (Franklin et al. 1987, Peet and Christensen 

1987). 

Assuming that tree mortality is a result of carbon starvation or failure to tolerate 

the disturbance agents, and their interactions, regardless of stand development stages, 

trees with relatively small sizes are expected to experience size-asymmetric competition 

for light and other resources, and to be more susceptibility to mechanical damages, 

resulting in a higher mortality (Weiner 1990, Muller-Landau et al. 2006, Larson and 

Franklin 2010). This asymmetric relationship between mortality and size may differ with 

species' life-history traits that affect growth, allocation, resource uptake and resource 

utilization in stressed environments (Schwinning and Weiner 1998). Tree species differ 

in their ability to survive under shaded environments (Kobe et al. 1995, Wyckoff and 

Clark 2002) because of their variations in morphological and physiological traits. For 

example, the lower leaf-mass ratios, lower whole-plant respiration rates, higher plasticity 

in crown architecture and lower light compensation points of shade-tolerant species 

allow them a net carbon gain in shaded environments (Niinemets and Valladares 2006). 

Furthermore, their thicker bark and higher wood densities make them more resistant to 

disturbance agents (Poorter et al. 2010) and their higher carbohydrate storage in roots 

and stems leads to a quicker recovery from damages (Canham et al. 1999). Consequently, 

I hypothesize that mortality is dependent on relative size, but shade-tolerant species 

present less sensitivity of relative-size-dependent mortality than shade-intolerant species.  

Second, stand crowding influences resource uptake, available growing space and 

crown development of the individual within a stand (Canham et al. 2004, Coates et al. 

2009), consequently affecting tree mortality. The higher resource competition in more 
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crowded stands also has below-ground effects since root competition influences the 

performance of the focal individuals (Schnitzer et al. 2005, Kueffer et al. 2007). 

Therefore, I hypothesize that individuals within more crowded stands have higher rates 

of mortality.  

Third, intra-specific competition may be stronger than inter-specific competition 

because individuals of the same species may occupy the same ecological niche, e.g. 

resource and space. Additionally, facilitation may occur among species (Callaway 1995) 

by ameliorating environmental variability, altering substrate characteristics, or 

improving resource use efficiency through mycorrhizal networks. Furthermore, the 

Janzen–Connell hypothesis (Janzen 1970, Connell et al. 1984) predicts that nearby 

conspecific trees reduce the focal tree’s performance (i.e. survival) in the presence of 

host-specific pests. For example, the negative plant–soil feedback mediated by soil biota 

such as soil-borne fungi, bacteria and fauna may be responsible for mortality (Mangan et 

al. 2010). The individuals’ performances may also be reduced by insects associated with 

conspecific neighbours since they may act as either an attractant or a source of the 

herbivores. As a result, my third hypothesis is that tree mortality is higher in stands with 

more conspecific individuals. 

Finally, as trees age and grow in size, their physiological functions such as 

photosynthesis rates decline, resulting in mortality from carbon starvation or minor 

disturbances (Lugo and Scatena 1996). Furthermore, larger trees may have a higher risk 

of mortality from limitations imposed by size on water and nutrient transport to their 

canopy (Domec et al. 2008). However, the ageing-related mortality of tree species has 

not been adequately studied because most studies covered a small range of ages for tree 
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species, and age information of individual trees is often hard to obtain (Peet and 

Christensen 1987). In boreal forests, most trees are established following stand-replacing 

disturbances such as fire, thus they form relatively even-aged stands (Greene et al. 1999) 

and increasing mortality rates of large trees occur at the time of stand decline (Lugo and 

Scatena 1996). Consequently, I hypothesize that tree mortality increases with stand age 

in boreal forests.  

In this chapter, I attempt to understand how the mechanisms of competition, 

species interaction and ageing influence the mortality in boreal forests for four tree 

species with increasing shade tolerance, i.e. Pinus banksiana Lamb., Populus 

tremuloides Michx., Betula papyrifera Marsh. and Picea mariana Mill. Specifically, I 

tested my four hypotheses by using data from the repeatedly measured permanent 

sampling plots (PSP) from the Ontario forest inventory program, which covers a wide 

range of tree sizes, stand compositions and stand ages. To simultaneously test these 

hypotheses, I used boosted regression tree models to disentangle the influences of 

relative tree size within a stand (relative basal area, RBA), stand basal area (SBA), the 

ratio of focal species’ basal area to stand basal area (rFSBA), and stand age (SA) on tree 

mortality.  

Method and materials 

Study area and data collection 

The study area is located in the eastern-central part of the Canadian Boreal Shield, 

near the town of Longlac, Ontario, Canada (49º24'-50º10'N, 85º93'-87º24'W) (Figure 

1.1). Elevation ranges from 290 m to 411 m a.s.l. Mean annual precipitation in 1971-
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2000 was ~760 mm, of which ~214 mm was snow (Geraldton A meteorological station) 

(Environment Canada2005). Mean annual temperature in 1971-2000 was ~0.3 °C. This 

area is a largely forested glacial region, with little topographic relief, interspersed with 

lakes, rivers, marshes and bogs. Forest soils originate from a variety of modes of glacial 

deposition, including tills, glaciofluvial, glaciolacustrine and organic deposits. The 

major stand-replacing disturbance in this area is fire with an estimated average fire 

return interval of ~100 years (Senici et al. 2010). In addition to the study species, 

Populus balsamifera L., Picea glauca (Moench) Voss, Abies balsamea (L.) Mill. and 

Thuja occidentalis L. occur as minor components in stands.  

A total of 123 plots originating from stand-replacing fire, each measuring 809 m2 

in area, were established from 1952 to 1965 by the Kimberly–Clark Canada. These plots 

were located on mesic sites, the most productive segment of the boreal forest; they were 

established in stands (> 1 ha in area) that were visually homogeneous in structure and 

composition, and were at least 100 m from any openings to minimize edge effects. The 

plots, if not damaged by fire or cutting, were re-measured until 2000 at varying, but 

mostly 5-year, intervals. Trees larger than 2 cm in diameter at breast height (DBH) were 

identified by species, tagged, and recorded as either dead or alive at each measurement. 

Diameter at breast height was measured for all live trees at each census. When a plot 

experienced a major disturbance from fire, windthrow, outbreak of insects, or cutting 

since its establishment, it was abandoned from further measurement. 

To eliminate the effect of different measurement lengths on mortality, sample 

plots with measurements occurring in 5-year intervals were used. In this chapter, 

analyses were limited to Pinus banksiana, Populus tremuloides, Betula papyrifera and 
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Picea mariana because sample sizes of other species were too small to conduct a 

meaningful analysis. Of a total of 123 plots, 109 plots, each with 2 to 5 measurements, 

were used. The total observations for Pinus banksiana, Populus tremuloides, Betula 

papyrifera and Picea mariana were 20,157, 5743, 2924 and 31,413 with mortality cases 

being 1778, 716, 217 and 2724, respectively (Table 2.1). The numbers of plots involved 

were 91, 51, 48 and 98 for Pinus banksiana, Populus tremuloides, Betula papyrifera and 

Picea mariana, respectively (Appendix 2.1). The size distribution analyses following the 

method by Enquist et al. (2009) indicated that these stands are non-equilibrium stands 

(Appendix 2.2). 

Explanatory variables 

All explanatory variables were calculated using the preceding measurements of 

each interval. Since the realized resource uptake for individuals depends not only on 

individual’s uptake ability but also on resource availability for individuals, I used 

relative size and stand crowding as proxies for these two factors. I used relative size, 

rather than the absolute size (i.e. DBH) used in studies in equilibrium forests (Brown et 

al. 2004, Muller-Landau et al. 2006), because this study covered a wide range of stand 

developmental stages, and relative size better reflects the competitiveness of individuals 

when encountering other individuals in the same forest community. For example, I 

observed that trees with 16-cm DBH were the largest in some ~38 year-old plots, but 

were smallest in some ~100 year-old plots. The correlation between DBH and height 

indicated that the basal area can be utilized as approximate plant biomass. Thus, I used 

relative basal area (RBA), a ratio of a subject tree’s basal area to the mean tree basal 

area at each measurement of the stand, to represent the relative size. To examine 
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whether DBH has additional explanatory power in addition to RBA, I added DBH as an 

additional explanatory variable to my models, and the resulted models had the same or 

less predictive ability (Appendix 2.3). Thus, DBH was not included in the final models. 

Stand crowding determines the average resource availability for trees within a stand. The 

higher stand crowding suggests fewer resources available per individual. As in other 

empirical studies (e.g., Coomes and Allen 2007a), I used stand basal area (SBA) as a 

surrogate for stand crowding.  

To take into account the effect of species interactions on mortality, I used the 

ratio of focal species basal area to stand basal area (rFSBA). Stand age (SA) was derived 

from the plot establishment records (Table 2.1). 
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Table 2. 1. Summary statistics (mean±1 SD and range in brackets) for explanatory variables. The explanatory variables were 
calculated based on the previous census (5 years before the observed tree’s status). The summary statistics for the stand-level 
explanatory variables (SBA, rFSBA, SA and STD) may be identical for live and dead trees because stands may include both 
live and dead trees 

Explanatory 

variable 

Pinus banksiana Populus tremuloides Betula papyrifera Picea mariana 

Live trees 

n = 18379 

Dead trees 

n = 1778 

Live trees 

n = 5027 

Dead trees 

n = 716 

Live trees 

n = 2707 

Dead trees 

n = 217 

Live trees 

n = 28689 

Dead trees 

n = 2724 

RBA 1.34±0.71 

(0.02~9.65) 

0.66±0.48 

(0.05~6.01) 

1.21±0.76 

(0.02~5.70) 

0.50±0.42 

(0.03~3.72) 

0.52±0.45 

(0.03~3.89) 

0.30±0.22 

(0.04~1.06) 

0.89±0.57 

(0.01~5.28) 

0.52±0.42 

(0.02~2.72) 

SBA  34.90±6.02 

(16.6~53.4) 

34.75±6.11 

(16.6~52.6) 

36.43±6.25 

(17.6~53.4) 

35.21±5.88 

(17.6~52.6) 

37.01±5.25 

(20.6~50.8) 

37.34±5.59 

(23.9~49.9) 

38.13±6.72 

(16.6~53.4) 

38.97±6.41 

(17.6~53.4) 

rFSBA 0.76±0.24 

(0.002~1.00) 

0.78±0.24 

(0.003~1.00) 

0.58±0.36 

(0.003~1.00) 

0.60±0.38 

(0.009~1.00) 

0.13±0.12 

(0.001~0.38) 

0.15±0.12 

(0.001~0.38) 

0.67±0.28 

(0.001~1.00) 

0.71±0.25 

(0.005~1.00) 

SA 75.86±28.50 

(34~154) 

70.78±30.16 

(34~154) 

66.50±22.96 

(34~120) 

56.50±21.00 

(34~115) 

73.53±24.15 

(34~154) 

82.55±24.60 

(35~154) 

93.92±28.20 

(34~155) 

96.01±27.99 

(34~155) 

STD  2515±1325 

(815~6461) 

2867±1476 

(815~6461) 

2236±1125 

(519~6462) 

2690±1159 

(519~5201) 

2258±1195 

(519~5226) 

1981±992 

(581~5226) 

2732±945 

(581~5226) 

2777±924 

(741~5226) 
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Statistical analysis 

I used boosted regression trees (BRT) to model the relationships between 

explanatory variables and the response variable. Boosted regression trees combines two 

simple algorithms, regression trees and boosting (Elith et al. 2008). Specifically, a large 

number of simple trees are produced using recursive binary splits based on the value of a 

single predictor variable at each node that results in the two most homogeneous subsets 

of the response variable. Each tree is built from a random subset of the data, which is 

known as bagging, and introduces stochasticity to the model. The terms are fitted in a 

stage-wise manner by building trees from the residuals of the prior collection of trees, 

thereby allowing the model to put more emphasis on the points that are more difficult to 

classify. The resulting BRT model can be viewed as an additive regression model in 

which every term is a tree. More information about BRT can be found in references 

(De'ath 2007, Elith et al. 2008, Hastie et al. 2008). 

Boosted regression trees (BRT) was chosen for my analyses because of the 

following advantages. First, with a “Bernoulli” error structure (Ridgeway 2007), BRT 

can be employed to analyse discrete data like ours (i.e. live trees or dead trees) (Elith et 

al. 2008). Second, as a tree-based method, BRT automatically takes into account 

interactions among variables (i.e. every successive tree node constitutes a potential 

interaction) and the nonlinearity between the dependent variable and the predictors, 

without the need of data transformation. Third, BRT is able to deal with multi-

dimensionality of predictors and disentangle the effect for each variable. 

There are three input settings for BRT models: tree complexity, learning rate and 

bagging. Tree complexity consists of the number of nodes or variable interactions in 
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each tree. The learning rate is shrinkage parameter, and it regulates the amount of 

learning possible in each tree. Typically, a low learning rate, used in conjunction with a 

large number of trees, enables BRT to generate highly complex response functions. A 

fast learning rate requires fewer trees, but is subject to more noise induced by the 

bagging and a lack of smoothness in the response functions. Bagging fraction specifies 

the proportion of data to be randomly sampled without replacement for sequent fitting, 

in order to introduce stochasticity into BRT models. 

For each species, BRTs with a range of values for tree complexity (2, 3, 4), 

learning rate (0.01, 0.005, 0.001) and a bagging fraction 0.5 or 0.75 were fitted. To 

prevent over-fitting the training data, a cross-validation method was used (Hastie et al. 

2008). I used default 10-fold cross-validation procedures described by Elith et al.(2008). 

The model with the smallest predictive error—which represents the unexplained 

variation by the model—for cross-validation was considered the best model. Finally, 

based on the overall trend of mortality probability against each predictor, the monotonic 

BRT models were also fitted, using BRT settings for the best model, to facilitate the 

interpretation of the relationship between response variable and each predictor. The 

predictive performances of the monotonic BRT models were also assessed. The BRTs 

were computed in R 2.10.1 (R Development Core Team 2009) with the ‘gbm’ package 

using a Bernoulli error structure (Ridgeway 2007), and with brt.functions written by 

Elith et al. (2008). 

I interpreted the results by examining the relative influence of predictors from the 

best model, the predictive value plot of response to individual predictors, and the main 

interactions in each model (De'ath 2007, Elith et al. 2008). The relative influence of each 
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predictor in the model was measured based on the number of times a variable is selected 

for splitting, weighted by the squared improvement to the model as a result of each split, 

and averaged over all trees (Friedman and Meulman 2003). Predictive value plot of a 

predictor quantifies the relationship between the predictor in the model and the response 

variable after accounting for the effects of other predictors. Finally, I conservatively 

reported top-ranked interactions among predictors in each monotonically fitted model, 

because, first, BRT provides the relative strength of interaction rather than the absolute 

value provided by traditional statistical methods (e.g. p value in logistic regression) and 

second, the accommodation of outliers in BRT might introduce more noise to a best 

model than to a monotonically fitted model. The strength of interaction was determined 

following De'ath (2007) and Elith et al. (2008). Essentially, predictions were simulated 

from BRT using a temporary data set, which contained involved pair variables 

representing combinations of values at fixed intervals along each of their range, as well 

as other variables of their respective means. Then, the predictions were related to the 

marginal predictors using a linear model and fitting the marginal predictors as factors. 

The residual variance in this linear model indicated the relative strength of the 

interactions fitted by BRT. 

To determine the sensitivity of the size-dependent mortality among species, I 

compared linear regression slopes of predicted mortality probability against RBA. A 

greater slope indicates more sensitivity between mortality and RBA. At equal intervals 

of RBA, I chose 1000 data points of predicted mortality probability against RBA from 

each best model. Then linear regression analyses were conducted with the RBA range 

from the smallest value up to the value at which the predicted mortality probability 
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became consistent. I calculated 95% confidence intervals for slopes to facilitate the 

comparison among species. Since Pinus banksiana had an initial increase of the 

marginal effect size of RBA, I developed slopes both with and without the initial 

increase of marginal effect size. 

c. Betula papyrifera 

0 15 30 45 60 75 90

SA

rFSBA

SBA

RBA

d. Picea mariana

Relative importance (%)
0 15 30 45 60 75 90

b. Populus tremuloidesa. Pinus banksiana SA

rFSBA

SBA

RBA

 
Figure 2. 1. The relative influences of independent variables on tree mortality 

probability. The total values add to 100% for each model. In each model, 
predictors with larger values in relative influence have more explanatory power. 

Results 

The predictive errors of the best models were 0.427, 0.529, 0.458 and 0.489 for 

Pinus banksiana, Populus tremuloides, Betula papyrifera and Picea mariana, 

respectively (Table 2.2); these models predicted nearly half of the observed variation in 

mortality. These models also had high discriminate power as indicated by the area under 

Receiver Operating Characteristic curve (AUC) ≥ 0.78 for crossing-validation data 

(Table 2.2). The monotonically fitted models were also able to explain nearly half 

observed variation of response variables and had high discriminate power (Table 2.2). 

But the monotonically fitted models slightly decreased the model predictive 

performances, indicated by a slight increase of predictive error and a decrease of AUC. 
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Size-dependent mortality 

Relative basal area (RBA) was the most important variable among predictors, 

accounting for 81.94%, 66.93%, 45.31% and 48.81% relative influence on mortality of 

Pinus banksiana, Populus tremuloides, Betula papyrifera and Picea mariana, 

respectively (Figure 2.1). For all species, the predicted value plots from the fitted model 

indicated that, when other predictors were held constant, individuals with small RBA 

generally had a higher probability of mortality (Figures 2.2a-d). The RBA values at 

which the marginal effect sizes became constant were ~1.29, ~1.29, ~1.08 and ~1.88 for 

Pinus banksiana, Populus tremuloides, Betula papyrifera and Picea mariana, 

respectively. However, for Pinus banksiana, the mortality probability increased initially 

to ~0.18 of RBA (Figure 2.2a). 

Linear regressions fitted data very well as indicated by the high r2 and narrow 

confidence interval (Table 2.3). The regression analyses between predicted mortality 

probability and RBA showed that, with or without the initial increase of predicted 

mortality probability for Pinus banksiana, the sensitivity of RBA-dependent mortality 

was the highest for two shade-intolerant species, Pinus banksiana and Populus 

tremuloides. The sensitivity of RBA-dependent mortality for Betula papyrifera was 

medium, and that for Picea mariana was the lowest. With 0.1 unit of increase in RBA, 

the decline of predicted mortality probability was about 0.417, 0.473, 0.453, 0.218 and 

0.152 for Pinus banksiana (with initial increase), Pinus banksiana (without initial 

increase), Populus tremuloides, Betula papyrifera and Picea mariana, respectively 

(Table 2.3). The 95% confidence intervals for slopes did not overlap among species 
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except for two shade-intolerant species, Pinus banksiana and Populus tremuloides 

(Table 2.3). 
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Figure 2. 2. Predicted mortality per 5-year in relation to independent variables. Inset 
graphs of a-d show predicted 5-year mortality probability across the full range of 
observed RBA. The black lines indicate the predicted values from best models, 
and dotted lines indicate the predicted values from monotonically fitted models.
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Table 2. 2. Optimal settings and predictive performances of boosted regression trees. The best models (BM) were determined by 
smallest mean predictive error for crossing-validation data (CV predictive error). CV AUC is the area under Receiver 
Operating Characteristic curve (ROC) for crossing-validation data. The MFM is monotonically fitted model, using BRT 
settings for best model of each species 

Tree species Learning 

rate 

Tree 

complexity 

Bag 

fraction 

Number of trees CV predictive error CV AUC 

BM MFM BM MFM BM MFM 

Pinus banksiana 0.01 4 0.75 1750 900 0.427 0.433 0.87 0.86 

Populus tremuloides 0.01 4 0.50 1350 750 0.529 0.544 0.87 0.86 

Betula papyrifera 0.01 4 0.50 1150 450 0.458 0.469 0.78 0.77 

Picea mariana 0.01 4 0.75 3050 1450 0.489 0.510 0.80 0.77 

 

Table 2. 3. Sensitivity analysis of size-dependent mortality using linear regression between predicted mortality probability and relative 
basal area (RBA). A steeper slope indicates higher sensitivity of size-dependent mortality  

Tree species Range of RBA Slope 95% Confidence interval r2 

Lower Upper 

Pinus banksiana (with initial increase) 0.02~1.29 -4.17 -4.40 -3.94 0.91 

Pinus banksiana (without initial increase) 0.18~1.29 -4.73 -4.91 -4.56 0.96 

Populus tremuloides 0.02~1.29 -4.53 -4.73 -4.32 0.89 

Betula papyrifera 0.03~1.08 -2.18 -2.31 -2.05 0.81 

Picea mariana 0.01~1.88 -1.52 -1.58 -1.46 0.87 
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Crowding-induced mortality 

The relative influence of SBA on mortality was 7.15%, 7.6%, 20.08% and 14.22% 

for Pinus banksiana, Populus tremuloides, Betula papyrifera and Picea mariana, 

respectively (Figure 2.1). Two general trends of mortality against SBA are shown in 

predicted value plots (Figures 2.2e-h). For Pinus banksiana, Populus tremuloides and 

Picea mariana, mortality increased with SBA (Figures 2.2e, 2.2f, and 2.2h). The 

mortality of Pinus banksiana gradually increased with SBA and reached its plateau at 

~46 m2 ha-1 in SBA (Figure 2.2e). The mortality of Populus tremuloides and Picea 

mariana dramatically increased at ~30 m2 ha-1 and ~24 m2 ha-1 in SBA, respectively, and 

remained at a higher level (Figures 2.2f and 2.2h). Mortality of Betula papyrifera, 

however, decreased with SBA (Figure 2.2g). 

