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Abstract  
 

In this work aluminum, silicon and zinc oxide were used as intermediate layers for thin 

film growth on cofired glass ceramic substrates. The motivation behind this work is a direct 

deposition of nitride thin films on the surface of the ceramic substrate, eliminating the die and 

attach techniques. Ceramics have unique applications due too the nature of their mechanical 

processing, and their physical resilience and chemical inertness. The low melting of the glass 

ceramics from a device processing perspective and their rough, inhomogeneous surface presents a 

challenge for device fabrication. Oxide materials can be applied by a variety of techniques 

compatible with large device areas and arbitrary shapes to apply a surface texture to improve thin 

film properties for device fabrication. Ideally these techniques could be applied to any substrate 

that meets the thermal budget of the thin film process. 

Solution coating was found to be a good candidate for applying coatings since it can deposit 

many different oxide materials over large areas, for relatively low cost, and surface tension of the 

liquid phase helps to planarize the surface. Several (>7) microns of coating materials were found 

to be needed to reduce the appearance of the ceramic surface features. 

Deposition of GaN on the surface of the oxide coatings was performed using a Flow 

Modulation Epitaxy (FME) style deposition in conjunction with a unique hollow cathode plasma 

source. These features are designed to lower the overall temperature requirements for GaN growth 

by providing additional Ga migration time during growth and by using nitrogen plasma as an 

alternative to thermal decomposition of ammonia. Ni/Au Schottky junctions fabricated on sapphire 

using ceramic compatible temperatures and FME show leaky characteristics with high ideality 

factors, indicating tunneling is a significant contributor to carrier transport through the junction. 
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The same Ni/Au GaN devices fabricated on ZnO coated ceramics was found to produce ohmic 

junctions. The density of surface states is a likely candidate for this behaviour.  
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1. Background Information 
 

1.1 Nitride History 

Group III-V semiconductors are binary semiconductor compounds used in many electro-

optic and high frequency applications within electronics used as alternatives to silicon. This is 

often due to a direct bandgap, meaning they can efficiently absorb or emit radiation at or above 

their bandgap energy, or they exhibit improved electron mobility and or breakdown characteristics 

compared to silicon.  

Table 1: Comparison of some III-V materials properties and silicon [1], [2] 

 

 

Historically the group III materials have consisted of aluminum, gallium, and indium, while 

the group V materials have been phosphorus, arsenic, and antimony. Binary (GaAs, InP), ternary 

(e.g. AlxGa1-xAs) and even quaternary (InxAlyGa1-x-yAs) alloys have been studied for several 

decades due too the ability to produce closely matched bulk wafers through a liquid phase growth 

process such as Czochralski or Bridgman processes. This allows for relatively cheap substrates to 

be produced with low defect densities (<105 cm-3) and high purity. 

Group III (Al, Ga, In) -Nitride based materials however were hindered because they cannot 

be grown with these techniques due to the high vapour pressure of nitrogen and high melting point 

Material Mobility 
(cm2/Vs) 

Critical field 
(V/cm) 

Bandgap 
(eV) Type 

Si 1400 300000 1.12 indirect 
GaAs 8500 500000 1.424 direct 
GaP 250 100000 2.26 indirect 
GaSb 3000 50000 0.726 direct 
InAs 44000 40000 0.354 direct 
InP 5400 500000 1.344 direct 

InSb 77000 1000 0.17 direct 
GaN 1400 3.0-5.0 x 106 3.42 direct 
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of nitrides, leading to dissociation of nitrogen from the material well before melting. Without the 

ability to produce wafers through liquid melt techniques, native substrates relied on vapour 

deposition techniques which are comparatively slow and expensive, causing wafers greater than 

2” to be unavailable at a commercial scale. While bulk production of GaN wafers offers the highest 

quality materials for devices, it is not at a point to commercially compete with crystal growth of 

nitrides on foreign substrates (heteroepitaxy on Al2O3, 6H-SiC and more recently Si). 

Heteroepitaxy has seen commercial success since the 90’s with the blue LED, however 

heteroepitaxial growth inevitably leads to a high degree of threading defects (>109 cm-2) extending 

from the interface of the two materials due too the mismatches involved. A variety of techniques 

such as AlN interface buffer layers [3], low temperature nucleation layers [4], and selective area 

growth [5]  techniques have lowered dislocation densities in device epilayers to <107 cm-2 [6].  