Specific interactions on mortality 

The ratio of focal species' basal area to stand basal area had the weakest 

influence on mortality among the four predictors for Pinus banksiana and Betula 

papyrifera with 5.24% and 14% in relative importance, respectively (Figures 2.1a and 

2.1c). The ratio of focal species' basal area to stand basal area ranked as the second 

strongest predictor in the models for Populus tremuloides and Picea mariana, 

accounting for 17.72% and 25.66% in relative importance, respectively (Figures 2.1b 

and 2.1d). The predicted value plots indicated that the mortality of Pinus banksiana 

decreased, whereas those of Populus tremuloides and Picea mariana increased with 

increasing rFSBA (Figures 2.2j-l). Even with a narrow range of rFSBA, Betula 

papyrifera presented an increase of mortality with rFSBA (Figure 2.2k). 
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Age-related mortality 

For Pinus banksiana and Populus tremuloides, the relative influence of SA on 

mortality was weak as indicated by its small relative influence value (<8%) (Figures 

2.1a-b). For Betula papyrifera, SA had the second strongest influence on mortality with 

20.61% in relative influence (Figure 2.1c). Stand age was the weakest variable in the 

model for Picea mariana with 11.31% in relative influence (Figure 2.1d). The predicted 

value plots showed that mortality increased with stand age for all study species (Figures 

2.2m-p). The patterns, however, differed among the study species. For Pinus banksiana, 

mortality increased in stands > 110 years of age with an apparent increase at ~120 in SA 

(Figure 2.2m). For Populus tremuloides, mortality had a steep increase between 80 and 

90 years and then remained at the higher level with a few fluctuations (Figure 2.2n). For 

Betula papyrifera, mortality increased through the whole range of stand age (Figure 

2.3o). For Picea mariana, mortality began to increase at a stand age of ~125 years 

(Figure 2.2p). 

Main interactions  

In the monotonically fitted model, the interactions between RBA and SBA were 

found for all species (Figures 2.3a-d). For Pinus banksiana, Populus tremuloides and 

Picea mariana, individuals with smaller RBA had a higher probability of mortality in 

stands with higher SBA (Figures 2.3a-b, and 2.3d), but Betula papyrifera had a lower 

probability of mortality in the stands with higher SBA (Figure 2.3c). Interaction was also 

found between RBA and rFSBA for Populus tremuloides and Picea mariana, i.e. the 

individuals with smaller RBA had a higher probability of mortality in stands with higher 
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rFSBA (Figures 2.3e and 2.3g). For Betula papyrifera, mortality probability was higher 

for individuals in stands with a combination of less SBA and higher SA (Figure 2.3f). 

 
Figure 2. 3. Predicted mortality per 5-year showing the main interactions in the 

monotonically fitted BRT model. IS is the interaction size, indicating relative 
interaction strength in the model.  
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Discussion 

Size-dependent mortality 

The first hypothesis that tree mortality is dependent on relative size is strongly 

supported, i.e. smaller individuals have higher mortality, for all studied species across a 

wide range of stand ages and forest compositions. My results are in agreement with 

other studies reporting that higher mortality occurs at the lower end of size (Chen et al. 

2008, Kunstler et al. 2009). The effect of relative size on mortality may be explained by 

the size-dependent resource uptake ability (Brown et al. 2004), resource availability 

(Weiner 1990, Muller-Landau et al. 2006), external-stress susceptibility (Loehle 1988) 

and their interactions. In the study area, forest tent caterpillar (Malacosoma disstria 

Hbn.), spruce budworm (Choristoneura fumiferana Clem.) and Armillaria root disease 

(Armillaria spp.) also appear to be common agents of tree mortality. Browsing by 

mammals, such as moose (Alces alces L.), white-tailed deer (Odocoileus virginianus 

Zimmerman), porcupine (Erethizon dorsatum L.) and hares (Lepus americanus Erxleben) 

may also kill small trees.  

Also, as I hypothesized, the sensitivity of size-dependent mortality generally 

decreased with increasing shade tolerance of the studied species. The differences of the 

size-dependent mortality sensitivity may reflect variations in species' responses to 

resource limitations and (or) disturbance agents among species. Overall, my findings 

support that shade-intolerant species require higher light availability to maintain carbon 

balance (Leverenz 1996). Alternatively, smaller carbon storage in roots and stems 

(Canham et al. 1999) and lower wood density (Poorter et al. 2010) make shade-

intolerant species more susceptible to disturbance agents such as crashing or browsing. 
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Crowding-induced mortality 

My second hypothesis that tree mortality increases with stand basal area is 

supported by the findings for Pinus banksiana, Populus tremuloides and Picea mariana. 

My results are consistent with those in temperate forests, i.e. crowding has a positive 

effect on tree mortality (Dwyer et al. 2010) and a negative effect on growth (Coates et al. 

2009). The crowding-induced mortality may reflect competition for below-ground soil 

resources and above-ground light, and for space both below and above ground (Canham 

et al. 2004). 

The interactions between the relative basal area of the subject tree within a stand 

and stand basal area in the models for Pinus banksiana, Populus tremuloides and Picea 

mariana suggest that small individuals tend to die due to stand-crowding competition. 

This finding may be understood as the small individuals receiving less resource in more 

crowded stands. Given that a tree’s crown is scaled with its basal area and more crowded 

in a stand (Enquist and Niklas 2002), an individual in the understory is expected to 

receive less light under a denser canopy. 

It is not clear why mortality of Betula papyrifera decreased with increasing stand 

basal area. There are two possible explanations. In less crowded stands that are 

described by stand basal area of the tree layer, higher mortality of Betula papyrifera 

trees was a result of competition with tall shrubs such as beaked hazel (Corylus cornuta 

Marsh.) and mountain maple (Acer spicatum Lam.), which are most commonly 

associated with Betula papyrifera in North American boreal mixed-wood forests (Chen 

and Popadiouk 2002, Hart and Chen 2008). Alternatively, since moose and other 

mammals feed to a large extent on B. spp. (Danell et al. 1985), higher mortality of small-
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sized Betula papyrifera trees could be a result of more intense browsing in less crowded 

stands due to better mobility and higher abundance of edible shrubs. 

Species interactions and mortality 

The increase of tree mortality of Populus tremuloides, Betula papyrifera and 

Picea mariana as their conspecific component increases supports my hypothesis that a 

negative conspecific interaction promotes tree mortality. The negative effects of 

conspecific neighbours on tree mortality are reported to be an important mechanism to 

promoting species coexistence and diversity in tropical forests (Janzen 1970, Connell et 

al. 1984, Comita et al. 2010). The mortality increase in stands with more conspecific 

individuals may be explained by the following mechanisms. First, intra-specific 

competition may be stronger than inter-specific competition as a result of possible inter-

specific niche separation, e.g. temporal niche separation may occur between Populus 

tremuloides and Picea mariana in that the former has leaves only in mid-summer and 

the latter tends to photosynthesize for six months a year. Second, inter-specific 

facilitation may occur, e.g. the presence of Populus tremuloides can improve the 

performance of Picea mariana by delaying the paludification process and increasing 

surface soil concentrations of exchangeable cations (Fenton et al. 2005, Legare et al. 

2005). Third, Janzen–Connell effects may reduce the performance of individuals 

through negative plant–soil feedback and above-ground accumulation of species-specific 

enemies. Although few studies have reported the Janzen–Connell effects in boreal 

forests, studies conducted in tropical and temperate forests suggest that the below-

ground plant–soil feedback is a key driver for coexistence (Comita et al. 2010, Mangan 
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et al. 2010). Regardless of the specific mechanisms evolved, this study demonstrates that 

individuals in stands with more conspecific neighbours experience higher mortality. 

In contrast to my hypothesis, Pinus banksiana presented a slight decrease of 

mortality with increasing ratios of its basal area to stand basal area. Lower mortality has 

also been found for other species when surrounded by more conspecific individuals (Das 

et al. 2008). A potential explanation is that faster-growing Populus tremuloides over-

shades highly shade-intolerant Pinus banksiana, leading to higher mortality of Pinus 

banksiana, because Pinus banksiana is mostly mixed with Populus tremuloides when it 

is a minor component in my data. 

While most studies focus on the negative intra-specific effect on trees at early 

stages, i.e. seedlings and saplings (Comita et al. 2010), and others indicate that such an 

effect occurs for all trees (Peters 2003, Gonzalez et al. 2010), my results suggest that 

these negative effects are stronger for smaller trees of Populus tremuloides and Picea 

mariana, indicated by interactions between relative basal area and the ratio of focal 

species basal area to stand basal area. The results demonstrate that the individuals under 

stressed conditions have a higher probability of mortality as a result of the negative 

effects from conspecific neighbours. My results, however, do not show this pattern for 

Betula papyrifera, probably due to its narrow range of rFSBA (i.e. from ~0 to ~0.4). 

Age-related mortality 

My results support the fourth hypothesis that mortality increases with stand age 

in boreal forests. It is intuitive that when stands age, larger trees die (Coomes and Allen 

2007b), contributing to coarse woody debris (Brassard et al. 2008) and facilitating 
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canopy succession (Taylor and Chen 2011, Chen and Taylor 2012). Age-related 

mortality is determined by a species’ genetics and its interaction with the environment. 

Since the sites are similar for all studied species, my results appear to reflect both a 

genetic-driven process and its interaction with disturbance. The increase in the onsets of 

mortality in these species appears to be consistent with their documented autecology 

(Burns and Honkala 1990). The presence of disturbance may be the reason for 

fluctuations of mortality probability against stand age for Betula papyrifera and Picea 

mariana, because my data include plots with minor disturbances and these two species 

are susceptible to forest tent caterpillar and spruce budworm, respectively (Taylor and 

Chen 2011, Chen and Taylor 2012). 

For shallow-rooted Betula papyrifera, I found an interactive response of 

mortality to stand age and stand basal area, i.e. trees in older stands with less stand basal 

area had a higher mortality rate. This result may be attributable to the windthrow-caused 

mortality of large individuals in less crowded stands, because windthrow risk is typically 

higher in less crowded stands (Thorpe et al. 2008). 
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Appendices 

Appendix 2. 1. Summary statistics of study plots for the four study species. 

Species Number of 

plots 

Range of 

the number of 

measurements 

DBH 

range (cm) 

Stand age 

range (years) 

Pinus banksiana  91 2~5 2.0~39.9 34~154 

Populus tremuloides 51 2~5 2.0~50.8 34~120 

Betula papyrifera 48 2~5 2.0~33.5 34~154 

Picea mariana 98 2~5 2.0~33.0 34~155 

 

 

Appendix 2. 2. DBH distribution for study plots.  

The below figure shows that DBH in 92% of the study plots was normally 
distributed based on the Shapiro-Wilk test. Furthermore, in contrast to the metabolic 
ecology theory (MET) prediction, i.e., the old forests tend to be equilibrium, the 
skewness of DBH distribution of my plots did not change with stand age. The solid and 
hollow circles indicate that the DBH distribution of a measurement passed or failed the 
Shapiro-Wilk test at a critical α =0.05, respectively. 
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Appendix 2. 3. An examination of independent influence of DBH on tree mortality. 
Predictive performance of BRT models with RBA, SBA, FSBA and SA  versus those 
with DBH, SBA, FSBA, SA, and those with DBH, SBA, FSBA, SA, and RBA as 
explanatory variables. 

Tree 

species 

Predictors Number 

of trees 

CV 

Predictive 

error (SE) 

CV AUC 

(SE) 

Pinus 

banksiana 

RBA+SBA+FSBA+SA 1750 0.427 (0.005) 0.87 (0.004) 

DBH+SBA+FSBA+SA 3350 0.432 (0.005) 0.86 (0.005) 

RBA +SBA+FSBA+SA+DBH 1750 0.428 (0.006) 0.87 (0.005) 

Populus 

tremuloides 

RBA+SBA+FSBA+SA 1350 0.529 (0.010) 0.87 (0.006) 

DBH+SBA+FSBA+SA 1450 0.532 (0.009) 0.86 (0.006) 

RBA +SBA+FSBA+SA+DBH 1150 0.531 (0.011) 0.87 (0.007) 

Betula 

papyrifera 

RBA+SBA+FSBA+SA 1150 0.458 (0.009) 0.78 (0.018) 

DBH+SBA+FSBA+SA 1300 0.462 (0.008) 0.78 (0.013) 

RBA +SBA+FSBA+SA+DBH 1250 0.460 (0.011) 0.77 (0.016) 

Picea 

mariana 

RBA+SBA+FSBA+SA 3050 0.489 (0.003) 0.80 (0.005) 

DBH+SBA+FSBA+SA 3450 0.493 (0.003) 0.80 (0.004) 

RBA +SBA+FSBA+SA+DBH 3150 0.489 (0.004) 0.80 (0.006) 

Abbreviations are: RBA, relative basal area; SBA, stand basal area; FSBA, ratio of focal 
species basal area to stand basal area; SA, stand age; DBH, diameter at breast-height; 
CV, cross validation; SE, standard error; AUC, the area under the receiver operating 
characteristic curve.  
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Chapter 3. Observations from old forests underestimate climate change effects on 

tree mortality 

Introduction 

Observational studies have relied on old forests to quantify temporal trends in 

background tree mortality, and have shown that tree mortality has increased with recent 

global warming, increasing atmospheric CO2, and decreasing water availability in 

tropical, temperate, and boreal forests (Phillips and Gentry 1994, Phillips et al. 2004, 

van Mantgem and Stephenson 2007, van Mantgem et al. 2009, Peng et al. 2011). Old 

forests are assumed to be in an equilibrium state where tree mortality is matched by 

recruitment, and temporal changes in tree mortality at the forest level due to endogenous 

processes are assumed to be weak at this stage of stand development (Chen and 

Popadiouk 2002, Franklin et al. 2002). However, whether there is ever equilibrium is a 

contentious issue (Connell and Slatyer 1977). Although the effects of competition 

estimated by temporal changes of stand basal area and stand density on tree mortality 

have been investigated in some previous studies (van Mantgem et al. 2009, Peng et al. 

2011), conspecific negative density-dependence and tree aging could also influence tree 

dynamics (Luo and Chen 2011, Johnson et al. 2012). Furthermore, the temporal increase 

of tree mortality could be driven by stand development processes, but not necessarily 

climate change (Lutz and Halpern 2006, Thorpe and Daniels 2012). Unfortunately, 

previous studies have used unsuitable statistical methods that marginalize either climate 

or non-climate drivers for longitudinal data in which these drivers are highly correlated 

(Brown et al. 2011). Therefore, the relative roles that climate change and stand 



 

31 
 

development processes play on the temporal changes in tree mortality remain 

uncertain.  

Furthermore, climate change-associated tree mortality increases in old forests 

have been used to represent the tree mortality response of regional forests to climate 

change (Birdsey and Pan 2011), based on the assumption that effects of climate change 

on tree mortality are the same for young and old forests. However, this assumption has 

not been specifically tested. Verification of the assumption is essential for disturbance-

driven ecosystems such as boreal forests. Due to high fire frequency, the boreal forests 

are a mosaic of stands at various developmental stages with old forests accounting for 

only a small portion of the landscape (Weir et al. 2000, Pan et al. 2011a). With a 

predicted increase of fire frequency associated with global warming, the mean age of the 

boreal forests is expected to decrease, as will the portion of old forests (Fauria and 

Johnson 2008). Thus, understanding how young forests respond to climate change is 

essential to predicting how boreal forests will respond to future climate change. If tree 

mortality responses to climate change differ between young and old forests, increased 

tree mortality based on old forests will be biased for regional forest predictions.  

In this chapter, I analyzed tree mortality patterns of boreal tree species in western 

Canada using 887 permanent sample plots measured between 1958 and 2007. To 

account for uncertainties in sampling, models, and parameters, I used Bayesian models 

(Clark 2003, Wikle 2003) to disentangle endogenous (stand development) and 

exogenous (year, temperature anomaly, or drought) effects on individual tree mortality 

for five major boreal tree species, Populus tremuloides Michx., Populus balsamifera L., 

Pinus banksiana Lamb., Picea mariana Mill., and Picea glauca (Moench) Voss. I tested 
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the assumption that tree mortality increases associated with climate change do not differ 

with forest age. I also examined whether tree mortality increases are linked to recent 

regional warming and its negative consequence on water availability. I show that both 

climate change and forest development processes influence temporal mortality increases, 

climate change-associated increases are significantly higher in young than old forests, 

and higher increases in younger forests are a result of their higher sensitivity to regional 

warming and drought. Furthermore, climate change-associated mortality increases are 

stronger for moist-habitat adapted Populus balsamifera and late-successional Picea 

mariana and Picea glauca than Populus tremuloides and Pinus banksiana. 

Method and materials 

Study area and the forest inventory data 

The study area is located in Alberta and Saskatchewan in western Canada, 

ranging from 49.01 to 59.73 in latitude and from -101.74 to -119.66 in longitude (Figure 

1.1). Elevation ranges from 260 m to 2,073 m above sea level (a.s.l.). Mean annual 

temperature and mean annual precipitation between 1950 and 2007 varied from -2.38 °C 

to 4.08 °C and from 365 mm to 1,184 mm, respectively. The major stand-replacing 

disturbance of the area is wildfire, with a fire return interval (FRI) varying temporally 

and spatially from 15 to 90 years (Larsen 1997, Weir et al. 2000). A total of 3,006 

permanent sampling plots (PSP) were established in the study area mostly during the 

1960s and 1970s. Plot sizes varied from 405 m2 to 8092 m2. These plots were 

established in stands (>1 ha in area) that were visually homogeneous in structure and 

composition and were at least 100 m from any openings to minimize edge effects. The 

plots were re-measured until 2007 at varying intervals. 
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In this chapter, I selected PSPs based on the following four criteria: 1) stands 

originated from a wildfire, where stand age was available, and were not managed nor 

experienced major disturbances such as fire and/or harvesting since stand establishment, 

2) similar to Peng et al. (2011) that examined long-term temporal change of tree 

mortality, I selected plots that had at least three censuses and had been monitored for at 

least 10 years, 3) all trees within the sample plots, including recruited trees, were clearly 

marked and their diameters at breast height (DBH) repeatedly measured, and 4) the 

plot’s spatial location was provided so that climate data could be obtained. Stand age for 

each PSP was determined according to either a known fire event or 

dendrochronologically at the time of plot establishment by coring a minimum of three 

dominant/co-dominant trees of each tree species outside the plot. The stand age was the 

median age of the least shade tolerant tree species in the plot. 