Many different growth techniques have been developed for GaN epitaxy specifically, since 

most devices only use low alloy content AlGaN or InGaN for junctions/quantum wells. Most 

techniques rely on the thermal decomposition of ammonia (NH3) as a source of nitrogen for the 

growth, requiring temperatures of at least 600 °C to begin efficient production of atomic ammonia 

(Figure 2) and high V/III ratios to help prevent nitrogen desorption [2]. 



  

3 
 

Temperatures higher than 600 °C are used to enhance surface migration of the metal 

species during growth, a typical growth temperature is 1050 °C using chemical vapour deposition 

(CVD) [7]. In the absence of additional energy input (plasma, laser excitation), the thermal energy 

largely determines the surface morphology by limiting the migration of deposition species on the 

surface, controlling the grain size and growth rate of different crystal planes. Figure 2 illustrates 

how the relative growth rate of the crystal planes changes with temperature and pressure [5].  

Figure 2: The effect of temperature and pressure on controlling the relative growth rate of different hexagonal planes [5].  

 

 

 

Figure 1:Decomposition efficiency of ammonia as a function of temperature. The lower limit of atomic nitrogen production using 
ammonia is shown to be 600 ˚C from the characteristics of this curve [5]. 
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In the interest of transparent and flexible illumination/display technology more advanced 

processing technologies have been used to deposit crystalline InN, GaN, AlN and ternary alloys at 

temperatures well below 1050 °C [8]–[12]. Plasma based techniques are effective in lowering the 

overall thermal budget, with crystalline GaN being deposited between 400 °C and 500 °C on a 

range of substrates including glasses [13]–[16]. Much of the underlying defects are still largely 

unavoidable however due too the lattice and thermal mismatch with the substrate material and 

dislocations are still prone to appear in these low temperature techniques. 

1.2 Motivation 
 

A growing field of research in nitride materials is their application to extreme environment 

electronics. These include exposure to corrosive environments, various forms of radiation, and 

high temperatures [17]. The high temperature stability of wide bandgap semiconductors an 

attractive feature for aerospace and space exploration, engine monitoring, flame detection and deep 

well drilling where bulk silicon technologies face fundamental material challenges [18]. In many 

of these applications the use of passive or active cooling is not feasible or may add unwanted cost 

and weight to designs. While wide bandgap materials enable device operation, there are many 

other challenges associated with device level design in these environments that extend past the 

active material. Contact metallization, die attach mechanisms and device packaging are also 

significant challenges to consider. 

The die packaging is critical to device reliability and in extreme environments. 

Conventional FR4 PCB’s have a glass transition of 130-170 °C and should not be operated close 

to this temperature. At temperatures beyond this, inorganic ceramics or metals are used due too 

their thermal stability and high thermal conductivity compared to organic materials. Low 
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temperature cofired ceramics (LTCC) or glass-ceramic composites, are low-cost materials that are 

resilient enough for these applications with a wide range of electrical/physical properties available 

by their composition [19]–[22]. The nature of ceramic processing also allows these materials to be 

shaped, cut, and folded much like a plastic prior to firing. Embedded cavities and conductors can 

also be created for a wide range of novel applications, such as fluidics, that extend beyond a 

mechanically rigid planar substrate material [23]–[25]. 

Die attach solutions currently involve using metals and organic materials as intermediates 

between the ceramic and the semiconductor die. Die attach and contact metals are points of failure 

in high temperature operation where their thermal mismatch can cause lift off. The motivation of 

this work is to use oxide materials to coat the surface of the LTCC for direct CVD film growth, 

eliminating the die attach process by a direct growth on the ceramic. The benefit of this would be 

a higher thermal stability of the attaching layer compared to metals and organics, along with 

removing the size and shape limitations associated with the attaching substrate. Oxide materials 

have the added benefit of being readily deposited by solution at room temperature with melting 

points <1000 °C. In this work Plasma Enhanced Chemical Vapour Deposition (PECVD) and 

solution processed silicon, zinc and aluminum oxides were used to enable low temperature 

crystalline films to be deposited on LTCC substrates. The surface characteristics of the oxide 

buffer and the PECVD films are characterized using X-ray and electron microscopy/spectroscopy 

techniques. The electronic properties of the LTCC/ZnO/GaN structure are tested by attempting to 

fabricate a Schottky diode structure on a deposited thin film.  

2. Materials 
 

2.1 III-V Nitride Semiconductors 
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One of the fundamental challenges of heteroepitaxy of III-N semiconductors comes from 

their crystal structure. All group IV elemental (Si, Ge) semiconductors and non-nitride group III-

V materials have a cubic zincblende (ZB) structure, while the most stable phase of the III-Nitrides 

is hexagonal wurtzite (WZ). Figure 3 shows the relationship between bandgap and lattice constant 

for many different semiconductors. All materials seen on the right-hand side of Figure 3 share a 

ZB structure whereas the left hand side shows the WZ structure of the nitride family. The bandgap 

of InN is typically given as 0.7-0.8 eV, which has been strongly debated over the last 20 years. 

The value of ~0.7 eV is accepted based on strong room temperature photoluminescence peaks, 

however this is debatably due too Mie resonance with metallic In clusters [26]. On the contrary, a 

larger bandgap (>1.5 eV) has been shown to be strongly dependent on oxygen content [27]. Recent 

work in the Lakehead semiconductor research lab in conjunction with the Canadian Light Source 

(CLS) at the University of Saskatchewan has demonstrated a bandgap of ~1.8 eV through X-ray 

absorption/emission spectra to directly probe the band structure of different InN samples of 

varying morphologies [28].  

Figure 3: Bandgap and lattice constant of many common semiconductors [29]. 
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Although significant research on their cubic structures has been performed since it can be 

grown metastably on cubic substrates such as (100) GaAs, more mismatch exists on cubic 

templates than with existing hexagonal systems and it has proved challenging to avoid hexagonal 

inclusions in the metastable cubic structure. Motivation in this field stems from several advantages 

of the cubic system due too the additional crystal symmetry , such as the lack of polarization fields, 

increased carrier mobilities, and lower dopant activation energies [30]–[32].  

While both WZ and ZB structures share a tetrahedral unit cell due too the sp3 hybrid bond 

shape they differ in how these unit cells stack. As seen in Figure 4, a ZB structure (left) will have 

an AaBbCc ordering along the [111] crystal direction, while the WZ crystal (right) has an AaBb 

order along to [0001] direction where A and a represent the cation (positive species) and anion 

(negative species) respectively. The difference in the stable structure comes from the ionicity of 

the bond III- N, where electrostatic attraction between III-N dipoles makes alignment along the c-

axis more favorable (dotted lines in Figure 4).   

Figure 4: ZB structure (left) with AaBbCc ordering along the [111] crystal direction. The WZ crystal (right) with AaBb stacking 
along the [0001] direction [33]. 
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This attraction is relatively weak and can be overcome by depositing these materials on 

cubic templates. The wurtzite (WZ) structure does not have complete charge symmetry, due too 

the alignment of the bonds along the c-axis. This induces a spontaneous (𝑃𝑠𝑝) and piezoelectric 

(𝑃𝑧) polarization effect in the crystal, which are both aligned either into or away from the (0001) 

surface along the c-axis depending on the stacking order (cation to anion AaBb, or vice versa, 

aAbB). Piezoelectric polarization induces a voltage on the c-axis of the crystal as a restoring force 

in response to strain in the crystal along that direction, whereas spontaneous polarization comes 

from the charge difference between the Ga and N in the crystal.  

The direction of the polarization is determined by the substrate material, with the ordering 

being continued from the substrate into the nitride. Since III-Nitrides are usually grown on sapphire 

or (111) silicon, both of which have no polarization, the polarity is determined by the nitridation 

process. Epitaxy begins in both cases by depositing a thin interface layer of AlN to minimize lattice 

mismatch with the substrate and avoid Ga diffusion [34]. The growth conditions during this phase 

will dictate the polarity of all subsequent epilayers, with two possibilities seen in Figure 5 [35], 

[36]. Ga facing surfaces have triple co-ordinated gallium facing the surface and are generally found 

to be smoother than N facing surfaces. In Ga-facing surfaces the polarization vector is pointing up 

from the surface, while surfaces ending with triple co-ordinated nitrogen will be the opposite.  
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The direction of this vector is useful in the polarization engineering of nitride structures, 

where charge accumulation can occur without doping and independent of temperature. From 

Gauss’ law (𝜌 = ∇ ∙ (𝑃𝑠𝑝 + 𝑃𝑧)), a charge density (𝜌) will appear due to changes in polarization, 

such as in heterojunctions, and will generate a bound charge at the surface as illustrated in Figure 

6. 