Based on the above criteria, 887 plots were selected for analyses (Appendix 3.1). 

Because Saskatchewan and Alberta use different tree size criteria for monitoring, i.e., 

≥7.3 cm and ≥9.7 cm in DBH, respectively, I standardized the data by selecting trees 

with DBH≥10 cm to eliminate the effect of the different sampling efforts between the 

two provinces. This process removed small trees that could have died from physical 

damage caused by understory disturbances such as large mammal browsing and crushing 

from large trees (Larson and Franklin 2010). For the five study species, there were a 

total of 140,089 trees measured (mean: 28,018 trees, range: 10,528~51,140 trees for the 

study species), where 44,450 trees died during the monitoring period. This generated a 

total of 360,221 observations (Appendix 3.2). The study species vary in shade tolerance 

and leaf traits. The two Populus spp. are shade-intolerant, deciduous broadleaves, while 
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Pinus banksiana is a shade-intolerant, evergreen conifer. The two Picea spp. are shade-

tolerant, evergreen conifers. 

Explanatory variables 

To examine whether long-term tree mortality trends are affected by long-term 

climate change trends, similar to previous studies (Phillips and Gentry 1994, Phillips et 

al. 2004, van Mantgem and Stephenson 2007, van Mantgem et al. 2009, Peng et al. 2011, 

Thorpe and Daniels 2012), I used the middle calendar year of a census period, during 

which tree mortality measurements were made between two successive censuses, to 

represent climate change drivers as a whole. To account for the effects of endogenous 

factors including asymmetric competition, stand crowding, tree ageing, and inter-

specific competition on tree mortality, I used the tree’s relative basal area (RBA, ratio of 

subject tree basal area to the mean tree basal area of the stand), stand basal area (SBA), 

stand age (SA), and the ratio of focal species’ basal area to stand basal area (rFSBA), 

calculated using the preceding measurement of each census period (Luo and Chen 2011). 

Climate anomalies were defined as the departure from the long-term climate 

means (Clark et al. 2011). Since my dependent variable, tree status, was observed at the 

end of a census period, the departure from the long-term mean for each climate variable 

was defined as the difference between its mean value over the census period and its 

long-term mean. The long-term climate mean was calculated based on the 1950-2007 

time period, during which plot measurements were taken. Three sets of climate 

anomalies were calculated: annual temperature anomaly (ATA), annual climate moisture 

index anomaly (ACMIA), and growing season precipitation anomaly (GPA). The 

temperature and precipitation data were derived from ClimateWNA software (Wang et 
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al. 2006), which generates scale-free historical climate data for specific locations based 

on latitude, longitude, and elevation (Mbogga et al. 2009). I derived the scale-free 

annual climate moisture index (CMI) from BioSIM (Régnière et al. 2012). Annual CMI 

was the sum of monthly CMIs over 12 month periods from last August 1st to July 31st of 

the current year (Hogg 1997). The monthly CMI was based on the quantity of monthly 

precipitation minus monthly potential evapotranspiration (PET), which was computed 

using a simplified form of the Penman-Monteith equation (Hogg 1997, Hogg et al. 2008). 

A smaller CMI value indicated a drier condition. The summary statistics for explanatory 

variables were presented in Appendix 3.3. 

Annual mortality probability calculations 

I used individual tree mortality analyses, rather than plot-level mortality analyses, 

to accommodate the individual tree-level variable, RBA, because 1) RBA is the 

strongest predictor of tree mortality in non-equilibrium boreal forests and 2) its control 

on tree mortality can change with SBA and rFSBA (Luo and Chen 2011). Similar to 

previous studies (Dietze and Moorcroft 2011, Hurst et al. 2011), I was interested in 

estimating annual tree mortality probability where measurement intervals varied. I 

derived annual mortality probability from tree status as follows.  

The survival probability, S, of tree i, for census period j of t years, in plot k can 

be expressed as a function of annual survival probability, s: 

ijkt
ijkijk sS =          Equation 3.1 

Annual mortality probability, ijkijk sp −=1      Equation 3.2 
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The mortality probability for a census period, ijkijk SP −=1    Equation 3.3 

Lastly, I related a tree’s status at the end of the census period (Mijk, alive or dead) to 

annual mortality probability using Bernoulli likelihood: 

))1(1Bernoulli(~ ijkt
ijkijk pM −−       Equation 3.4 

Statistical analyses 

For each species, I developed individual tree mortality models using Hierarchical 

Bayesian logistic regression (HBLogit) with plot identity as a random effect to account 

for uncertainties potentially affected by different forest characteristics or in different 

climatic and/or edaphic conditions (Clark 2003, Wikle 2003). 

kijkijk Xp πβα +×+=)(logit   ),0(~ 2
kN σπ     Equation 3.5 

where α and β are the intercept and estimated coefficients; Xijk represents explanatory 

variables corresponding to tree i for census period j in plot k; the model included a term 

πk to describe the random effect of sampling plots. As a rule of thumb, πk is in normal 

distribution with a mean of 0. 

To examine whether inclusion of endogenous factors alters climate change-

associated tree mortality, I compared the year effect between models with and without 

inclusion of endogenous factors as predictors, i.e., Model 3.1 and Model 3.2, 

respectively.  

kijkijkp πβα +×+= Year)logit(       Model 3.1 
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where f(En) in Model 3.2 was developed based on my previous chapter (Luo and Chen 

2011) to account for the endogenous effects on tree mortality: 
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          Equation 3.6 

where βs are the coefficients. I modeled the mortality probability as an exponential 

function of RBA because my previous results showed that mortality probability 

decreases exponentially with RBA (Luo and Chen 2011). The Akaike information 

criterion (AIC) also indicated that the exponential transformation of RBA gave better 

fits for all species (Appendix 3.4). Furthermore, our previous work (Luo and Chen 2011) 

showed near-linear mortality trends with tree aging and with stand basal area after taking 

account of competition and species interaction. Consequently, I modeled mortality 

probability as a linear function of stand age and stand basal area. 

Both Models 3.1 and 3.2 were developed for all plots, young forest plots, and old 

forest plots, respectively, to examine how the inclusion of endogenous factors affect 

year effect in these three scenarios. Following Peng et al. (2011), I defined that young 

forests were ≤ 80 years of age and old forests >80 years of age at the first census. 

To examine whether increases of mortality could be attributed to regional 

warming and its negative consequence on water availability, I developed models that 



 

38 
 

replaced year with the climatic variables in Model 3.2, resulting in Model 3.3 and Model 

3.4. 

kijkijkijkijk

ijkijkijkijkijk
ijkEnfp
πββ
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+××+××+
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13
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          Model 3.4 

To examine the temporal trends of endogenous and exogenous factors at the plot 

level, Y, I used the Hierarchical Bayesian linear model (HBL). 

kjkjkY πβα +×+= Year  ),0(~ 2
kN σπ      Equation 3.7 

where Yjk is dependent variable, i.e., endogenous factors and exogenous factors; α and β 

are intercept and estimated coefficients; Yearjk represents middle calendar year at for 

census period j in plot k; the model included a term πk to describe the random effect of 

sampling plots.  

For all analyses, the Bayesian Markov Chain Monte Carlo methods were 

implemented using JAGS (Plummer 2011a) called from R (R Development Core Team 

2011) with rjags package (Plummer 2011b). All coefficients were assigned non-

informative priors. All independent variables were centered in order to reduce their 

correlations and speed up convergence. For each model, I evaluated convergence by 

running two independent chains with different initial values and monitoring the Gelman-

Rubin statistic (Gelman and Rubin 1992). When convergence was confirmed, an 
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additional 10,000 iterations with thinning of ½ were used to calculate the mean, stand 

deviation, and 95% credible interval for each coefficient from the posterior distribution. 

I developed full models and sequentially removed dimensionless explanatory 

variables whose posterior 95% credible interval covered 0. The reduced models, 

assessed by Deviance Information Criterion (DIC), were better than or similar to full 

models (Appendix 3.5). Consequently, I selected the reduced models as my final models. 

To assess the adequacy of the final models, I calculated the area under the receiver 

operating characteristic curve (AUC) based on the mean of each coefficient using ROCR 

package (Sing et al. 2009). A value of AUC > 0.8 indicates that a model has excellent 

discriminatory power, and a value > 0.7 indicates good discriminatory power (Hosmer 

and Lemeshow 2000). 

Finally, I calculated the mortality sensitivity scores to endogenous factors, 

exogenous factors, and their interactions as a measure of the influences of these factors 

on mortality. Similar to Dietze and Moorcroft (2011), I defined sensitivity score on 

annual mortality probability as the standard deviation of the predicted annual mortality 

probability for each of the above three groups of factors, holding the other two groups of 

variables at their mean. 

To present how annual mortality probability changes over the study period, I 

summarized posterior distribution of annual mortality probability (mean and 95% 

credible interval) using mean of each parameter (β) from the final models. I also 

calculated the annual fractional change of mortality probability associated with year over 
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the study period using equation exp(β)-1 (van Mantgem et al. 2009), in which β is fitted 

coefficient for Year. 

Results 

Effects of year and stand development processes on tree mortality  

With all data pooled, the effects of year, used to represent climate change drivers 

as a whole in both Model 1 and Model 2, were significantly positive for all study species 

(Table 3.1, Figure 3.1), indicating significant increases of annual mortality probability 

during the study period (Figure 3.2). The year effects on tree mortality, however, 

differed between the two models: reduced year effects for Populus tremuloides, Pinus 

banksiana, Picea mariana and Picea glauca, but an increased year effect from Populus 

balsamifera from Model 1 to Model 2 (Figure 3.1a), resulting in different estimates of 

annual tree mortality probability from the two models (Figure 3.2). 

Tree mortality was strongly affected by stand development processes and their 

interactions with year (Figure 3.1b, and Table A3.6.1 in Appendix 3.6). Year effect 

decreased significantly with stand age for all study species (Table 3.1). Year effect also 

increased with stand crowding as measured by stand basal area and in stands with more 

conspecific individuals for Picea mariana and Picea glauca (Table 3.1). Tree mortality 

increases associated with year differed among species with stronger year effects on late-

successional Picea mariana and Picea glauca and moist-habitat adapted Populus 

balsamifera than Populus tremuloides and Pinus banksiana (Figure 3.1a). 

When data were analyzed separately for young forests (initial stand age ≤ 80 

years) and old forests (initial stand age > 80 years, same as in Peng et al.(2011)), year 
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effect was consistently higher in young forests than old forests for all species (Figure 

3.1a), supporting the strong declining year effect with increasing stand age (Table 3.1). 

Predicted annual mortality increased by 2.88%, 4.70%, 5.64% and 6.18% per year in 

young forests, but increased at the lower rates of 1.65%, 2.24%, 3.89% and 4.12% in old 

forests for Populus tremuloides, Populus balsamifera, Picea mariana and Picea glauca, 

respectively (Appendix 3.7). For drought tolerant Pinus banksiana, annual mortality 

increased by 2.09% per year in young forests, but year had no detectable effect on its 

mortality in old forests (Appendix 3.7). In both young and old forests, endogenous 

factors were critical drivers of tree mortality for all study species (Figure 3.1b, and 

Tables A3.6.2-A3.6.3 in Appendix 3.6). 

 



 

42 
 

Table 3. 1. Effect of year and its interactive effects with stand development processes on annual mortality probability. Values are 
estimated parameters (mean and 95% credible interval in brackets). NS indicates that the corresponding predictor’s posterior 95% 
credible interval covers 0 in the full model and the predictor was removed in the reduced model (see Methods). All the fitted 
coefficients for reduced Model 3.2 were presented in Table A3.6.1 in Appendix 3.6. 

Model Term Populus 
tremuloides 

Populus 
balsamifera 

Pinus 
banksiana 

Picea 
mariana 

Picea 
glauca 

Model 3.1 Intercept -4.03 
(-4.10~-3.98) 

-3.54 
(-3.63~-3.44) 

-5.18 
(-5.37~-5.00) 

-4.94 
(-5.08~-4.80) 

-5.06 
(-5.17~-4.95) 

 Year 
(×10-2) 

2.63 
(2.46~2.80) 

2.64 
(2.34~2.95) 

3.41 
(2.59~4.23) 

4.83 
(4.39~5.27) 

4.47 
(4.26~4.67) 

 AUC 0.711 0.748 0.768 0.750 0.754 
Model 3.2 Intercept -4.33 

(-4.40~-4.27) 
-3.67 

(-3.81~-3.59) 
-5.44 

(-5.63~-5.25) 
-4.76 

(-4.90~-4.62) 
-4.86 

(-4.97~-4.75) 
 Year 

(×10-2) 
2.42 

(2.13~2.71) 
3.63 

(3.24~4.01) 
1.85 

(0.80~2.89) 
3.83 

(3.14~4.49) 
3.93 

(3.55~4.33) 
 Year × SA 

(×10-4) 
-4.67 

(-5.54~-3.82) 
-4.60 

(-6.06~-3.13) 
-3.40 

(-4.63~-2.17) 
-3.16 

(-4.41~-1.94) 
-5.10 

(-5.85~-4.35) 
 Year × SBA 

(×10-4) 
NS NS NS 5.46 

(1.02~9.97) 
9.32 

(6.85~11.70) 
 Year × rFSBA 

(×10-2) 
NS NS NS 3.95 

(2.20~5.69) 
6.05 

(5.14~7.01) 
 AUC 0.812 0.819 0.825 0.777 0.776 
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Figure 3. 1. Year effect on annual tree mortality probability and sensitivity scores of predictors. a, Year effect on annual tree mortality 

probability, logit (p), estimated by Model 3.1 (without endogenous factors as predictors) and Model 3.2 (with endogenous 
factors as predictors). Models were separately developed all plots (All), young plots (Young, initial stand age ≤ 80 years), and 
old plots (Old, initial stand age > 80 years). Error bars are 95% credible intervals. b, Sensitivity scores. For each species and 
age group (All, Young, or Old), sensitivity scores of predictors from Model 3.1 are on the left and Model 3.2 on the right.  
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Figure 3. 2. Predicted temporal trends of annual mortality probability associated with calendar year. The predicted means (solid lines) 

and their 95% credible intervals (dotted lines) of annual mortality probability are derived by using equation exp(β)-1 (van 
Mantgem et al. 2009), in which β is the fitted Year coefficient from Model 3.1 (red) and Model 3.2 (blue) for each respective 
species in Table 3.1. 
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Warming and drought effects on tree mortality 

For the study area, annual temperature anomaly (ATA) increased at 0.034 oC 

year-1, and annual climate moisture index anomaly (ACMIA) decreased at 0.088 year-1, 

whereas the growing season precipitation anomaly (GPA) slightly increased at 0.761 

mm year-1 between 1958 and 2007 (Appendix 3.8). To examine whether increase of 

mortality could be attributed to regional warming and drought, I developed models that 

replaced year by these climatic variables (Model 3.3 and Model 3.4). The ATA models 

showed positive main ATA effects on mortality of all species and higher ATA effects in 

young than old forests of all species except Pinus banksiana (Table 3.2). The ACMIA 

models indicated negative main ACMIA effects on mortality of all species and greater 

effects for Populus balsamifera, Picea mariana and Picea glauca than the other two 

species. Furthermore, the ACMIA effects were stronger in young than old forests for all 

species except Pinus banksiana (Table 3.2). 
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Table 3. 2. Effect of annual temperature anomaly (ATA) or annual climate moisture index anomaly (ACMIA) and its interactive 
effects with stand development processes on annual mortality probability. Values are estimated parameters (mean and 95% 
credible interval in brackets). Full tables for Model 3.3 and Model 3.4 are presented in Tables A3.6.4 and A3.6.5 in Appendix 
3.6, respectively. 

Model Term Populus 

tremuloides 

Populus 

balsamifera 

Pinus 

banksiana 

Picea 

mariana 

Picea 

glauca 
Model 3.3 Intercept -4.29 

(-4.36~-4.23) 

-3.91 

(-4.03~-3.79) 

-5.44 

(-5.64~-5.24) 

-5.00 

(-5.11~-4.89) 

-4.90 

(-4.98~-4.81) 
ATA 

(×10-1) 

4.67 

(4.19~5.15) 

5.17 

(4.35~6.00) 

5.44 

(3.35~7.55) 

3.97 

(3.00~4.90) 

5.26 

(4.71~5.81) 
ATA × SA 

(×10-3) 

-9.26 

(-11.06~-7.53) 

-12.80 

(-15.84~-9.77) 

NS -4.37 

(-6.57~-2.33) 

-7.52 

(-8.91~-6.17) 

ATA × 0.5RBA NS NS -1.55 

(-2.49~-0.59) 

NS NS 

ATA × SBA 

(×10-3) 

NS NS NS NS 7.75 

(2.00~13.52) 
ATA × rFSBA 

(×10-1) 

1.88 

(0.27~3.47) 

NS NS NS 9.46 

(7.39~11.49) 
 AUC 0.801 0.743 0.774 0.745 0.728 

Model 3.4 Intercept -4.30 

(-4.37~-4.23) 

-3.83 

(-3.95~-3.70) 

-5.45 

(-5.66~-5.24) 

-4.61 

(-4.79~-4.44) 

-4.68 

(-4.82~-4.56) 
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ACMIA 

(×10-2)  

-3.59 

(-4.54~-2.64) 

-7.27 

(-8.84~-5.70) 

-1.58 

(-0.14~-3.02) 

-7.77 

(-9.72~-5.83) 

-4.44 

(-5.37~-3.48) 

ACMIA × SA 

(×10-3) 

1.93 

(1.56~2.29) 

1.99 

(1.39~2.60) 

NS 0.57 

(0.12~1.02) 

1.17 

(0.89~1.46) 

ACMIA × 0.5RBA 

(×10-2) 

-8.63 

(-13.09~-4.25) 

NS NS NS NS 

ACMIA × SBA NS NS NS NS NS 

ACMIA × rFSBA 

(×10-2) 

NS 7.33 

(1.79~12.85) 

NS -12.01 

(-17.81~-6.23) 

-14.57 

(-18.41~-10.74) 

 AUC 0.815 0.798 0.803 0.759 0.783 
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Discussion 

Unlike previous attributions of temporal increases in tree mortality to either 

climate change (Phillips and Gentry 1994, Phillips et al. 2004, van Mantgem and 

Stephenson 2007, van Mantgem et al. 2009, Peng et al. 2011) or stand development 

processes (Luo and Chen 2011, Thorpe and Daniels 2012), by using Bayesian models, I 

show that both stand development processes and climate change have affected temporal 

increases in tree mortality. These findings are not likely a result of methodological 

problems since heterogeneity in sampling strategies had no effect on mortality 

(Appendix 3.9), though I note that I have not explicitly considered alternate 

exogenous factors here. Tree mortality associated with year decreased for all species 

except P. balsamifera when stand development factors were included as predictors. The 

differences in year effect between the models provide support for the notion that studies 

excluding endogenous factors can potentially produce biased estimates of climate 

change effects in boreal forests (Brown et al. 2011). The decreased year effect on tree 

mortality is attributable to stand development processes during the study period. For 

example, both stand age and stand basal area increased (Appendix 3.10), both of which 

positively affected tree mortality (Table A3.6.1 in Appendix 3.6). Also, an increase in 

the conspecific density of shade-tolerant Picea mariana and Picea glauca (Appendix 

3.10), reflecting the nature of secondary succession in boreal forests (Chen and 

Popadiouk 2002, Chen and Taylor 2012), intensified a negative density dependence 

effect on these two species (Table 3.1). The increased year effect in moist-habitat 

adapted Populus balsamifera suggests that reduced water availability might have 

overweighed endogenous effects.  
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My results show that mortality increases associated with climate change were 

significantly higher in young than old forests, and the higher increase in younger forests 

appears to be due to higher mortality sensitivity to recent regional warming and the 

resulting negative consequence on water availability. This finding indicates that climate 

change-associated increases in tree mortality would be underestimated if only old forests 

are used to represent regional forests. Compared with old forests, even-aged young 

forests established after a stand-replacing disturbance may experience greater 

competition for space and nutrients among young trees that tend to occupy the same 

ecological niche (Chen and Popadiouk 2002, Franklin et al. 2002), resulting in them 

being more vulnerable to external stressors such as climate change-associated drought 

(Linares et al. 2010, Moreno-Gutierrez et al. 2012). The positive effect of regional 

warming on mortality could also be attributed to the interdependencies among warming, 

drought, and forest pests (Allen et al. 2010, McDowell et al. 2011, Anderegg et al. 