Figure 6: High electron mobility channel formation from spontaneous polarization vectors in a Ga facing GaN/AlGaN 
heterostructure. The Ga facing crystal has Psp facing the surface while N facing crystal has it facing the substrate. 

 

Figure 5: Two possible stacking orders in III-Nitrides that lead to polarization facing the substrate (left) and facing the surface 
(right). The magnitude of the spontaneous (Psp) and piezoelectric (Pz) polarization is the same, but the direction is opposite [37]. 
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This effect can be desirable such as in the case of electron channel accumulation in high 

electron mobility transistors (HEMTs). High electron sheet densities (>1013 cm−2) can be achieved 

without introducing donor dopant materials in the barrier layers that act as ionized scattering 

centres, degrading channel mobility. These channels are localized to the interface and can be well 

modelled by a triangular quantum in the device band structure [38]. This same polarization effect 

can also be detrimental, biasing quantum well structures in the well known quantum confined stark 

effect (QCSE). Polarization works separates holes and electrons in quantum well structures, 

thereby causing a reduction in the overlap of their wavefunctions and reduces recombination 

efficiency. Since the dipoles face along the c-axis in the wurtzite structure, the effects of 

polarization depend on the degree of c-axis orientation to the surface.   shows how the degree of 

piezoelectric polarization changes between from the c, r, and m planes in GaN.  

Figure 7: Change in piezoelectric polarization constant  between from the c, r and m planes in GaN [39]. 

  
Polarization effects are useful in nitride-based sensors since they are not induced by ionized 

dopants or significantly dependant on the bandgap and are therefore stable over a wide range of 
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temperatures. The electron density at the GaN surface in  is however dependant on the positive 

charges induced on the upper surface of the AlGaN for charge neutrality, therefore any source of 

negative charge on the surface will deplete the charge density in the buried AlGaN-GaN interface. 

Transistors based on these junctions are typically passivated for device stability, but a wide range 

of sensors operate by functionalizing this surface to selectively supply negative charges [40]–[43].  

The piezoelectric polarization can also be utilized to measure mechanical strain. Changes 

in the strain state of the upper AlGaN layer will either reduce or enhance the channel carrier density 

depending on direction of the strain. This reverse effect can be used in nanogenerator structures, 

where paired with a rectifying junction, can produce nanoscale direct current generators [44]. The 

polarization coefficients are relatively independent of temperature, however internal strain created 

by mismatch can affect charge accumulation and tends to increase with temperature. In lattice 

matched structures the high temperature stability of nitrides makes them valuable for high 

temperature sensor design [45]. 

2.2 Oxide Materials  

 The choice of oxides to coat LTCC comes from the composition of the ceramics 

themselves. To form a good bond with the substrate, a component oxide is desirable, which will 

easily bond into the glass network. Three oxide materials were chosen as buffers, silicon dioxide 

deposited through spin coating, alumina deposited by anodization of metallic aluminum and zinc 

oxide deposited through dip coating.  

2.2.1 Zinc Oxide 

ZnO is a group II-VI semiconductor with many similar properties to GaN. As in the III-N, 

the ionicity of the bonding gives rise to the WZ crystal structure as the most stable phase. ZnO 

itself has been the subject of a significant amount of research owing too its wide energy bandgap 
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(3.437 eV [33]) allocating it many of the advantages associated with a large bandgap such as high 

temperature and high-power operation, low noise generation, and high breakdown voltage. 

The relatively close size of the zinc/gallium atoms and oxygen/nitrogen atoms gives ZnO 

a closely sized crystal lattice to GaN. Similar to the III-N system, bandgap engineering is possible 

by alloying. This is typically done with MgO and BeO for larger bandgap alloys and CdO for 

lower bandgaps, although a full compositional range is not possible due too the cubic rocksalt 

structure of MgO and CdO [46].  

Table 2: Unit cell properties of silicon, nitrides, and various oxide materials 

 

 

 

 

 

 

 

 

 

The hexagonal shape of the ZnO crystal introduces similar challenges as seen in III-Nitride 

materials. Heteroepitaxy on substrates such as sapphire produce large lattice mismatches (18.4%) 

resulting in similar densities of threading dislocations on the surface (10-7 – 10-9 cm-2).   

Metal oxides such as ZnO, SiO2 and Al2O3 can uniquely produced in chemical solution 

using the sol-gel technique. Sol-gel relies on hydrolysis and condensation reactions to exchange 

alkyl ligands on the metal with bridging oxygen atoms to produce metal oxide colloids at room 

temperature. Using this technique, oxide materials can be produced as nano scale particles in 

Material Lattice constant (Å) 

a-axis c-axis 
InN [47] 3.537 5.703 
GaN [47] 3.189 5.185 
AlN [47] 3.110 4.980 
ZnO [48] 3.249 5.205 
CdO [48] 4.689 - 
MgO [48] 4.216 - 
BeO [49] 2.718 4.409 

Al2O3  [50] 4.765 12.982 
Si [50] 5.431 - 
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solution and thin films can be applied using wet chemical deposition techniques such as dip coating 

and spray coating. These versatile techniques can apply these coatings to many organic and 

nonplanar substrates. The relatively high surface area of nanoparticles lowers sintering 

temperatures and dense crystalline films can be produced at temperatures <600 °C. Compared to 

other oxide deposition techniques such as sputtering, it is simpler and more flexible in the choice 

of substrates. Solution chemistry can be controlled to introduce dopants [51]–[53], and controlling 

nanoparticle morphology is also possible with a variety of shapes with crystalline structure 

demonstrated [54]–[57]. 

The relative ease at which oxides can be wet etched compared to nitrides makes chemical 

wet etching highly selective in a III-Nitride/ZnO structure. Several reports of wet etching of ZnO 

have shown that a variety of acids including dilute mixtures of hydrochloric acid [58], [59] can 

etch ZnO at rates of 120 nm/min at 0.25%, increasing linearly with concentration [60]. The 

reported etch rates in this case are for RF sputtered layers, therefore even higher rates can be 

expected in sol-gel produced layers due too the increased porosity. This however may be a 

disadvantage in this work since wet cleaning processes for contact preparation can be destructive 

on the ZnO buffer.   

A lack of reliable p-type doping of ZnO has been its most significant drawback to 

commercial device production. ZnO is normally found to be n-type because interstitial donor states 

from Zn (Zni) and O vacancies (VO) are the most stable point defects [61], as well as unintentional 

hydrogen donor incorporation from the growth process [62]. The low formation energies of these 

defects tends to lead to high background electron concentrations in grown layers. The ability to 

easily produce highly n-type ZnO and its wide bandgap make it an attractive alternative to ITO as 

a transparent conductive oxide (TCO), but limits its application in homojunction structures [63]. 
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The general strategy in choosing a p-type dopant is a substitutional group IA element on a zinc 

site, codoping of donors and acceptors, or substitution of group VA elements on an oxygen site. 

The main issues that are usually encountered are the long-term stability of the p-type dopant, the 

activation energy required and its solubility.  

2.2.1.1 Zinc Contamination 

While ZnO has a high melting temperature of 1,975 °C [64], in vacuum conditions the 

direct sublimation of ZnO to Zn and O gas is known to occur at temperatures as low as 700 °C 

[65]. Zinc and zinc containing alloys such as brass are avoided in vacuum technology due too the 

high vapour pressure of zinc, causing sublimation at low temperatures which can coat the reactor 

interior. Figure 8 shows the Θ-2Θ X-ray diffraction (XRD) results of a single crystal sapphire 

wafer heated in the contaminated system. Peaks at 42.01˚ and 91.00˚ are expected from the 

sapphire wafer, while all other are re-evaporated metal from the contaminant in the system.  