2012b). In the study area, outbreaks of forest pests could have played a role in the 

temporal mortality increases (Hogg et al. 2002, Cullingham et al. 2011, Michaelian et al. 

2011). 

Mortality responses to climate change differed among species, suggesting that 

the regional forest may be undergoing forest compositional shift that is independent of 

endogenous forest succession. The highest morality increase in Populus balsamifera 

among pioneer species indicates that reduced water availability by regional warming has 

the greatest influence on species adapted to moist habitats. The higher mortality 

increases of late-successional Picea mariana and Picea glauca than those of early-

successional Populus tremuloides and Pinus banksiana in both young and old forests 
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(Figures 3.1-3.2) suggest that the regional forest will likely become further dominated 

by early-successional species if current warming trends continue. The different 

responses of tree mortality among species, coupled with those by climate change 

associated fire activities (Larsen 1997, Weir et al. 2000, Fauria and Johnson 2008, Pan et 

al. 2011a) that promote early-successional species (Ilisson and Chen 2009), may pose a 

significant conservation challenge for the region under further global warming. 

I show evidence that long-term tree mortality trends are influenced by both stand 

development processes and long-term climate trends, i.e., regional warming and drought. 

Note that the strength of these drivers on tree mortality differs among species and their 

influences interact both among endogenous factors and between endogenous and 

exogenous factors. Because of the higher sensitivity to recent climate change in young 

than old forests, climate change-associated tree mortality could be underestimated if 

mortality estimates from old forests are used to represent regional forests. Tree mortality 

responses to climate change differed among species and these different responses can 

have strong implications for future forest composition in the western boreal forest. 
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Appendices 

Appendix 3. 1. Descriptions of selected 871 plots by histograms, values were mean with 
range in the brackets. 
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Appendix 3. 2. Data description of individual tree mortality analyses. 

Species Number of 

plots 

Number of 

trees 

Number of 

dead trees 

Number of 

observations 

Populus tremuloides  659 51,140 20,636 125,158 

Populus balsamifera 444 11,030 5,844 27,472 

Pinus banksiana 132 10,528 1,497 26,538 

Picea mariana 294 17,456 3,445 42,019 

Picea glauca 620 49,935 13,028 139,034 

Total 887 140,089 44,450 360,221 
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Appendix 3. 3. Summary statistics (mean±1 SD and range in brackets) for the explanatory variables. 

Species Year RBA SBA (m2 ha-1) SA (years) rFSBA ATA (ºC) ACMIA 

Populus 

tremuloides 

1983±10 

(1961~2003) 

1.09±0.57 

(0.06~12.22) 

36.46±9.34 

(4.73~90.34) 

74.08±26.92 

(18~192) 

0.69±0.27 

(0.003~1) 

0.09±0.45 

(-1.16~1.21) 

0.25±2.52 

(-12.43~10.07) 

Populus 

balsamifera 

1982±10 

(1963~2003) 

0.98±0.66 

(0.06~11.79) 

33.79±9.25 

(5.21~71.85) 

77.77±27.82 

(17~184) 

0.36±0.26 

(0.001~0.99) 

0.08±0.47 

(-1.13~1.19) 

0.50±2.57 

(-8.31~10.07) 

Pinus 

banksiana 

1974±12 

(1961~2002) 

1.02±0.40 

(0.21~5.76) 

21.72±7.36 

(5.28~49.41) 

55.16±18.50 

(22~128) 

0.96±0.11 

(0.006~1) 

-0.16±0.52 

(-0.98~1.01) 

0.03±2.06 

(-9.48~5.53) 

Picea 

mariana 

1983±10 

(1961~2003) 

0.83±0.38 

(0.08~11.87) 

36.94±10.94 

(4.40~62.86) 

107.63±36.11 

(31~243) 

0.49±0.34 

(0.001~1) 

0.10±0.51 

(-1.16~1.23) 

0.70±2.70 

(-9.48~12.33) 

Picea 

glauca 

1982±10 

(1961~2003) 

1.00±0.72 

(0.06~10.84) 

40.38±8.74 

(5.63~85.76) 

105.35±33.00 

(18~243) 

0.63±0.25 

(0.001~1) 

0.05±0.49 

(-1.13~1.23) 

-0.59±2.49 

(-12.07~10.07) 
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Appendix 3. 4. Akaike information criterion (AIC) for the logistic regression models 
fitted using linear relative basal area (RBA) and exponential-transformed RBA. 
The AICs for the models with exponentially transformed RBA were smaller than 
the models with the linear RBA term, indicating that the models using the 
exponential transformed RBA had a better fit. 

Species Linear Exponential-transformed 

Populus tremuloides 104,785 102,637 

Populus balsamifera 27,326 27,162 

Pinus banksiana 11,148 11,013 

Picea mariana 23,801 23,780 

Picea glauca 85,801 85,491 

 

Appendix 3. 5. Deviance Information Criterion (DIC) for the full and reduced models 
by fitting data to Model 3.2. The reduced models fitted the data better than or 
same as the full models, indicated by smaller DIC or similar (difference is <5) 
DIC values of the reduced models. 

Species All Young Old 

Full Reduced  Full  Reduced  Full  Reduced  

Populus 

tremuloides  

88031 88034 60640 60625 27127 27108 

Populus 

balsamifera 

22215 22206 15570 15561 6578 6568 

Pinus 

banksiana 

9588 9517 8693 8689 813 807 

Picea mariana 21207 21208 7559 7558 13625 13621 

Picea glauca 73521 73516 22446 22440 51475 51471 
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Appendix 3. 6. Summary statistics of posterior distribution of reduced Models 3.2-3.4. 

Table A3.6.1. Estimated parameters (mean and 95% credible interval in brackets) for both endogenous and exogenous terms in Model 
3.2 (see Methods) using all sample plots. NS indicates that the 95% credible interval of the parameter covers 0 for the 
corresponding predictor. The models predictive performances were evaluated by area under the receiver operating 
characteristic curve (AUC). 

Term Populus tremuloides Populus balsamifera Pinus banksiana Picea mariana Picea glauca 

Intercept -4.334 

(-4.402~-4.271) 

-3.696 

(-3.811~-3.586) 

-5.437 

(-5.628~-5.251) 

-4.761 

(-4.903~-4.615) 

-4.858 

(-4.969~-4.748) 

0.5RBA 6.208 

(6.086~6.329) 

4.764 

(4.552~4.984) 

6.272 

(5.633~6.926) 

0.963 

(0.670~1.255) 

1.634 

(1.535~1.734) 

SBA 0.010 

(0.006~0.013) 

0.032 

(0.025~0.038) 

0.095 

(0.069~0.122) 

0.015 

(0.007~0.023) 

0.004 

(0.001~0.007) 

SA 0.013 

(0.010~0.015) 

NS 0.021 

(0.010~0.031) 

0.007 

(0.002~0.012) 

0.008 

(0.004~0.011) 

rFSBA NS NS NS NS 0.723 

(0.528~0.920) 

0.5RBA × SBA 0.219 

(0.206~0.232) 

0.133 

(0.109~0.158) 

0.127 

(0.054~0.200) 

0.119 

(0.092~0.146) 

0.096 

(0.085~0.106) 

0.5RBA × SA -0.056 

(-0.061~-0.051) 

-0.069 

(-0.077~-0.061) 

-0.062 

(-0.092~-0.032) 

-0.015 

(-0.023~-0.007) 

-0.020 

(-0.023~-0.017) 
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0.5RBA × rFSBA 3.190 

(2.728~3.666) 

1.307 

(0.577~2.030) 

NS 1.401 

(0.567~2.284) 

0.720 

(0.273~1.171) 

SBA × rFSBA 0.015 

(0.004~0.025) 

NS NS 0.082 

(0.061~0.103) 

0.022 

(0.009~0.043) 

Year 0.024 

(0.021~0.027) 

0.036 

(0.032~0.040) 

0.019 

(0.008~0.029) 

0.038 

(0.031~0.045) 

0.039 

(0.035~0.043) 

Year × 0.5RBA NS NS NS NS NS 

Year × SBA 

(×10-3) 

NS NS NS 0.546 

(0.102~0.997) 

0.932 

(0.685~1.170) 

Year × SA 

(×10-4) 

-4.669 

(-5.542~-3.817) 

-4.597 

(-6.060~-3.133) 

-3.399 

(-4.625~-2.173) 

-3.158 

(-4.406~-1.939) 

-5.097 

(-5.850~-4.346) 

Year × rFSBA NS NS NS 0.039 

(0.022~0.057) 

0.060 

(0.051~0.070) 

AUC 0.812 0.819 0.825 0.777 0.776 
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Table A3.6.2. Estimated parameters (mean and 95% credible interval in brackets) for both endogenous and exogenous terms in Model 
3.2 for young forests (initial stand age ≤ 80 years). 

Term Populus tremuloides Populus balsamifera Pinus banksiana Picea mariana Picea glauca 

Intercept -4.446 

(-4.528~-4.366) 

-3.753 

(-3.877~-3.631) 

-5.539 

(-5.732~-5.341) 

-5.211 

(-5.455~-4.969) 

-5.143 

(-5.331~-4.955) 

0.5RBA 6.817 

(6.667~6.967) 

5.730 

(5.448~6.019) 

6.353 

(5.654~7.057) 

1.490 

(0.958~2.027) 

2.045 

(1.855~2.239) 

SBA 0.005 

(0.000~0.010) 

0.042 

(0.031~0.052) 

0.103 

(0.075~0.134) 

0.015 

(0.001~0.029) 

0.021 

(0.012~0.030) 

SA 0.015 

(0.011~0.019) 

NS 0.023 

(0.011~0.035) 

NS NS 

rFSBA 0.452 

(0.214~0.694) 

NS NS 1.100 

(0.490~1.762) 

NS 

0.5RBA × SBA 0.265 

(0.248~0.283) 

0.226 

(0.192~0.259) 

0.156 

(0.073~0.242) 

NS 0.119 

(0.096~0.143) 

0.5RBA × SA -0.057 

(-0.066~-0.048) 

-0.087 

(-0.105~-0.069) 

-0.082 

(-0.118~-0.046) 

NS NS 

0.5RBA × rFSBA 3.687 

(3.056~4.287) 

3.688 

(2.645~4.744) 

NS NS 2.286 

(1.478~3.063) 

SBA × rFSBA 0.029 NS NS NS NS 



 

58 
 

(0.014~0.044) 

Year 0.028 

(0.024~0.033) 

0.046 

(0.040~0.052) 

0.021 

(0.009~0.032) 

0.055 

(0.045~0.064) 

0.060 

(0.055~0.065) 

Year × 0.5RBA -0.028 

(-0.043~-0.013) 

-0.107 

(-0.134~-0.080) 

NS NS NS 

Year × SBA 

(×10-3) 

NS NS NS NS 2.345 

(1.511~3.165) 

Year × SA 

(×10-4) 

-7.566 

(-9.468~-5.681) 

-5.762 

(-8.784~-2.638) 

-7.271 

(-13.657~-0.823) 

NS -9.039 

(-12.310~-5.805) 

Year × rFSBA 0.029 

(0.015~0.044) 

NS NS NS 0.140 

(0.116~0.165) 
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Table A3.6.3. Estimated parameters (mean and 95% credible interval in brackets) for both endogenous and exogenous terms in Model 
3.2 for old forests (initial stand age > 80 years). 

Term Populus tremuloides Populus balsamifera Pinus banksiana Picea mariana Picea glauca 

Intercept -3.946 

(-4.055~-3.836) 

-3.791 

(-3.921~-3.664) 

-4.895 

(-5.254~-4.585) 

-4.597 

(-4.779~-4.416) 

-4.691 

(-4.804~-4.580) 

0.5RBA 4.516 

(4.321~4.708) 

2.782 

(2.424~3.153) 

5.944 

(4.592~7.329) 

0.954 

(0.589~1.317) 

1.372 

(1.263~1.483) 

SBA 0.008 

(0.003~0.014) 

0.037 

(0.025~0.050) 

NS 0.018 

(0.008~0.027) 

NS 

 

SA 0.016 

(0.010~0.021) 

NS NS NS NS 

rFSBA NS NS NS -0.492 

(-0.873~-0.116) 

1.192 

(0.967~1.418) 

0.5RBA × SBA 0.164 

(0.143~0.185) 

0.083 

(0.041~0.126) 

NS 0.117 

(0.084~0.151) 

0.094 

(0.082~0.106) 

0.5RBA × SA -0.059 

(-0.070~-0.049) 

-0.061 

(-0.078~-0.045) 

NS -0.019 

(-0.029~-0.009) 

-0.016 

(-0.020~-0.011) 

0.5RBA × rFSBA 1.962 

(1.197~2.704) 

NS NS 1.591 

(0.600~2.595) 

NS 

SBA × rFSBA 0.018 NS 0.146 0.099 0.044 
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(0.001~0.036) (0.062~0.223) (0.076~0.123) (0.028~0.061) 

Year 0.016 

(0.010~0.023) 

0.022 

(0.016~0.028) 

NS 0.038 

(0.032~0.045) 

0.040 

(0.038~0.043) 

Year × SBA 

(×10-3) 

NS NS NS 0.844 

(0.310~1.376) 

1.397 

(1.113~1.683) 

Year × SA 

(×10-4) 

-6.824 

(-8.759~-4.922) 

NS NS NS -3.522 

(-4.486~-2.541) 

Year × rFSBA NS NS NS 0.035 

(0.017~0.053) 

0.051 

(0.040~0.063) 
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Table A3.6.4. Estimated parameters (mean and 95% credible interval in brackets) for the effect of annual temperature anomaly (ATA) 
and the effects of stand development processes on tree mortality in Model 3.3. 

Term Populus tremuloides Populus balsamifera Pinus banksiana Picea mariana Picea glauca 

Intercept -4.293 

(-4.356~-4.233) 

-3.905 

(-4.028~-3.787) 

-5.436 

(-5.639~-5.242) 

-4.995 

(-5.106~-4.887) 

-4.896 

(-4.978~-4.813) 

0.5RBA 6.316 

(6.194~6.436) 

4.713 

(4.496~4.926) 

6.410 

(5.757~7.080) 

0.866 

(0.572~1.155) 

1.638 

(1.534~1.738) 

SBA 0.018 

(0.014~0.022) 

0.043 

(0.035~0.051) 

0.105 

(0.076~0.134) 

0.029 

(0.020~0.038) 

0.026 

(0.021~0.030) 

SA 0.021 

(0.019~0.023) 

0.005 

(0.002~0.008) 

0.022 

(0.013~0.030) 

0.015 

(0.012~0.019) 

0.017 

(0.015~0.020) 

rFSBA 0.552 

(0.377~0.730) 

-0.730 

(-1.162~-0.290) 

NS NS 1.371 

(1.095~1.638) 

0.5RBA × SBA 0.223 

(0.209~0.237) 

0.155 

(0.129~0.181) 

0.097 

(0.022~0.170) 

0.130 

(0.101~0.158) 

0.103 

(0.093~0.114) 

0.5RBA × SA -0.055 

(-0.060~-0.050) 

-0.075 

(-0.083~-0.067) 

-0.052 

(-0.082~-0.022) 

-0.014 

(-0.022~-0.006) 

-0.018 

(-0.021~-0.015) 

0.5RBA × rFSBA 3.407 

(2.934~3.888) 

1.988 

(1.181~2.808) 

NS 1.760 

(0.896~2.636) 

0.652 

(0.202~1.103) 

SBA × SA NS NS NS NS NS 
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SBA × rFSBA 0.015 

(0.001~0.029) 

NS -0.002 

(-0.003~-0.001) 

0.048 

(0.024~0.072) 

0.029 

(0.012~0.047) 

SA × rFSBA NS NS NS NS NS 

ATA 0.467 

(0.419~0.515) 

0.517 

(0.435~0.600) 

0.544 

(0.335~0.755) 

0.397 

(0.300~0.490) 

0.526 

(0.471~0.581) 

ATA × 0.5RBA NS NS -1.554 

(-2.494~-0.588) 

NS NS 

ATA × SBA 

(×10-2) 

NS NS NS NS 0.775 

(0.200~1.352) 

ATA × SA 

(×10-3) 

-9.264 

(-11.055~-7.528) 

-12.794 

(-15.836~-9.770) 

-4.689* 

(-14.419~-5.042) 

-4.437 

(-6.565~-2.329) 

-7.517 

(-8.909~-6.167) 

ATA × rFSBA 0.188 

(0.027~0.347) 

NS NS NS 0.946 

(0.739~1.149) 
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Table A3.6.5. Estimated parameters (mean and 95% credible interval in brackets) for the effect of climate moisture index anomaly 
(ACMIA) and the effects of stand development processes on tree mortality in Model 3.4. 

Term Populus 

tremuloides 

Populus 

balsamifera 

Pinus banksiana Picea mariana Picea glauca 

Intercept -4.297 

(-4.370~-4.226) 

-3.828 

(-3.954~-3.698) 

-5.453 

(-5.660~-5.244) 

-4.611 

(-4.786~-4.443) 

-4.683 

(-4.817~-4.562) 

0.5RBA 6.218 

(6.100~6.340) 

4.708 

(4.489~4.926) 

6.264 

(5.621~6.915) 

0.972 

(0.679~1.277) 

1.634 

(1.535~1.736) 

SBA 0.014 

(0.010~0.017) 

0.027 

(0.020~0.035) 

0.112 

(0.082~0.144) 

0.026 

(0.018~0.034) 

0.012 

(0.009~0.016) 

SA 0.026 

(0.024~0.027) 

0.013 

(0.010~0.017) 

0.022 

(0.013~0.032) 

0.016 

(0.012~0.021) 

0.033 

(0.031~0.035) 

rFSBA 0.305 

(0.140~0.469) 

NS NS NS 0.666 

(0.463~0.871) 

0.5RBA × SBA 0.220 

(0.206~0.233) 

0.152 

(0.126~0.178) 

0.124 

(0.045~0.200) 

0.121 

(0.094~0.149) 

0.095 

(0.084~0.105) 

0.5RBA × SA -0.054 

(-0.058~-0.049) 

-0.071 

(-0.079~-0.063) 

-0.055 

(-0.087~-0.024) 

-0.016 

(-0.024~-0.007) 

-0.019 

(-0.022~-0.015) 

0.5RBA × rFSBA 3.196 

(2.725~3.668) 

1.635 

(0.847~2.424) 

NS 1.339 

(0.467~2.226) 

0.600 

(0.154~1.057) 
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SBA × SA NS NS NS NS NS 

SBA × rFSBA 0.010 

(0.001~0.018) 

NS NS 0.085 

(0.063~0.107) 

0.037 

(0.023~0.050) 

SA × rFSBA NS NS NS NS NS 

ACMIA -0.036 

(-0.045~-0.026) 

-0.073 

(-0.088~-0.057) 

-0.016 

(-0.001~-0.031) 

-0.078 

(-0.097~-0.058) 

-0.044 

(-0.054~-0.035) 

ACMIA × 0.5RBA -0.086 

(-0.131~-0.043) 

NS NS NS NS 

ACMIA × SBA NS NS NS NS NS 

ACMIA × SA 

(×10-3) 

1.926 

(1.560~2.285) 

1.985 

(1.390~2.598) 

NS 0.571 

(0.123~1.017) 

1.173 

(0.889~1.462) 

ACMIA × rFSBA NS 0.073 

(0.018~0.128) 

NS -0.120 

(-0.178~-0.062) 

-0.146 

(-0.184~-0.107) 
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Appendix 3. 7. Modeled temporal trends of annual mortality probability in young forests (initial stand age ≤ 80 years) and old forests 
(initial stand age > 80 years). 
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Appendix 3. 8. Temporal trends of climate variables. The results showed that, over 
study period, the annual temperature anomaly (ATA, oC) increased, growing 
season precipitation anomaly (GPA, mm) also increased, annual climate moisture 
index anomaly (ACMIA, cm) decreased (Table A3.8.1). The original data points 
were showed in Figure A3.8.1. 