Figure 8: Normalized Θ-2Θ XRD plot of the sapphire wafer after ZnO contamination (blue). A theoretical spectrum from Zn metal 
(red) is included, calculated from the HCP structure with a=2.6648 Å and c=4.9467 Å [66]. Major peaks related to the (0006) and 
(00012) peaks of sapphire (blue) are at 42.01˚ and 91.00˚ respectively. All other peaks in blue correspond to reactor contamination. 
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The contamination appeared on all subsequent growths and drastically reduced the quality 

of the epitaxial layers. In our system we found the temperature limit to be 650 °C, depositing GaN 

at 700 °C and a pressure of 1400 mTorr resulted in the characteristic peaks in Figure 8 (blue) on 

all samples. This is indicative of a deposition from the reactor walls, which could likely be a zinc 

contamination, however a comparison of the contaminated sapphire and the HCP zinc structure in 

Figure 8 shows the contaminant does not match the XRD pattern of pure zinc metal and were only 

found to present after heating ZnO samples in vacuum. A mechanical cleaning of the system was 

required to remove it. The exact nature of the contaminants is unclear, but regardless it sets a limit 

on the temperatures used in the ZnO experiments at 650 °C. 

2.2.2 Silicon Oxide 

Sol-gel SiO2 (or spin-on glass) has been used as insulating passivation layers, optical 

waveguides, a precursor to doped silica nanoparticles and has been used to produce several novel 

products such as Aero/Xero gels [67]–[70]. For LTCC it has been demonstrated as a planarization 

layer and a low cost planar optical waveguides [71], [72]. A hybrid sol-gel approach has been 

demonstrated as effective in reducing cracking by applying a mixture of silica nanoparticles with 

the coating solution to increase the volume fraction of silica in the drying solution, thus lowering 

shrinkage and strain in the layer. These layers did not demonstrate cracking even as thicknesses 

>1 µm were deposited and baked at 500 °C for 1hr. Samples used in this work were prepared by 

partners at TU-Ilmenau using the methods outlined in [72]. 

2.2.3 Anodized Alumina (AAO) 

Alumina is the non-crystalline version of sapphire, which is normally used in nitride 

growth, and is a large constituent of many ceramic mixtures. It can be produced through the anodic 

oxidation of metallic aluminum at room temperature. This process is used in many industrial 
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applications where the oxide material serves as a productive coating on the relatively soft metal. 

The structure of the produced film depends on the acid used as an electrolyte in the process and is 

the result of a balance between oxide dissolution at the acid-oxide interface and production of new 

alumina at the metal-oxide interface.  

  

For weakly acidic solutions (pH 5-7) the oxide anodization current will quickly drop as the 

barrier becomes thick, as the field driven oxidation decays exponentially with thickness. The 

produced oxide is insoluble in these solutions so the process self limits and the oxide production 

will essentially go to zero at a thickness dependant on the applied voltage.   

In low pH (<5) solutions the anodization will initially generate an oxide layer, however 

upon reaching a critical thickness (the minima in the anodization current in Figure 9b), random 

Figure 9: Anodized alumina production for a) low pH electrolytes resulting in a self-limiting barrier type and b) high pH resulting 
in a continuous pore etching or porous type material [73]. 
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stress fractures will occur in the oxide due too the large volume difference between aluminum and 

its oxide. This may also occur in weakly acidic solution if the thickness is too high but is 

undesirable in a protective coating. The fracture sites allow the oxidation to continue at the 

aluminum-oxide interface and the anodization current increases as the pores are created. Once the 

pore formation begins the volume expansion of the metal to oxide transition cause a mutual stress 

between adjacent pores and will help align them. The pore production can continue in the high 

field region at the bottom of the pore and thick, well aligned porous arrays can be produced from 

metal films at constant anodization current. This is done in a two-step process where an initial 

random pore array is allowed to reach steady state and removed, leaving a well aligned, dimpled 

template for a second anodization [73].  

 The pore structure can be controlled through the pH value of the electrolyte, which mainly 

defines the pore radius and the applied voltage, which controls the interpore distance. The lower 

the pH value of the solution, the smaller the pore and the higher the applied voltage the larger the 

interpore distance. It has been empirically found that in order to maintain an ordered array the 

porosity should be approximately 10% [74]. It is proposed that any interpore distance and size is 

Figure 10: Two stage AAO template showing the initial random pore initiation and the dimpled template for the second anodization 
[73]. 
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possible, so long as this 10% rule is obeyed the mutual interpore stress maintains order. Attempts 

to use the well ordered arrays in research have been as low cost, large area alternatives to 

lithographic patterning [75]–[77], templates for plasmonics and metamaterials [78]–[80], and 

templates for high aspect ratio nanorods [81]–[83]. 