Table A3.8.1. Estimated parameters (mean and 95 credible interval) for year effect on 
ATA, GPA, and ACMIA.  

Climatic variable βyear 

Mean 95% Credible interval 

ATA 0.034 0.033~0.034 

GPA 0.761 0.694~0.827 

ACMIA -0.088 -0.097~-0.080 
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Figure A3.8.1. Original data points (black dots) and fitted trends (red lines) for ATA (oC) 

(a), GPA (mm) (b), and ACMIA (cm) (c).
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Appendix 3. 9. Assessing possible methodological problems 

I first examined the spatial auto-correlation and heterogeneity in sampling 
strategies following the method described by van Mantgem et al. (2009). For all study 
species, Mantel tests showed no evidence of spatial auto-correlation among the plots for 
annual mortality probability, annual fractional change of mortality probability, or the 
effect of plot identity on annual mortality probability (Table A3.9.1). The selected PSPs 
were located in ecologically heterogeneous regions, and close geographic configuration 
does not imply similarity in forest characteristics. My result that mortality probability 
increased more so in young forests than old forests could also be mistaken if the young 
forest plots were spatially clustered. Thus, I also examined the spatial auto-correlation 
for initial stand ages. For all study species, the mantel tests showed no evidence of 
spatial auto-correlation among the plots for initial stand age (Table A3.9.1). 

Table A3.9.1. P values of Mantel tests for average mortality rate, annual fractional 
change of mortality rate, residuals of plot identity random effect, and initial stand 
age. 

Species Average 

Mortality 

rate 

Annual 

fractional 

change of 

mortality rate 

Plot identity effect 

on annual 

mortality 

probability 

Initial 

Stand 

age 

Populus 

tremuloides 

0.68 0.25 0.99 0.13 

Populus 

balsamifera 

0.99 0.99 0.35 0.15 

Pinus 

banksiana 

0.44 0.46 0.20 0.46 

Picea 

mariana 

0.21 0.13 0.30 0.96 

Picea 

glauca 

0.41 0.64 0.80 0.67 

Note: Spatial autocorrelation among sample plots was tested by plots’ geographic 
locations (latitudes and longitudes). 

The linear regressions that related annual mortality fractional change to plot size 
and average census interval, showed that neither plot size nor average census interval 
was significantly related to annual mortality fractional change (Figures A3.9.1-2). These 
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results indicate that the variation of mortality changes could not be attributed to plot size 
heterogeneity or the variation in census intervals. 
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Figure A3.9.1. Modeled annual fractional change in annual mortality probability in 

relation to plot size for Populus tremuloides (a), Populus balsamifera (b), Pinus 
banksiana (c), Picea mariana (d) and Picea glauca (e). 
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Figure A3.9.2. Modeled annual fractional change in annual mortality probability in 

relation to plot census interval for Populus tremuloides (a), Populus balsamifera 
(b), Pinus banksiana (c), Picea mariana (d) and Picea glauca (e).  
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Appendix 3. 10. Temporal changes of endogenous factors 

Table A3.10.1. Estimated parameters (mean and 95% credible interval in brackets) of 
year effect on endogenous factors. The results showed that both stand basal area 
(SBA) and stand age (SA) increased with year; conspecific density (rFSBA) 
decreased for three shade-intolerant Populus tremuloides, Populus balsamifera, 
and Pinus banksiana, and increased for two shade-tolerant Picea mariana and 
Picea glauca; relative size of individual tree within the stand (RBA) increased 
for Populus tremuloides and Populus balsamifera, and decreased for Picea 
glauca.  

Species βyear for RBA  βyear for SBA βyear for SA βyear for rFSBA 

Populus 

tremuloides 

0.0063 

(0.0057~0.0069) 

0.14 

(0.12~0.15) 

1.02 

(1.01~1.03) 

-0.0006 

(-0.0008~-0.0005) 

Populus 

balsamifera 

0.0024 

(0.0014~0.0034) 

0.14 

(0.12~0.16) 

1.02 

(1.01~1.04) 

-0.0008 

(-0.0009~-0.0006) 

Pinus 

banksiana 

-0.0006 

(-0.0015~0.0002) 

0.28 

(0.25~0.32) 

0.81 

(0.78~0.83) 

-0.0005 

(-0.0007~-0.0002) 

Picea 

mariana 

0.0001 

(-0.0005~0.0005) 

0.29 

(0.27~0.30) 

1.01 

(1.00~1.02) 

0.0012 

(0.0011~0.0013) 

Picea 

glauca 

-0.0017 

(-0.0026~-0.0009) 

0.13 

(0.12~0.15) 

1.03 

(1.02~1.04) 

0.0017 

(0.0016~0.0018) 

  



 

71 
 

Chapter 4. Another mechanism for the temporal increases of tree mortality: 

intensification of tree-tree competition by recent climate change 

Introduction 

Temporal increases of tree mortality have been observed in tropical, temperate 

and boreal forests (Phillips and Gentry 1994, Phillips et al. 2004, van Mantgem et al. 

2009, Peng et al. 2011, Luo and Chen 2013) with global implications in forest structure, 

function, and biosphere-atmosphere interactions (Anderegg et al. 2013). The increased 

tree mortality has been mainly attributed to global-change-type drought, i.e., increase of 

water deficit under global warming (Breshears et al. 2005, Breshears et al. 2009). 

Studies have showed direct processes through hydraulic failure and carbon starvation 

(Adams et al. 2009, Anderegg et al. 2012b), indirect processes through promoting forest 

pests outbreaks (Kurz et al. 2008), and interdependent processes among direct processes 

and indirect processes (McDowell et al. 2011, Gaylord et al. 2013). However, the 

temporal increase of tree mortality is not necessarily attributable to the global-change-

type drought. Increases of tree mortality could also result from intensification of tree-

tree competition due to positive climate effects (Phillips et al. 2004). Although this 

process has been proposed as a potential mechanism of climate change-induced tree 

mortality (Phillips et al. 2004), no study, so far, has explicitly tested it. Such knowledge 

is needed to better understand how trees die and to provide better prediction of tree 

mortality in future climatic scenarios (Anderegg et al. 2012a). 

Global warming could affect boreal forests in two ways. On one hand, increases 

of temperature have a negative effect on boreal forests by increasing drought stress when 

evaporative demand exceeds water supply, by promoting outbreaks of forest pests, or the 
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combination of both (Barber et al. 2000, Hogg et al. 2008, Kurz et al. 2008, Luo and 

Chen 2013). On the other hand, in areas where the global-change-type drought is absent, 

the rising temperature could have positive effects on forests by releasing the soil 

nutrients and lengthening growing season (Chapin et al. 1993, Myneni et al. 1997, 

Penuelas et al. 2009). Furthermore, as a major contributor to global warming, an 

increase in CO2 could also fertilize the forests (McMahon et al. 2010). Because global-

change-type drought is not a worldwide phenomenon (Sheffield et al. 2012), 

understanding how drought-free forests respond to recent climate changes is paramount 

to fully appreciate the impact of climate changes on global forests. 

At a community level, trees are not isolated from each other. They compete for 

resources such as soil water and nutrients and light (Weiner 1990, Muller-Landau et al. 

2006), and living space (Coates et al. 2009). During these processes, trees could die due 

to limited supplies (Luo and Chen 2011). The competition effect varies with the identity 

of its neighbors, generally with stronger negative effect from conspecific neighbors 

because of possible occupation of the same ecological niche among conspecific 

individuals, facilitation from interspecific neighbors, and promotion of density-

dependent effects (He and Duncan 2000, Condit et al. 2006, Comita et al. 2010, Luo and 

Chen 2011). One difficulty of plant competition is quantification of competition index, 

which can be complicated, and sometimes flawed (Weigelt and Jolliffe 2003). A 

neighborhood analysis is an ideal analytical tool to describe how a tree interacts with its 

neighbors (Uriarte et al. 2004, Canham et al. 2006, Das et al. 2008, Coates et al. 2009). 

In this chapter, I sought to determine 1) whether there was a systematic increase 

of tree mortality over last three decades in a region without global-change-type drought, 
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2) what the underlying climate change-associated mechanism would be if the temporal 

increase of tree mortality had been detected. I specifically tested two hypotheses: 1) tree 

mortality increases temporally; 2) regional warming has intensified the effect of 

competition on tree mortality. To achieve this goal, I used 148 long-term measured 

permanent sampling plots (PSPs) measured from 1986 to 2010 in the Manitoba province 

of Canada. The study area, unlike western North America, had not experienced drought 

over the last three decades (Sheffield et al. 2012), providing a unique setting for my 

purpose. The spatial configuration of each tree has been recorded since the plots were 

established, making it possible to compile a spatial neighborhood competition index for 

each tree. 

Method and materials 

Study area and permanent sampling plot 

The study area was located in Manitoba, Canada, ranging from 49°04’ to 56°99’ 

N in latitude and from 95°30’ to 101°68’W in longitude (Figure 1.1). Mean annual 

temperature and mean annual precipitation between 1983 and 2010 varied from -3.09 °C 

to 2.95 °C and from 443 mm to 674 mm, respectively. Elevation ranged from 212 m to 

675 m above sea level (a.s.l). Wildfire is the dominant stand-replacing disturbance with 

a fire return interval varying temporally and spatially from 15 to 90 years (Weir et al. 

2000). 

Since 1985, there were 371 plots were established in stands (>4 ha in area) that 

were visually homogeneous in structure and composition and were at least 100 m from 

any openings to minimise edge effects. The plots were circular with size of 500 m2, and 
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were re-measured for every 5-year until 2010. In the plots, all trees with height ≥1.5 m 

had been identified, tagged, and diameter at breast-height (DBH, 1.3 m above root collar) 

measured. The locations of all trees had been marked by recording the angle from the 

north and the distance from the plot center. Among these plots, 234 were in naturally-

established forests. For these plots, stand ages were determined using 

dendrochronological methods. 

To examine long-term climate change-induced mortality and climate changes-

altered effect of competition on tree mortality, I selected the PSPs based on the 

following three criteria: 1) stands were naturally established with forest age available 

and were not managed; 2) plots had at least three censuses; 3) plot spatial location was 

provided so that climate data could be obtained. In total, 148 plots were selected (Figure 

1.1). The first census year varied from 1986 to 2000 (mean = 1991); the last census year 

ranged from 1996 to 2010 (mean = 2008). The monitoring length averaged 16.6 years, 

ranging from 10 to 20 years. The mean numbers of censuses was 4.3 times, ranging from 

3 to 5 times (Appendix 4.1). There were 58,584 trees measured during the monitoring 

period, with 14,840, 12,913, 941, 22,807, and 969 trees for the major tree species Pinus 

banksiana, Populus tremuloides, Populus balsamifera, Picea mairana, Picea glauca, 

respectively (Appendix 4.2). 

Explanatory variables 

I used the Hegyi competition index (H) to quantify a tree’s competitiveness for 

resources (Hegyi 1974). The index is estimated based on the size of the subject tree, the 

sizes of neighboring trees and the distances between neighboring trees and the subject 

tree (Equation 4.1). 
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H      Equation 4.1 

where i and n are the ith subject tree and its nth surrounding tree. j and k are the jth census 

period in kth plot. 

Competition from conspecific neighbors to subject tree may be stronger than that 

from interspecific neighbors because of possibly occupying same ecological niche 

among conspecific individuals, facilitating from interspecific neighbors, and promoting 

density-dependent effects (Condit et al. 2006, Comita et al. 2010, Luo and Chen 2011). 

Therefore, I used the relative conspecific Hegyi index (rH) to account for species 

interaction. The rH was calculated as the ratio of conspecific Hegyi index to the total 

Hegyi index (Equation 4.2). 
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rH      Equation 4.2 

where i, j, k, and n were defined as same as in Equation 4.1. m was mth conspecific 

surrounding tree. 

Both H and rH were calculated on a tree basis with a radius of 12.6 m. The area 

corrections were performed if a tree’s 12.6 m radius circles lay outside the plot 

boundaries following Das et al. (2008). Hegyi indexes were weighted by dividing the 

proportion of shared area to the plot area. H and rH were calculated at the beginning of a 

census period. 
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Similar to my previous chapter, to examine the systematic temporal trends of tree 

mortality, I used the middle calendar year of a census period, i.e., the period between 

two successive censuses, to represent climate change drivers as a whole (Luo and Chen 

2013). I calculated two climate anomalies: annual climate moisture index anomaly 

(ACMIA) and annual temperature anomaly (ATA). Climate anomalies are defined as the 

departure of means between two sequential measurements from the long-term climate 

means (Clark et al. 2011). The long-term climate mean was defined as the average of 

each climate variable between 1985 and 2010, the period in which the plot 

measurements were taken. The climate associated with each census period was 

calculated as the average of climate values during the period. ACMIA was used to verify 

the study area did not experienced temporal drought. Annual CMI was the sum of 

monthly CMI over 12 month periods from the previous August 1st to July 31st of the next 

year (Hogg et al. 2008). The monthly CMI was based on the quantity of monthly 

precipitation minus monthly potential evapotranspiration (PET), which was computed 

using a simplified form of the Penman-Monteith equation. A smaller value indicated a 

drier condition (Hogg et al. 2008). ATA was used to test hypothesis two if the temporal 

changes of tree mortality were detected. Annual temperature and climate moisture index 

(CMI) data were derived from BioSIM software (Régnière et al. 2012), which generates 

historical scale-free climate data for specific locations based on latitude, longitude, and 

elevation. 

Statistical analyses 

For each of the five major species, i.e., Pinus banksiana, Populus tremuloides, 

Populus balsamifera, Picea mairana, Picea glauca, I developed individual tree-based 
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models using Hierarchical Bayesian logistic regression (HBLogit) to detect whether 

there were temporal increases of tree mortality and whether the regional warming altered 

tree-tree competition effect on tree mortality (Equations 4.3-4.4). 

)(Bernulli~S ijkijk p         Equation 4.3 
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)(X)(logit

2

m

kk

kijkmijk

N
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ρπ

πβα +×+=
      Equation 4.4 

where i, j, k are the ith subject tree of jth census period in plot k. S is the status of a tree (0: 

alive, 1: dead) at the end of a census period. p is 5-year mortality probability. Xm and βm 

are the mth predictor and its corresponding coefficient. πk is the random plot effect. 

Similar to my previous chapter, I developed a full endogenous base model 

(FEBM) that included endogenous factors and their two-way interactions (Equation 4.5). 
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  Equation 4.5 

For each species, the models were fitted at two steps. Firstly, DIC-based model 

selection was performed to identify the best endogenous base model (BEBM) from 

FEBM (Table 1). Next, I expanded BEBM by adding Year and its interactive terms with 

endogenous factors, i.e., Year×H, Year×rH, Year×SA. DIC-based model selection 

procedure was performed to determine the best model, which is denoted as BMYear. 

The threshold of difference in DIC was set as 2 to indicate substantial differences 

between the two models. To prevent over-fitting, the models with less predictors were 

selected when the models had similar DICs. The resultant model was used to examine 
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whether there are temporal changes of mortality probability and whether the competition 

effect on tree mortality changes temporally.  

Since I were also interested in the relative importance of endogenous factors and 

exogenous factors, the mortality sensitivity scores were calculated based on two groups, 

i.e., endogenous group that contained all the main endogenous factors and their two way 

interaction, and exogenous group that included year term and its interactive term with 

the endogenous factor, following the previous studies (Dietze and Moorcroft 2011, Luo 

and Chen 2013). I defined sensitivity scores on mortality probability as the standard 

deviation of the predicted mortality probability for each of the above two groups of 

factors, holding the other two groups of variables at their mean. To present change in 

mortality for each of the tree species, I calculated annual fractional change of mortality 

probability using the equation exp(β)-1, in which β is fitted coefficient for Year (van 

Mantgem et al. 2009, Luo and Chen 2013). 

To examine the temporal trends of climatic variables at the plot level, I used the 

Hierarchical Bayesian linear model (HBL) (Equation 4.6).  

kjkjkY πβα +×+= Year  ),0(~ 2
kN σπ      Equation 4.6 

where Yjk is climatic variable, i.e., ATA and ACMIA; α and β are intercept and estimated 

coefficients; Yearjk represents middle calendar year at for census period j in plot k; the 

model included a term πk to describe the random effect of sampling plots. 

To examine whether the regional warming led to temporal changes of mortality 

probability, I replaced Year with ATA following the same procedures as described in 

stage 2 of BMYear. The best model for ATA was denoted as BMATA. 
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For all analyses, the Bayesian Markov Chain Monte Carlo methods were 

implemented using JAGS called from R with rjags package (Plummer 2011a, b, R 

Development Core Team 2011). All independent variables were centred to speed up 

convergence. For each model, I evaluated convergence by running two independent 

chains with different initial values and monitoring the Gelman–Rubin statistic. When 

convergence was confirmed, an additional 10,000 iterations with thinning by half were 

used to calculate the mean and 95% credible interval for each coefficient from the 

posterior distribution. For Hierarchical Bayesian logistic regression models, the 

predictive performances were checked by two ways. Firstly, I provided the area under 

the receiver operation characteristic curve (AUC). A value of AUC >0.8 suggests 

excellent predictive power (Hosmer and Lemeshow 2000). Secondly, I binned the data 

and plotted predicted mortality probability against observed proportion of dead trees. 

Results 

For all species, the models based only on endogenous factors (FEBMs and 

BEBMs) performed well to describe mortality probability, as indicated by AUCs, i.e., 

AUC>=0.77 (Table 4.1). However, inclusions of year and its interactive terms led to 

better model performances, as indicated by smaller DICs of BMYear (Table 4.1). For all 

species, endogenous factors explained substantially more variation in tree mortality than 

exogenous factors did (Figure 4.1). For all species, when the model included the 

endogenous factors, mortality probability increased over the study period (Table 4.2 and 

Figure 4.2). Increase of predicted tree mortality was the fastest for Picea glauca with 

annual fractional change of 5.6%, followed by Populus tremuloides, Picea mariana, 

Populus balsamifera, and Pinus banksiana with annual fractional change of 5.3%, 2.7%, 
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2.6%, and 1.5%, respectively. The competition effects from neighbors decreased and 

increased with year for Pinus banksiana and Populus tremuloides, respectively, as 

indicated by the significant interactive terms between Year and H. The competition 

effects from conspecific neighbors were intensified over study period for Pinus 

banksiana and Populus balsamifera, indicated by the significantly positive interactive 

term between Year and rH. Temporal increase of mortality was faster in younger forests 

than that in older forests for Populus tremuloides, as indicated by the significantly 

negative interactive term between Year and SA (Table 4.2). However, for the Picea 

mariana and Picea glauca, the interactive term between Year and endogenous factors 

were not significant predictors in the BMYear models (Table 4.1).  
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Table 4. 1. Model selection procedure using Deviance Information Criterion (DIC) for 
each tested species. FEBM, BEBM, BFMYear, and BFMATA are abbreviations 
for full endogenous base model, best endogenous base model, best model of year, 
and best model of annual temperature anomaly (ATA), respectively.  

Model Predictors DIC ΔDIC AUC 

Pinus banksiana 

FEBM H + rH + SA + H×rH + H×SA + rH×SA 21737 0 0.86 

BEBM H + rH + SA + H×rH + H×SA + rH×SA 21737 0 0.86 

BMYear BEBM + Year +Year×H + Year×rH 21602 -135 0.87 

BMATA BEBM + ATA + ATA×H + ATA×rH 21674 -63 0.87 

Populus tremuloides  

FEBM H + rH + SA + H×rH + H×SA + rH×SA 27019 2 0.80 

BEBM H + SA + H×rH + H×SA + rH×SA 27017 0 0.80 

BMYear BEBM + Year + Year×H + Year×SA 26444 -573 0.81 

BMATA BEBM + ATA + ATA ×H + ATA ×SA 26801 -216 0.80 

Populus balsamifera  

FEBM H + rH + SA + H×rH + H×SA + rH×SA 1978 -1 0.84 

BEBM H + H×rH + H×SA 1979 0 0.83 

BMYear BEBM + Year + Year×rH 1958 -21 0.84 

BMATA BEBM + ATA×rH 1947 -32 0.84 

Picea mariana  

FEBM H + rH + SA + H×rH + H×SA + rH×SA 23222 1 0.77 

BEBM H + rH + SA + H×rH 23221 0 0.77 

BMYear BEBM + Year 23214 -7 0.77 

BMATA BEBM + ATA +ATA×H + ATA×rH + ATA×SA 23210 -11 0.77 

Picea glauca  

FEBM H + rH + SA + H×rH + H×SA + rH×SA 1068 1 0.79 

BEBM H + rH + SA + H×rH + H×SA 1067 0 0.79 

BMYear BEBM + Year 1061 -6 0.79 

BMATA BEBM + ATA×H 1062 -5 0.79 
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Table 4. 2. Summaries of posterior distributions of climate variables and its interactive 
terms with endogenous variables in best model of year (BFMYear), and best 
model of ATA (BFMATA). NA means not available in the best models. 

Terms Pinus 

banksiana 

Populus 

tremuloides 

Populus 

balsamifera 

Picea 

mariana 

Picea 

glauca 

BMYear     

Year 

(×10-2) 

1.49 

(0.19~2.79) 

5.17 

(3.05~7.11) 

2.56 

(0.06~5.07) 

2.66 

(1.48~3.86) 

5.45 

(0.73~10.26) 

Year×H 

(×10-4) 

-3.77 

(-4.47~-3.07) 

5.97 

(5.34~6.59) 

NA NA NA 

Year×rH 0.12 

(0.07~0.16) 

NA 0.27 

(0.15~0.38) 

NA NA 

Year×SA 

(×10-3) 

NA -2.44 

(-2.96~-1.92) 

NA NA NA 

BMATA     

ATA 0.11 

(0.01~0.22) 

0.25 

(0.15~0.35) 

NA 0.28 

(0.16~0.41) 

NA 

ATA×H 

(×10-3) 

1.26 

(0.36~2.16) 

4.03 

(3.38~4.68) 

NA -0.24 

(-0.43~-0.05) 

3.24 

(0.82~5.70) 

ATA×rH 2.02 

(1.53~2.50) 

NA 3.53 

(2.38~4.68) 

0.57 

(0.10~1.03) 

NA 

ATA×SA 

(×10-3) 

NA -1.80 

(-2.57~-1.01) 

NA -0.48 

(-0.86~-0.10) 

NA 
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Figure 4. 1. The sensitivity scores for the two predictor groups in best model of Year 

(BMYear). 
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Figure 4. 2. Modeled temporal trend of 5-years’ mortality probability for Pinus 

banksiana (a), Populus tremuloides (b), Populus balsamifera (c), Picea mariana 
(d), and Picea glauca (e). The black lines and gray lines were mean and 95% 
credible interval, respectively.  
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Over the study period, the ATA, APA, and ACMIA increased by 0.038 oC year-1, 

0.332 cm year-1 and 0.393 cm year-1, respectively (Figure 4.3). For all the species, 

models that included ATA gave better fits than BEBMs (Table 4.1). There were overall 

increases of mortality probability with ATA for Pinus banksiana, Populus tremuloides, 

and Picea mariana (Table 4.2). The competition effects from neighbors on tree mortality 

had been intensified by increasing ATA for Pinus banksiana, Populus tremuloides and 

Picea glauca, but opposite for Picea mariana, as indicated by the interactive term 

between ATA and H (Table 2). For Pinus banksiana, Populus balsamifera and Picea 

mariana, the competition effects from conspecific neighbors on tree mortality were 

increased by ATA, as indicated by interactive term between ATA and rH (Table 2). 
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Figure 4. 3. The temporal trend of annual temperature anomaly (ATA, oC) (a), annual 

precipitation anomaly (APA, cm) (b), and annual climate moisture index anomaly 
(ACMIA, cm) (c). 

 

Discussion 

In this study, I found that the tree mortality has increased over last three decades 

for all the five major tree species, which is in line with previous studies that show the 

temporal increases of tree mortality (Phillips et al. 2004, van Mantgem et al. 2009, Peng 

et al. 2011, Luo and Chen 2013). These previous studies suggested the temporal 
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increases of tree mortality are attributable to recent impact of global-change-type 

droughts on forests across large areas of western North America (van Mantgem et al. 

2009, Peng et al. 2011, Luo and Chen 2013). However, this interpretation is not 

applicable to the current study area in Manitoba, where I recorded a significant increase 

in water availability (i.e., ACMIA) over the period of my analyses. Therefore, the 

temporal increase of tree mortality in this study is attributable to another mechanism. 

The neighborhood analyses showed that regional warming had intensified the effects of 

competition from neighbors on tree mortality, providing evidence that the observed 

temporal increases of tree mortality were a result of climate-intensified tree-tree 

competition (Phillips et al. 2004). 

My result that regional warming intensified tree-tree competition could be 

attributed to the positive effects of recent climate change on forests. The study area is 

located in a cold region where tree growth is presumably often limited by low 

temperatures. The observed regional warming has likely stimulated tree growth by 

lengthening growing season and increasing soil nutrient availability (Chapin et al. 1993, 

Myneni et al. 1997). This, in turn may have increased the tree-tree competition. In this 

study, I did not relate the temporal increase of tree mortality to temporal increase of 

atmospheric CO2 that may also stimulate growth by carbon fertilization (Phillips et al. 

2004). The highly correlative nature between temperature and CO2 suggests that rising 

CO2 may have also contributed to temporal increase of tree mortality. 

My results are striking for several reasons. Firstly, my results suggest that the 

temporal increase of tree mortality could be a global phenomenon as a result of global 

warming. However, the underlying processes are different. In areas where the supply of 
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water does not meet the evaporative demand promoted by warming, temporal increases 

of tree mortality may have occurred as a result of global-change-type drought (van 

Mantgem et al. 2009, Peng et al. 2011, Luo and Chen 2013). However, in the area where 

the global-change-type drought is not an issue, the regional warming could kill trees by 

intensifying competition from their neighbors, as showed in this study. Secondly, my 

result that the climate change intensified conspecific competition implies that the climate 

change may have a positive effect to maintain tree species diversity (Condit et al. 2006, 

Comita et al. 2010). Finally, I reported that the increase rates were higher for Picea 

glauca and Populus tremuloides than other three species, suggesting that climate change 

likely lead to regional species compositional change. However, the regional species 

compositional change is different from that caused by global-change-type drought, 

which likely promote the dominance of early-successional species (Luo and Chen 2013).  
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Appendices 

Appendix 4. 1. Histograms of selected 148 plots for calendar year at first census (a), 
calendar year at last census (b), number of census (c), monitoring period (d), and 
stand age at first census (e). 
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Appendix 4. 2. Number of plots, number of trees, and number of observations for all the 
tree species and five major tree species, Pinus banksiana, Populus tremuloides, 
Populus balsamifera, Picea mariana, and Picea glauca. 

Species Number 

of plots 

Number of trees Number of 

observations Live trees Dead trees 

All tree species 148 39429 19050 153256 

Pinus banksiana 81 9406 5329 36495 

Populus tremuloides 95 5996 6917 30933 

Populus balsamifera 37 305 636 2015 

Picea mariana 91 19468 3339 64591 

Picea glauca 46 798 171 2213 

Tested species percentage  91% 86% 89% 
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Chapter 5. Widespread carbon sink declines of western boreal forests with climate 

change 

Introduction 

Net biomass change of closed-canopy forests is a critical indicator to 

understanding forest carbon balance (Phillips et al. 1998, Lewis et al. 2009, Phillips et al. 

2009, Pan et al. 2011b). Containing nearly half of the global forest ecosystem carbon 

due to the slow decomposition rate of dead biomass in cold climates, boreal forests play 

a critical role in the global carbon cycle (Dixon et al. 1994). Compared with spatially 

extensive observational networks used to estimate net biomass change in tropical and 

temperate forests (Phillips and Gentry 1994, Phillips et al. 1998, Phillips et al. 2004, 

Lewis et al. 2009, Phillips et al. 2009, McMahon et al. 2010, Thomas et al. 2010) 

however, there has been only one recent study reporting net biomass change of old 

forests (≥80 years old) in Canada, which analyzed 96 sample plots with a total area of 

approximately 11 ha (Ma et al. 2012). The extent and the degree to which climate 

change may affect net biomass change remains unclear for the boreal forests due to its 

diverse types (Gower et al. 2001) and the fact that the majority of the forests are younger 

than 80 years old due to high frequencies of stand-replacing disturbances (Weir et al. 

2000, Magnani et al. 2007).  

Net biomass change of closed-canopy forests is the sum of growth of surviving 

trees, ingrowth from new recruitments, and loss by mortality. Regional warming and 

drought-associated increases in tree mortality have been widely observed in western 

North American forests (van Mantgem et al. 2009, Peng et al. 2011, Luo and Chen 

2013). The increases in tree mortality, however, may not lead to net biomass decline 
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since the growing space and resources released by tree mortality can be utilized by 

surviving trees and new recruits (Phillips and Gentry 1994, Phillips et al. 2004). Despite 

persistent increases of global warming (Diffenbaugh and Field 2013) and drought in 

some terrestrial ecosystems (Sheffield et al. 2012), the systematic trends, which best 

reflect climate change effects (Parmesan and Yohe 2003, IPCC 2007), in net biomass 

change associated with warming and drought remain uncertain in natural forests (Chave 

et al. 2004). 

To examine net aboveground biomass change and its systematic trends 

associated with climate change, I used 871 permanent sampling plots (170.6 ha), 

monitored between 1958 and 2009 (Appendix 5.1). These plots were established by the 

Alberta and Saskatchewan governments to monitor growth of closed-canopy forests, 

using stratified random sampling to cover four forest types and a wide range of forest 

age classes (ranging from 17 to 210 years old) (Appendix 5.1). Along with the global 

increase in CO2 concentration, the region has experienced warming, and droughts 

(Scheffer et al. 2012, Diffenbaugh and Field 2013), has undergone extensive insect 

outbreaks (Hogg et al. 2008), but has little nitrogen deposition (Reay et al. 2008). I 

quantified annual net aboveground biomass change (ΔAGB) as the sum of the changes 

in growth of surviving trees (ΔAGBG), ingrowth from recruitment (ΔAGBI), and loss 

from mortality (ΔAGBM). Since observed trends in longitudinal data reflect both 

endogenous and exogenous processes (Magnani et al. 2007, Brown et al. 2011, Luo and 

Chen 2013), I used Hierarchical Bayesian models, which are suited for accounting for 

uncertainties in sampling, models, and parameters associated with observational data 
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(Clark 2005), to disentangle forest age and climate change effects on ΔAGB and its 

components. 

Method and materials 

Study area and the forest inventory data 

The study area is located in Alberta and Saskatchewan, Canada, ranging from 

49°01’ to 59°44’ N in latitude and from 101°44’ to 119°40’ W in longitude (Figure 1.1). 

Mean annual temperature and mean annual precipitation between 1950 and 2009 varied 

from -2.38 °C to 4.08 °C and from 365 mm to 1184 mm, respectively. Elevation ranges 

from 260 m to 2073 m above sea level (a.s.l). Wildfire is the dominant stand-replacing 

disturbance with a fire return interval varying temporally and spatially from 15 to 90 

years (Weir et al. 2000). 

A total of 3006 permanent sampling plots (PSP) were established in the study 

area mostly during 1960s and 1970s by the Alberta and Saskatchewan provincial 

governments. The plot sizes vary from 405 m2 to 8092 m2. The plots were established in 

stands (>1 ha in area) that were visually homogeneous in structure and composition and 

were at least 100 m from any openings to minimise edge effects. The plots were re-

measured until 2009 at varying intervals. 

To examine long-term changes of aboveground biomass, I selected the PSPs 

based on the following five criteria: 1) stands originated from a wildfire with forest age 

available and were not managed; 2) plots had at least three censuses and had been 

monitored for at least 10 years; 3) All trees within sample plots including recruitment 

trees were marked and their diameter at breast height (DBH) were measured; 4) plot 
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spatial location was provided so that climate data could be obtained; 5) each plot had at 

least 30 trees at initial measurement to ensure that the plot represented the sample stand. 

The last criterion resulted in the exclusion of plots with size <600 m2. Stand age for each 

plot was determined according to a known fire or dendrochronologically as the median 

age of the least shade tolerant species in the plot by coring three dominant/co-dominant 

trees of each tree species outside the plot at the time of plot establishment. In total, 871 

plots (170.6 ha) were selected for analyses with 208,961 trees measured during the 

monitoring period (Appendix 5.1 and Appendix 5.2). The first census year varied from 

1958 to 1993; the last census year ranged from 1972 to 2009. The measurement intervals 

averaged 9.20 years. The numbers of censuses averaged 3.91 times (Appendix 5.1). 

Because each province used different tree size criteria for monitoring, i.e., ≥7.3 

cm in DBH in Alberta, ≥9.7cm in DBH in Saskatchewan, respectively, I standardized 

the data by selecting trees with DBH ≥10 cm to eliminate the effect of the different 

sampling efforts between the two provinces. Recruitment trees were defined as those 

reached 10-cm DBH between two successive censuses. A decrease in DBH for a given 

tree could occur between two successive measurements (Phillips et al. 1998) since DBH 

could be measured in different directions or due to different levels of tree bark swells 

and shrinks under different weather conditions when measurements were taken. As such 

I applied a correction to those cases by interpolating DBH values from the previous and 

the next measurements (Phillips et al. 1998). 

Calculations of annual net aboveground biomass change and its components 

I calculated stand-level biomass by summing the biomass of all trees within each 

sample plot for each census. Individual tree aboveground biomass was estimated by 
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using species-specific DBH-based equations for wood, bark, foliage, and branches, 

respectively (Lambert et al. 2005). As recommended (Chave et al. 2004), these 

equations were developed based on 207 to 1534 trees per species with a wide range of 

sizes, sampled across Canada boreal forests. For less frequently occurring Pseudotsuga 

menziesii Mirb. (437 trees), Pinus flexilis James (5 trees), and Picea engelmannii Parry 

ex Engelm. (42 trees), I used the equations of softwood or hardwood to estimate their 

biomass (Lambert et al. 2005). 

I calculated annual net aboveground biomass change (ΔAGB, Mg ha-1 yr-1) as the 

difference of aboveground biomass divided by the number of years between two 

consecutive censuses. The ΔAGB included biomass gain by the growth of surviving 

trees (ΔAGBG), ingrowth by new recruitment trees (ΔAGBI), and loss due to tree 

mortality (ΔAGBM). Similar to studies in tropical forests (Lewis et al. 2009, Phillips et 

al. 2009), I empirically derived optimum weighting of each observation corresponding to 

the sampling effort employed (plot size and length of monitoring period), by assessing 

patterns in the residuals of ΔAGB and its components versus sampling efforts (Appendix 

5.3). 

Explanatory variables 

Similar to previous studies (Phillips et al. 1998, Lewis et al. 2009, Phillips et al. 

2009), to examine the systematic temporal trends in ΔAGB and its components, I used 

the middle calendar year of a census period, i.e., the period between two successive 

censuses, to represent climate change drivers as a whole (Luo and Chen 2013). I 

calculated two climate anomalies: annual temperature anomaly (ATA) and annual 

climate moisture index anomaly (ACMIA). Climate anomalies are defined as the 
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departure of means between two sequential measurements from the long-term climate 

means (Clark et al. 2011). The long-term climate mean was defined as the average of 

each climate variable between 1954 and 2009, during which the plot measurements were 

taken. The climate associated with each census period was calculated as the average of 

climate values during the period. Annual temperature and climate moisture index (CMI) 

data were derived from BioSIM software (Régnière et al. 2012), which generates 

historical scale-free climate data for specific locations based on latitude, longitude, and 

elevation. Annual CMI was the sum of monthly CMI over 12 month periods from last 

August 1st to July 31st of current year (Hogg et al. 2008). The monthly CMI was based 

on the quantity of monthly precipitation minus monthly potential evapotranspiration 

(PET), which was computed using a simplified form of the Penman-Monteith equation. 

A smaller value indicated a drier condition (Hogg et al. 2008). 

Statistical analyses 

To account for uncertainties in sampling, models and parameters, I used the 

Bayesian Markov Chain Monte Carlo methods with rjags package for all analyses 

(Wikle 2003, Clark 2005, Cressie et al. 2009, Plummer 2011a, b). To estimate the long-

term means of ΔAGB and its components, I used: 

jijY πµ +=          Model 5.1 

where Yij is ΔAGB or its components of plot j for census period i; µ is the long-term 

mean to be estimated; πj represents the random effect of sampling plots. As a rule of 

thumb, πj is in normal distribution with a mean of 0.  
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To disentangle the effects of forest development and climate change (Brown et al. 

2011), I included forest age and calendar year as predictors:  

jijijij YearFAY πβββ +×+×+= 210 )ln(      Model 5.2 

where Yij and πj are same as in Model 1; β0, β1, and β2 are parameters to be estimated. 

FAij is middle forest age of a census period and is transferred by natural logarithms since 

ΔAGB and forest age relationship is best described by natural log function (Appendix 

5.4). The data show a positive collinearity between FA and Year (r = 0.16 or r2 =0.027). 

There are three possible approaches to disentangle the joint variations between forest 

age and climate change effects. The first approach is to simultaneously model forest age 

and climate change effects without assigning priority. The second is to use residual and 

sequential regressions by assigning the priority to FA and then modeling Year effects on 

the residuals (Graham 2003). The third is to reverse the priority in the second approach. 

While all three approaches yielded negative parameter values for FA and Year, the first 

approach yielded the intermediate parameter values (Appendix 5.5). Because I have no 

logical or theoretical basis for considering any variable to be prior to any other in terms 

of a hypothetical causal structure of the data (Cohen and Cohen 1975) and assigning 

priority to FA would marginalize the Year effect, and vice versa (Brown et al. 2011), I 

interpreted the results from the simultaneous modeling the effects of FA and Year 

(Appendix 5.5). 

In model 5.2, Yearij represents systematic climate change drivers including the 

systematic increase in ATA and decrease in ACMIA. However, the interannual 
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variability of ATA and ACMIA would not be represented by Year. As recommended by 

Gelman et al. (2003), I expanded Model 2 to include ATA and ACMIA as predictors.  

jijijijijij

ijijijijij

ACMIAATAACMIAYearATAYear

ACMIAATAYearFAY

πβββ

βββββ

+××+××+××+

×+×+×+×+=

765

43210 )ln(
 

          Model 5.3 

where Yij, FAij, Yearii, and πj are same as in Model 2; ATAij and ACMIAij represent the 

average ATA and ACMIA of a census period, respectively; βs are parameters to be 

estimated. 

I exhaustively ran all possible models by growing model complexity, starting 

from the simplest model with forest age as only predictor. I computed Deviance 

Information Criterion (DIC) and R2 of all models following the procedures described by 

Gelman et al. (2003) and Gelman and Pardoe (2006), respectively. For all alternative 

models, FA and Year are dominant predictors, accounting for the largest shares in DIC 

reduction and explained deviance (Appendix 5.6). The models with the smallest DICs 

increased R2 by less than 0.02 and reduced DIC by less than 1% from the models with 

FA and Year as predictors (Appendix 5.6). Since models with a small number of 

predictors can prevent overfitting (Gelman et al. 2003), I focused on the interpretation 

on the models with FA and Year as predictors. To further understand the link between 

the ΔAGB trends associated with Year and ATA and ACMIA, I reported the models 

with ATA and ACMIA as predictors. Note that in the ATA and ACMIA models, the 

variations of ATA and ACMIA included both the systematic trends associated with Year 

and their interannual variability.  
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Because forest productivity differs strongly among forest types (Gower et al. 

2001) and climate change-associated demographic rates such as tree mortality differs 

among tree species (Luo and Chen 2013), I examined whether ΔAGB, its components, 

and their systematic trends differ among the forest types that are classified based on the 

dominance of tree species with similar leaf traits and successional status by Alberta and 

Saskatchewan governments. Here forest types are classified based on the proportions of 

aboveground biomass of species groups at the first census of each sample plot. 

Deciduous broadleaf forest type (DEC) consisted >75% of aboveground biomass from 

Populus tremuloides Michx., Populus balsamea L., and Betula payrifera Marsh.; early-

successional coniferous forest type (ESC) consisted of >75% of aboveground biomass of 

Pinus banksiana Lamb., Pinus contorta Douglas, and Larix laricina (Du Roi) K. Koch; 

late-successional conifer forest type (LSC) consisted of 75% of aboveground biomass of 

Abies lasiocarpa (Hooker) Nuttall., Abies balsamea (L.) Mill., Pseudotsuga menziesii 

(Mirb.) Franco, Picea engelmannii Parry ex Engelm., Picea glauca (Moench) Voss, and 

Picea mariana Mill.; mixed forest type (MIX) consisted of all stands that did not meet 

the criteria of the three preceding types. 

The age-dependent trends for ΔAGBG, ΔAGI, and ΔAGM, however, differed 

among forest types (Appendix 5.4). To determine climate change effects, I detrended 

forest age effects (Brown et al. 2011) by selecting the best fit models among derivative 

of Monod function (McMahon et al. 2010), Weibull distribution function (He et al. 

2012), linear, natural logarithmic, and third-order polynomial models. I then tested 

climate change effects from the forest age corrected residuals and followed the model 

selection and diagnosis described above. 
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The ΔAGB followed normal distributions, while ΔAGBG, ΔAGBI and ΔAGBM 

were assigned as lognormal distributions as they were skewed to the right. All 

coefficients were assigned non-informative priors. The sensitivity scores were the slopes 

of Bayesian linear regressions between dependent variable and each predictor, 

measuring the changes of dependent variable for per unit change of each predictor 

(Wolkovich et al. 2012). For all analyses, the Bayesian Markov Chain Monte Carlo 

methods were implemented using JAGS called from R with rjags package (Plummer 

2011a, b). All independent variables were centred by subtracting mean, to reduce their 

correlations and speed up convergence. For each model, I evaluated convergence by 

running two independent chains with different initial values and monitoring the 

Gelman–Rubin statistic. When convergence was confirmed, an additional 10,000 

iterations with thinning of half were used to calculate the mean, s.d. and 95% credible 

interval for each coefficient from the posterior distribution. Following Gelman et al. 

(2003), I performed numerical posterior predictive checks on my models by testing the 

difference between the observed values and the distribution of 10,000 posterior 

predictions (Appendix 5.7). Analyses were separately performed for all plots and 

individual forest types. 

Assessing possible methodological problems 

To make correct inferences about long-term changes in ΔAGB, it is essential to 

know the uncertainties associated with AGB estimates (Chave et al. 2004). I first 

examined whether sampling strategies affected forest age-corrected annual changes of 

ΔAGB and its components. My analyses indicated that the empirical weightings applied 

to account for sampling efforts produced unbiased estimates of annual changes of ΔAGB 
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and its components (Appendix 5.8). Second, I examined representativeness of the plot 

network used the analysis. As recommended (Chave et al. 2004), I examined whether 

forest age-corrected annual changes of ΔAGB and its components were spatially 

correlated. The Mantel tests showed no evidence of spatial auto-correlation among the 

plots (Appendix 5.9). Lastly, to examine whether my use of the Canadian national 

species-specific tree aboveground biomass equations could have biased my conclusions, 

I also quantified the annual change in stand basal area and its long-term trends 

associated with climate change. My analysis shows that both annual net change in stand 

basal area and ΔAGB had similar responses to climate change, suggesting that my 

choice of allometric equations does not bias my conclusions (Appendix 5.10). 

Results 

Annual net aboveground biomass change (ΔAGB), weighted by sampling effort, 

was 1.11 (95% credible interval (CI), 1.02~1.21) Mg ha-1 yr-1 between 1958 and 2009 

(Figure 5.1). The ΔAGB attributed to growth of surviving trees was 2.33 (CI, 2.27~2.40) 

Mg ha-1 yr-1, ingrowth of new recruitments was 0.19 (CI, 0.17~0.20) Mg ha-1 yr-1, and 

mortality was -1.26 (CI, -1.19~-1.33) Mg ha-1 yr-1. ΔAGB decreased with forest age as 

well as calendar year (Figure 5.2, and Appendix 5.4). After accounting for forest age-

associated declines (Appendix 5.6), ΔAGB decreased at -0.031 (CI, -0.037~-0.025) Mg 

ha-1 yr-1 yr-1, due to both increased tree mortality and decreased growth of surviving 

trees, while ingrowth from new recruitments did not change with calendar year (Figure 

5.3). The ΔAGB decline represents approximately -2.79% per year, i.e., -0.031 Mg ha-1 

yr-1 yr-1 divided by its long-term mean of 1.11 Mg ha-1 yr-1, but the relative decline rates 

increased over time since the denominator continued to decrease.  
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Figure 5. 1. Long-term (1958-2009) annual net aboveground biomass change (ΔAGB) 

and it components. a, All forest plots. b, Deciduous broadleaf forests. c, Early-
successional coniferous forest. d, Mixed forests. e, Late-successional coniferous 
forests. Values are means and 95% credible intervals weighted by sampling 
effort (plot size and census-interval length) (see Methods). ΔAGBG, ΔAGBI, and 
ΔAGBM represent net aboveground biomass change associated with growth of 
surviving trees, ingrowth from recruitments, and loss through mortality. 

Since forest productivity differs strongly among forest types (Gower et al. 2001) 

and climate change-associated demographic rates such as tree mortality differs among 

tree species (Luo and Chen 2013), I examined whether ΔAGB, its components, and their 

systematic trends differ among the forest types, which are classified based on the 

dominance of tree species with similar leaf traits and successional status by Alberta and 

Saskatchewan governments. Among forest types, ΔAGB was 1.45 (CI, 1.25~1.67), 1.45 

(CI, 1.32~1.57), 0.75 (CI, 0.60~0.90), and 0.61 (CI, 0.35~0.86) Mg ha-1 yr-1 for 

deciduous broadleaf, early-successional coniferous, and mixed, and late-successional 

coniferous forest types, respectively (Figure 5.1). After accounting for negative forest 

age effects, climate change-associated declines occurred in all forest types with the 
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largest decline in late-successional forests at a rate of -0.074 (CI, -0.093~-0.053) Mg ha-1 

yr-1 yr-1, followed by mixed forests, deciduous broadleaf forests, and earl-successional 

coniferous forests at -0.040 (CI, -0.051~-0.029), -0.025 (CI, -0.043~-0.006), and -0.022 

(CI, -0.029~-0.015) Mg ha-1 yr-1 yr-1, respectively (Figure 5.3). Both forest age- and 

climate change-induced declines led to net biomass loss in the late-successional 

coniferous forests since about 1990 and no biomass gain in mixed forests since 2000, 

whereas deciduous broadleaf and early-successional coniferous forests retained positive 

ΔAGB during the study period (Figure 5.2). 

During the study period, mean annual temperature increased by 0.031 °C yr-1 

with a weak decrease in precipitation, resulting in an annual climate moisture index 

anomaly (ACMIA) decrease of 0.109 cm-1 yr-1 with calendar year (Figure 5.4). To test 

whether ATA and ACMIA are the potential drivers for the ΔAGB declines, I examined 

their associations (Figure 5.4 and Appendix 5.6). The overall changes in forest age-

corrected ΔAGB were negatively correlated with ATA due to simultaneous increased 

mortality and decreased growth of surviving trees with no increase in recruitments; the 

overall changes were, to a lesser extent, positively related to ACMIA. Analyzed by 

forest types, the declines of mixed and late-successional coniferous forests were strongly 

associated with ATA and ACMIA. To a lesser extent, the decline of deciduous broadleaf 

forests was associated with ATA, but not ACMIA, whereas the decline of early-

successional coniferous forests was associated with ACMIA, but not ATA. 
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Figure 5. 2. Annual net aboveground biomass change (ΔAGB) in relation to calendar 

year. a, All forest plots. b, Deciduous broadleaf forests. c, Early-successional 
coniferous forests. d, Mixed forests. e, Late-successional coniferous forests. Red 
and blue lines represent linear fit and Loess fit with 95% confidence limits, 
respectively. 
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Figure 5. 3. The response of forest age-corrected annual net aboveground biomass 

change (ΔAGB) and its components to calendar year. a, All forest plots. b, 
Deciduous broadleaf forests. c, Early-successional coniferous forest. d, Mixed 
forests. e, Late-successional coniferous forests. The error bars show the 95% 
credible intervals. 
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Figure 5. 4. Temporal trends of climatic anomalies and the responses of annual net aboveground biomass change (ΔAGB). a−c, 

Annual temperature anomaly (ATA), annual climate moisture index anomaly (ACMIA), and Annual precipitation anomaly 
(APA) with calendar year. The grey dots were the plot-level observations. Black dotted lines were the summarized annual 
means. Red lines were fitted trends using Hierarchical Bayesian linear model with R2 and βyear mean and its 95% credible 
intervals. d−e, the sensitivity of forest age- corrected ΔAGB and its components to ATA and ACMIA, respectively.
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Discussion 

The ΔAGB reported in this study is based on a spatially extensive observational 

network (170.6 ha) for the closed-canopy boreal forests of diverse types and ages. My 

estimate of overall mean ΔAGB for the closed-canopy boreal forest is comparable to 

those reported for tropical old-growth forests on a per unit area basis (Phillips et al. 1998, 

Lewis et al. 2009, Phillips et al. 2009). Assuming that the sample plots monitored by the 

provincial governments are representative of the closed canopy forests in the region, 

these forests have served as a strong aboveground biomass carbon sink over the study 

period (excluding areas affected by major disturbance such as fire). As expected in 

boreal and temperate forests (Gower et al. 2001, Magnani et al. 2007), net biomass 

change decreases with forest age. After accounting for forest age effects, I find that net 

biomass change declined by -0.031 (CI, -0.037~-0.024) Mg ha-1 yr-1 yr-1. My estimated 

decline rate represents approximately 2.79% less net carbon accumulation annually, 

meaning that over 25 years, the forests will accumulate only half as much carbon, and 

over 50 years, just a quarter as much. My result shows that the declines in net biomass 

change did not only result from previously reported climate change-associated increases 

in tree mortality (van Mantgem et al. 2009, Peng et al. 2011, Luo and Chen 2013), but 

also from reduced growth of surviving trees. However, in contrast to tropical old-growth 

forests (Phillips and Gentry 1994, Phillips et al. 2004), the increased mortality and 

reduced growth of surviving trees did not lead to increased recruitment in the western 

boreal forests. 

Among forest types, ΔAGB in deciduous broadleaf and early-succession 

coniferous forests was twice as much as those in mixed and late-successional coniferous 
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forests (Figure 5.1). The climate change-associated declines in net biomass change did 

not only occur in previously reported deciduous broadleaf forests (Hogg et al. 2008) and 

late-successional forests (Ma et al. 2012), but in all forest types. The least decline 

occurred in early-successional coniferous forests dominated by drought-tolerant Pinus 

spp. The greatest decline was in late-successional coniferous forests dominated by 

shallow-rooted Picea spp. at a rate of -0.074 (CI, -0.093~-0.053) Mg ha-1 yr-1 yr-1, which 

is similar to the previously estimated decline rate of old forests in the region (-0.0694 

Mg ha-1 yr-1 yr-1) (Ma et al. 2012). In accordance with my previous analysis of individual 

tree mortality probability (Luo and Chen 2013), the high mortality loss of biomass in the 

late-successional forests is a result of the high individual tree mortality probability in 

Picea spp. and their large sizes in the late-successional forests. 

The strong associations between the declines in forest age-corrected net biomass 

change and regional warming between 1958 and 2009 observed in this study provide 

evidence of long-term systematic climate change effects (Parmesan and Yohe 2003, 

IPCC 2007) on the western boreal forests. The declines of net biomass change in mixed 

and late-successional coniferous forests were strongly associated with warming and 

drought. These results provide stand-level evidence for reduced growth and increased 

tree mortality of Picea spp. associated with warming and drought reported at the 

individual tree level (Barber et al. 2000, Luo and Chen 2013), suggesting that these 

climatic changes may have shifted shallow-rooted Picea spp. beyond their hydraulic 

safety margins against injurious levels of drought stress (Choat et al. 2012). These 

results indicate that the persistent long-term drought that occurred in the western boreal 

forests during the study period has strong negative effects on Picea dominated forests.  
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The mechanisms associated with the declines in deciduous broadleaf forests and 

early-successional coniferous forests dominated by deep-rooted Populus tremuloides 

and Pinus spp., respectively, are more complex (Anderegg et al. 2012a). A large decline 

in the early 1990s (Figure 5.2b) followed the warmest year in 1991 (Figure 5.4), 

contributed to the negative warming effects on net biomass change of the deciduous 

broadleaf forests (Figure 5.4d). The decline in early-successional coniferous forests, 

dominated by Pinus spp., is positively associated with drought (Figure 5.4). These 

declines likely resulted from both warming and drought induced hydraulic failures and 

increased pathogen and insect outbreaks, both of which are positively associated with 

warm temperatures and droughts in northern latitudes (Logan et al. 2003, Anderegg et al. 

2012a).  

I present evidence that closed-canopy western boreal forests have served as a 

carbon sink comparable to old-growth tropical forests on a per unit area basis. Unlike 

other forests where increased nitrogen deposition and rising atmospheric CO2 increase 

forest growth (Magnani et al. 2007, Reay et al. 2008, Lewis et al. 2009, McMahon et al. 

2010, Thomas et al. 2010), the carbon sink function of the closed-canopy boreal forests 

has declined in all forest types, but with different rates. These declines are attributable to 

long-term persistent warming and drought and their associated pathogens and insect 

outbreaks. Different sensitivities among forest types to warming and drought indicate 

that the regional forests have shifted in species composition and will likely become 

further dominated by early-successional species if current climatic trends continue.
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Appendices 

Appendix 5. 1. Summary statistics (mean ±1 SD with range in brackets) of the permanent sample plots from Alberta (AB) and 
Saskatchewan (SK) for all forest plots, Deciduous broadleaf forests (DEC), Early-successional coniferous forests (ESC), Mixed 
forests (MIX), Late-successional coniferous forests (LSC). 

Attribute All plots DEC ESC MIX LSC 

Plot-based summaries     

Number of plots 871 262 210 260 139 

Plot size (m2) 1958±2107 

(600~8092) 

1461±1890 

(800~8092) 

2011±1862 

(800~8092) 

2399±2400 

(800~8092) 

1994±2085 

(600~8092) 

Number of census 3.91±0.89 

(3~8) 

3.60±0.85 

(3~8) 

4.22±0.75 

(3~7) 

4.04±0.84 

(3~7) 

3.75±1.01 

(3~6) 

Length of monitoring 

(years) 

26.72±10.01 

(10~48) 

22.40 ±6.79 

(10~48) 

28.64±11.18 

(10~47) 

29.39±10.72 

(10~48) 

26.96±9.23 

(10~44) 

Calendar year* 1969.76±8.68 

(1958~1993) 

1976.28±6.67 

(1960~1993) 

1964.65±8.87 

(1958~1989) 

1967.06±6.12 

(1960~1990) 

1970.25±8.19 

(1960~1990) 

Forest age (years)* 71.30 ±28.21 

(17~174) 

56.14±19.54 

(25~130) 

60.64±24.92 

(17~160) 

81.95±21.23 

(31~156) 

96.07±32.66 

(42~174) 

Aboveground biomass 

(Mg/ha)* 

136.46±55.11 

(15.12~492.83) 

149.23±60.28 

(21.43~492.83) 

96.30±44.88 

(15.12~227.87) 

157.21±41.47 

(23.20~263.42) 

134.27±49.19 

(15.18~242.44) 
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Number of live trees* 205.79±171.03 

(33~948) 

157.96±138.21 

(44~852) 

236.11±193.84 

(35~948) 

227.67±178.29 

(39~815) 

209.24±158.29 

(33~763) 

Census period-based summaries†    

No. of census period 2531 682 676 791 382 

Length of census 

period (years) 

9.20±4.27 

(1~29) 

8.61±4.35 

(1~20) 

8.90±3.61 

(2~21) 

9.66±4.67 

(3~29) 

9.81±4.19 

(1~20) 

Forest age (years) ‡ 87.36±32.07 

(19.5~205.5) 

69.33±22.87 

(26.5~157.5) 

76.33±28.50 

(19.5~169.5) 

98.28±24.11 

(33.5~165.5) 

116.42±36.85 

(44.5~205.5) 

Year‡ 1982.78±10.88 

(1960.5~2005) 

1987.74±8.33 

(1962.5~2002.5) 

1978.63±12.54 

(1960.5~2005) 

1981.54±10.21 

(1962.5~2004) 

1983.83±9.42 

(1964~2002.5) 

Annual temperature 

anomaly (oC) 

0.06±0.83 

(-2.66~3.24) 

0.21±0.97 

(-2.52~2.65) 

0.24±0.95 

(-2.66~3.24) 

-0.17±0.61 

(-1.81~1.51) 

-0.04±0.55 

(-1.39~1.34) 

Annual climate 

moisture index 

anomaly (cm) 

-0.41±8.39 

(-27.69~38.90) 

-1.39±10.45 

(-23.34~26.82) 

-1.93±11.08 

(-27.69~38.90) 

1.13±3.93 

(-13.26~10.73) 

0.86±3.17 

(-12.38~10.81) 

Annual precipitation 

anomaly (mm) 

6.67±30.95 

(-133.85~127.08) 

2.83±28.51 

(-130.50~116.15)) 

5.66±33.63 

(-132.50~127.08) 

9.56±32.26 

(-133.85~90.49) 

9.32±26.34 

(-125.50~94.84) 
*The variables were summarized based on the first census of the plots. 
†A census period was defined as the period between two successive censuses (see Materials and Methods). 
‡The variables were defined as the middle point of a census period (see Materials and Methods). 
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Appendix 5. 2. Definitions of forest type and their brief data descriptions 

Forest 

Type 

Definition N of 

plots 

N of 

census 

N of 

trees 

DEC Dominated by species among Balsam 

poplar, Trembling aspen, White birch 

262 946 48188 

ESC Dominated by species among Jack 

pine, Lodgepole pine, Limber pine, 

White bark pine, Red pine 

210 886 59157 

LSC Dominated by species among Balsam 

fir, Black spruce, Alpine fir, Douglas 

fir, Englemann spruce, Tamarack, 

White spruce, Cedar 

139 526 34553 

MIX None of above defined species group 

exceeds 75% in above-ground biomass 

260 1057 67063 

Total NA 871 3327 208961 
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Appendix 5. 3. Determining empirical weightings for net aboveground biomass change 
(ΔAGB) and its components, i.e., ΔAGBG, ΔAGBI, ΔAGBM. 

I proceeded empirical weighting follow previous studies (Lewis et al. 2009, 
Phillips et al. 2009). The regression lines show no patterns, indicating that the 
weightings were appropriate. (a) Residuals from ΔAGB weighted by plot 
size^(1/13)+length of measurement intervals^(1/3)-1. (b) Residuals from AGBG 
weighted by plot size^(1/3)+length^(1/2)-1. (c), Residuals from AGBI weighted by plot 
size^(1/3)+length^(1/2)-1. (d) Residuals from AGBM weighted by length^(1/3). 
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Appendix 5. 4. Determining the best functions to describe forest age-dependent 
responses of ΔAGB and its components 

Table A5.4.1. Comparisons of Deviance Information Criterion (DIC) among functions 
describing forest age-dependent responses of ΔAGB and its components. The 
functions with smallest DIC value (in bold) indicates the best fit and were used 
to account for forest age effects. 

Data Y Derivative 

Of Monod 

function 

Weibull 

function 

Linear Log Third order 

polynomial 

DEC ΔAGB 2916 2903 2913 2900 2901 

ΔAGBG NA 2159 2159 2150 2152 

ΔAGBI NA NA -66.37 -98.12 -195.3 

ΔAGBM NA NA 2297 2290 2658 

ESC ΔAGB 1744 1719 1721 1719 1720 

ΔAGBG NA 1080 1113 1104 1083 

ΔAGBI NA NA -329.7 -332.2 -335.9 

ΔAGBM NA NA 612.1 604.8 597.5 

MIX ΔAGB 3056 3021 3014 2997 2998 

ΔAGBG NA 1951 1992 1966 1952 

ΔAGBI NA NA -618.4 -628.5 112 

ΔAGBM NA NA 2362 2347 2780 

LSC ΔAGB 1639 1631 1629 1621 1622 

ΔAGBG NA 835.5 847.9 835.1 836 

ΔAGBI NA NA -83.64 -84.68 634 

ΔAGBM NA NA 1077 1065 1549 

Note: I used the derivative of Monod function and Weibull distribution function to 
describe ΔAGB following McMahon et al.(2010) and He et al. (2012), respectively, and 
the Weibull distribution function for ΔAGBG, these functions are not suitable for other 
ΔAGB components. The function forms used to determine forest-age responses are: 

Derivative of Monod function: 2
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)(A
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b
bb
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Weibull distribution function: )
)Aexp(

1)
3

A(
1(Y

3

2
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4

b

b
b

b
b −×

+×=  

Linear model: AY 21 ×+= bb  
Log model: A)ln(Y 21 ×+= bb  

Third order polynomial: 3
4

2
321 AAAY ×+×+×+= bbbb  

where Y is ΔAGB or its component; A is forest age (years); bi are parameters to be 
estimated.  
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Figure A5.4.1. Fitted forest age-dependent curves of ΔACB and its components. a, 

Deciduous broadleaf forests (DEC). b, Early-successional coniferous forests 
(ESC). c, Mixed forests (MIX). d, Late-successional coniferous forests (LSC). 
The gray dots were the observations. Red lines and broken green lines are the 
fitted regression and 95% credible intervals, respectively. The functions were 
determined by the smallest Deviance Information Criterion (DIC) (Table A5.4.1).  
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Appendix 5. 5. Parameter values estimated from three alternative predictor priority settings in Model 5.2 for annual net biomass 
change (ΔAGB) of all forest plots and individual forest types. 

Forest 

type 

Simultaneous Priority to Forest Age Priority to Calendar Year 

β0 β1 β2 (×102) β0 β1 β2 (×102) β0 β1 β2 (×102) 

All plots 1.08 -2.25 -3.09 1.07 -2.48 -2.31 1.13 -0.77 -5.27 

(0.99~1.16) (-2.46~-2.04) (-3.71~-2.45) (0.99~1.15) (-2.70~-2.27) (-2.81~-1.80) (1.03~1.23) (-0.90~-0.64) (-5.91~-4.61) 

DEC  1.42 -3.5 -2.52 1.41 -3.55 -2.24 1.47 -1.5 -5.05 

(1.25~1.59) (-4.01~-2.98) (-4.27~-0.56) (1.24~1.59) (-4.07~-3.04) (-3.84~-0.63) (1.25~1.69) (-1.86~-1.14) (-7.04~-3.03) 

ESC 1.41 -1.24 -2.23 1.41 -1.69 -0.99 1.44 -0.21 -3.85 

(1.29~1.52) (-1.56~-0.97) (-2.88~-1.54) (1.29~1.53) (-1.99~-1.41) (-1.39~-0.59) (1.30~1.57) (-0.33~-0.10) (-4.43~-3.23) 

MIX 0.72 -2.85 -3.96 0.72 -3.59 -3.01 0.75 -1.06 -6.68 

(0.59~0.85) (-3.42~-2.31) (-5.12~-2.88) (0.58~0.86) (-4.12~-3.06) (-3.65~-2.07) (0.59~0.92) (-1.41~-0.72) (-7.75~-5.59) 

LSC 0.55 -2.31 -7.4 0.53 -2.96 -6.4 0.62 -1.11 -9.22 

(0.32~0.76) (-2.97~-1.6) (-9.29~-5.29) (0.29~0.77) (-3.71~-2.23) (-8.18~-4.60) (0.38~0.88) (-1.60~-0.62) (-11.22~-7.18) 
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Appendix 5. 6. Comparisons among alternative models for annual net biomass change (ΔAGB) for all forest plots and individual 
forest types. 

Model* Parameter† R2 DIC ΔDIC 

(%)‡ 

β0 β1 β2  

(×102) 

β3  

(×101) 

β4  

(×102) 

β5  

(×102) 

β6  

(×103) 

β7  

(×102) 
   

all plots 

Null 1.07 

(0.98~1.15) 

-2.47 

(-2.69~-2.28) 

      0.468 9780 1.70 

A 1.08 

(0.99~1.16) 

-2.25 

(-2.46~-2.04) 

-3.09 

(-3.71~-2.45) 

     0.507 9640 0.24 

B 1.06 

(0.99~1.15) 

-2.47 

(-2.69~-2.26) 

 -2.78 

(-3.58~-1.99) 

    0.502 9709 0.96 

C 1.07 

(0.99~1.15) 

-2.5 

(-2.71~-2.29) 

  0.84 

(0.02~1.57) 

   0.493 9770 1.59 

D 0.99 

(0.90~1.07) 

-2.37 

(-2.6~-2.16) 

-2.48 

(-3.13~-1.78) 

-1.57 

(-2.37~-0.63) 

0.83 

(0.06~1.63) 

2.34 

(1.35~3.17) 

0.61 

(-0.25~1.45) 

 0.527 9617  

DEC 

Null 1.42 

(1.25~1.58) 

-3.5 

(-4.00~-3.00) 

      0.418 2913 1.39 

A 1.42 

(1.25~1.59) 

-3.5 

(-4.01~-2.98) 

-2.52 

(-4.27~-0.56) 

     0.426 2892 0.66 

B 1.41 

(1.24~1.57) 

-3.54 

(-4.06~-3.04) 

 -1.65 

(-3.2~-0.18) 

    0.424 2897 0.84 
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C 1.41 

(1.25~1.58) 

-3.54 

(-4.06~-3.05) 

  0.61 

(-0.78~2.24) 

   0.423 2907 1.18 

D 1.29 

(1.12~1.49) 

-3.58 

(-4.08~-3.09) 

-1.82 

(-3.73~0.18) 

-0.43 

(-2.1~1.33) 

1.15 

(-0.35~2.77) 

2.61 

(0.35~4.99) 

4.74 

(2.8~6.56) 

 0.439 2873  

ESC 

Null 1.41 

(1.30~1.52) 

-1.69 

(-1.97~-1.39) 

      0.646 1718 5.33 

A 1.41 

(1.29~1.52) 

-1.24 

(-1.56~-0.97) 

-2.23 

(-2.88~-1.54) 

     0.687 1647 0.98 

B 1.41 

(1.29~1.52) 

-1.7 

(-2.0~-1.42) 

 -0.54 

(-1.2~0.16) 

    0.660 1711 4.90 

C 1.41 

(1.29~1.53) 

-1.71 

(-1.99~-1.41) 

  -0.98 

(-1.52~-0.37) 

   0.673 1694 3.86 

D 1.41 

(1.29~1.53) 

-1.27 

(-1.56~-0.95) 

-2.14 

(-2.81~-1.43) 

 -0.78 

(-1.36~-0.26) 

   0.698 1631  

MIX  

Null 0.72 

(0.59~0.85) 

-3.58 

(-4.07~-3.05) 

      0.433 2997 2.08 

A 0.72 

(0.59~0.85) 

-2.85 

(-3.42~-2.31) 

-3.96 

(-5.12~-2.88) 

     0.479 2943 0.43 

B 0.72 

(0.59~0.86) 

-2.96 

(-3.5~-2.41) 

 -6.11 

(-8.02~-4.26) 

    0.456 2952 0.98 

C 0.72 

(0.58~0.86) 

-3.54 

(-4.03~-2.97) 

  5.06 

(2.17~7.74) 

   0.458 2984 2.94 
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D 0.55 

(0.37~0.73) 

-2.9 

(-3.46~-2.35) 

-2.23 

(-4.15~-0.22) 

-2.73 

(-6.07~0.42) 

4.07 

(0.91~7.14) 

2.52 

(0.08~5.1) 

-4.89 

(-9.86~-0.44) 

6.7 

(-1.3~13.0) 

0.490 2936  

LSC  

Null 0.54 

(0.33~0.78) 

-2.90 

(-3.60~-2.16) 

      0.359 1619 3.92 

A 0.55 

(0.32~0.76) 

-2.31 

(-2.97~-1.6) 

-7.4 

(-9.29~-5.29) 

     0.463 1569 0.71 

B 0.53 

(0.28~0.75) 

-2.47 

(-3.21~-1.73) 

 -10.76 

(-14.04~-

7.11) 

    0.429 1583 1.60 

C 0.54 

(0.3~0.78) 

-2.77 

(-3.5~-2.09) 

  15.69 

(9.52~21.78) 

   0.424 1592 2.18 

D 0.62 

(0.38~0.84) 

-2.22 

(-2.89~-1.51) 

-6.74 

(-8.94~-4.73) 

  8.44 

(2.08~14.56) 

      0.468 1558  

*Null Model has intercept and ln(forest age) as predictors; Model A has intercept, ln(forest age), and calendar year as predictors; 
Model B has intercept, ln(forest age), and annual temperature anomaly as predictors; Model C has intercept, ln(forest age), and annual 
climate moisture anomaly index as predictors; Model D is the model with the smallest DIC among all possible models  (see Material 
and Methods).  
†Model parameters are described in Model 5.3 (see Material and Methods).  
‡ΔDIC (%) is calculated as 100 × (DIC value of the subject model – DIC value of Model D)/DIC value of Model D (%). 



 

119 
 

Appendix 5. 7. Summary (p value, mean±1 SD) of posterior predictive checks for the 
fitted models. Distribution of posterior predictions was based on 10,000 
simulations. P >0.05 indicates no significant difference between the observed 
and predicted values.  

Forest type Y Model* 

A B C D 

All plots ΔAGB 0.35±0.11 0.32±0.13 0.33±0.15 0.37±0.09 

ΔAGBG 0.12±0.12 0.11±0.10 0.13±0.09 0.15±0.10 

ΔAGBI 0.18±0.09 0.19±0.09 0.19±0.10 0.22±0.10 

ΔAGBM 0.20±0.13 0.22±0.09 0.19±0.11 0.24±0.11 

DEC  ΔAGB 0.26±0.12 0.24±0.15 0.23±0.13 0.25±0.10 

ΔAGBG 0.15±0.10 0.14±0.08 0.16±0.11 0.19±0.09 

ΔAGBI 0.17±0.12 0.13±0.11 0.12±0.09 0.18±0.11 

ΔAGBM 0.24±0.09 0.32±0.12 0.29±0.12 0.26±0.10 

ESC ΔAGB 0.38±0.11 0.36±0.11 0.37±0.13 0.39±0.09 

ΔAGBG 0.19±0.12 0.18±0.13 0.17±0.11 0.21±0.10 

ΔAGBI 0.15±0.10 0.13±0.12 0.11±0.09 0.15±0.10 

ΔAGBM 0.29±0.13 0.22±0.12 0.24±0.13 0.30±0.12 

MIX ΔAGB 0.30±0.14 0.28±0.11 0.29±0.12 0.31±0.11 

ΔAGBG 0.16±0.10 0.18±0.13 0.17±0.13 0.17±0.09 

ΔAGBI 0.20±0.12 0.19±0.11 0.15±0.09 0.21±0.10 

ΔAGBM 0.30±0.10 0.32±0.10 0.32±0.11 0.33±0.13 

LSC ΔAGB 0.33±0.11 0.30±0.14 0.31±0.13 0.36±0.10 

ΔAGBG 0.20±0.12 0.18±0.11 0.19±0.11 0.22±0.11 

ΔAGBI 0.22±0.10 0.20±0.11 0.21±0.09 0.22±0.10 

ΔAGBM 0.33±0.12 0.30±0.13 0.32±0.12 0.35±0.11 
*Models A, B, C, and D are described in Appendix 5.6.   
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Appendix 5. 8. The effects (P values) of plot size, census interval, and number of 
censuses on weighted forest age-corrected annual net biomass change (ΔAGB) 
and its components. 

Sampling 

attribute 

Forest 

type 

Annual 

change of 

ΔAGB 

Annual 

change of 

ΔAGBG 

Annual 

change of 

ΔAGBI 

Annual 

change of 

ΔAGBM 

Plot size All plots 0.10 0.48 0.29 0.62 

DEC  0.53 0.42 0.27 0.57 

ESC 0.88 0.23 0.19 0.52 

MIX 0.07 0.71 0.34 0.14 

LSC 0.12 0.69 0.18 0.13 

Census 

interval 

All plots 0.16 0.27 0.54 0.18 

DEC  0.29 0.47 0.67 0.56 

ESC 0.28 0.08 0.38 0.97 

MIX 0.28 0.06 0.1 0.06 

LSC 0.16 0.54 0.22 0.16 

Number 

of 

censuses 

All plots 0.07 0.06 0.29 0.97 

DEC  0.97 0.2 0.49 0.16 

ESC 0.09 0.15 0.75 0.25 

MIX 0.10 0.05 0.06 0.51 

LSC 0.20 0.93 0.13 0.21 
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Appendix 5. 9. P values of Mantel tests for annual change of forest age-corrected 
ΔAGB and its components. Spatial autocorrelation among sampling plots was 
tested by their geographic locations. 

Forest 

type 

Annual change 

of ΔAGB 

Annual change 

of ΔAGBG 

Annual change of 

ΔAGBI 

Annual change of 

ΔAGBM 

All 

plots 

0.64 0.23 0.61 0.21 

DEC  0.93 0.09 0.18 0.99 

ESC  0.09 0.14 0.41 0.44 

MIX 0.64 0.14 0.93 0.86 

LSC  0.08 0.42 0.12 0.09 

 

Appendix 5. 10. Parameter values estimated from simultaneously modeling the effects 
of forest age and calendar year on net change of stand basal area (m2 ha-1 yr-1) for 
all forest plots and individual forest types.  

Forest type β0 β1 β2 (×102) 

all plots 0.15 -0.51 -0.87 

(0.13~0.17) (-0.56~-0.49) (-1.01~-0.73) 

DEC 0.16 -0.81 -0.54 

(0.12~0.20) (-0.92~-0.70) (-0.93~-0.14) 

ESC 0.28 -0.40 -0.60 

(0.25~0.31) (-0.48~-0.32) (-0.77~-0.42) 

MIX 0.07 -0.65 -0.90 

(0.04~0.10) (-0.77~-0.53) (-1.15~-0.65) 

LSC 0.08 -0.51 -1.79 

(0.02~0.14) (-0.68~-0.33) (-2.28~-1.31) 
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Chapter 6. General conclusion 

Using datasets from PSPs in central and western Canadian boreal region, which 

cover a wide range of tree sizes, stand developmental stages and stand compositions, I 

have examined how endogenous factors affect tree mortality in boreal forests. I have 

investigated temporal changes of tree mortality and related it to recent climate change. 

Finally, I have examined the temporal change of aboveground biomass carbon pool in 

western boreal forests. The findings of this thesis confirm that 1) tree mortality is 

primarily driven by endogenous factors in boreal forests; 2) recent climate changes also 

contribute to tree mortality; 3) forest carbon sequestration capacity is altered by climate 

change-induced tree mortality. A summary of my key findings of this dissertation are as 

follows: 

1. Tree mortality of the four major boreal tree species, i.e., Pinus banksiana, Populus 

tremuloides, Betula papyrifera and Picea mariana, was strongly dependent on 

relative size. Species-specific sensitivity to size-dependent mortality was greater in 

shade-intolerant species than shade-tolerant species. Mortality increased with 

stand crowding, supporting the notion that crowded stands resulted in on average 

lower resource availability and consequently higher mortality. Crowding induced 

mortality was not true for Betula papyrifera, which has higher mortality in less 

crowded stands, suggesting that competition from tall shrubs coupled with 

browsing from large mammals, might be an alternative cause for mortality. 

Species interaction can affect mortality either negatively or positively, depending 

on the traits of the species and its neighbours. Finally, mortality increases with 

stand age due to tree ageing and its interactions with minor disturbances. 
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2. Over last fifty years, portions of the boreal forest in Saskatchewan and Alberta 

have experienced global-change-type drought, as indicated by an increase in 

annual temperature anomaly and decrease in climate moisture index anomaly. 

Temporal increases of tree mortality were influenced by stand development 

processes and global-change-type drought for Populus tremuloides, Populus 

balsamifera, Pinus banksiana, Picea mariana, and Picea glauca. The strength of 

these drivers on tree mortality differs among species and their influences interact 

both among endogenous factors and between endogenous and exogenous factors. 

When endogenous factors were factored out, the overall tree mortality increased 

during the past fifty years for all study species. Both the increased rates of annual 

mortality probability and the sensitivity of mortality to recent climate trends for 

the two Picea spp. were higher than these for the pioneer species, implying that the 

regional forest will likely become further dominated by early-successional species 

in the study area. Climate change-associated increases in tree mortality were 

significantly higher in young than old forests, suggesting that climate change-

associated tree mortality could be underestimated if mortality estimates from old 

forests are used to represent regional forests 

3. Unlike the forests of Saskatchewan and Alberta (Chapter 3), forests of Manitoba 

have not undergone global-change-type drought, as indicated by increases of both 

annual temperature anomaly and annual climate moisture index anomaly. However, 

after partitioning climate change effects from endogenous effects on tree mortality, 

tree mortality increased over the last three decades for five major tree species 

Populus tremuloides, Populus balsamifera, Pinus banksiana, Picea mariana, and 

Picea glauca. These results suggest that the mechanisms promoting temporal 
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increases in tree mortality in Manitoba are different from those found in more 

westerly regions of North America where global-change-type droughts may 

account for the observed increases in tree mortality. The temporal increase in tree 

mortality in Manitoba could be attributable to intensification of competition effect 

on tree mortality due to positive climate change effect such as regional warming as 

suggested by neighborhood analyses. 

4. Over the last fifty years, i.e., from 1958 to 2008, western Canadian boreal forests 

acted as a carbon sink, with mean net change of annual aboveground biomass 

(ΔAGB) of 1.11 (95% credible interval (CI), 1.02~1.21) Mg ha-1 yr-1 regardless of 

forest types. ΔAGB in deciduous broadleaf and early-succession coniferous forests 

was higher than those in mixed and late-successional coniferous forests, 

suggesting stronger carbon storage capacities of deciduous broadleaf and early-

succession coniferous forests. Carbon sequestration declined temporally due to 

both endogenous factors and recent climate changes. After accounting for forest 

age-dependent decreases, ΔAGB had declined at -0.031 (CI, -0.037~-0.024) Mg 

ha-1 yr-1 yr-1. The decline rate was highest in late-successional coniferous forests 

dominated by shallow-rooted Picea spp. at a rate of -0.074 (CI, -0.093~-0.053) Mg 

ha-1 yr-1 yr-1. The temporally-reduced biomass carbon sink is likely a result from 

both warming and drought induced hydraulic failures and increased pathogen and 

insect outbreaks, both of which are positively associated with warm temperatures 

and droughts in northern latitudes. 
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