A common experimental setup seen is 0.3 M oxalic acid (H2C2O4) solution and constant 

DC voltage of 40 V. The pore structure reported in these conditions varies based on the exact 

experimental conditions such as temperature and purity of the aluminum used, but using these 

values we can expect a pore diameter on the order of 30 nm and a spacing of 100 nm [74], [78], 

[84]–[87]. Given the stable nature of alumina, no oxygen contamination from the layer was 

observed in the experiments. The onset of glass vitrification in the ceramics therefore sets the 

temperature limit for the entire process [88]. The limiting temperature in this work using 

AAO/Heratape CT700 was determined to be 700 °C by observed rounding of edges at >700 °C.   

2.3 Cofired Ceramics 

The application of ceramics in electronics dates to the 1950’s where it was realized that 

ceramic processing techniques combined with screen printed conductors could not only 

significantly miniaturize circuit technology, but also integrate passive components in a durable 

monolithic structure suitable for mass production [89]. They posed several advantages over FRx 

organic circuit boards in applications where heat, environmental chemistry or dielectric loss is too 

high for reliable operation. They can be roughly divided into two major categories, high and low 

temperature cofired (HTCC and LTCC respectively), depending on the temperature used in the 
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final sintering process in the ceramic production. A typical ceramic production process can be seen 

in Figure 11. 

Figure 11: LTCC production flow diagram from initial slurry mixture to a final laminated multilayer stack [90]. 
 

The slurry is a mixture of oxide particles of representing the final composition of the 

sintered ceramic, with the addition of an organic binder, solvent, and plasticizers. For LTCC most 

of these oxides are a mixture of silica (SiO2) and alumina (Al2O3) with differing amounts of 

modifier oxides (B2O3, PbO, Na2O, CaO, BaO, ZnO, Li2O). The mixture is designed to change 

various parameters of the ceramic, such as melting point, thermal conductivity/expansion, and 

dielectric loss by introducing mobile/non-mobile ionic species and non-bridging oxides in the 

silica-alumina amorphous network. LTCC and HTCC differ in that HTCC ceramics are least 96% 

alumina.   

The layers are processed on a continuous reel poured from the slurry, shaped by a doctor 

blade, and prebaked to remove solvents. The green (pre-fired) paper-like ceramics are cast on 

mylar reels and patterned using laser and micromachining processes. Via holes can be formed 

either by punching or laser machining of the substrate to diameters as low as 150 µm [91], reaching 
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as low as 30 µm in current research and trace widths as narrow as 20 µm [92]. These features are 

filled with metallic frit paste by screen printing that bonds to the ceramic on firing, allowing for 

strong adhesion to the surface. Surface passives such as thick film resistors can be tested prior to 

final lamination and trimmed for high accuracy (+/- 2%). Much of this processing can be done in 

parallel with high volume, allowing for low cost with fine features. The final sintered thickness of 

the layers can be anywhere from 100 μm to 200 μm in thickness with as many as 30 layers [93].  

The temperature of the final firing limits the materials used for conductors in these 

substrates. Since the highest conductivity metals have melting points below 1000 °C, processing 

temperatures are typically limited to 900 °C at the risk of deforming embedded line structures.  

Table 3: Melting point of various conductors used in ceramic technology [90]. 

 

 

For HTCC the solution is to use high conductivity refractory metals (W, Mo) as conductors. 

Since the signal delay and resistive power loss is proportional to the wire resistance, there is 

significant motivation to use higher conductivity metals (Au, Ag, Cu), and LTCC substrates are 

preferred in most applications. 

Material Electrical Resistance 
(μΩ·cm) 

Melting Point 
(°C) 

Cu 1.7 1083 
Au 2.3 1063 
Ag 1.6 960 
Pd 10.3 1552 
Pt 10.6 1769 
Ni 6.9 1455 
W 5.5 3410 
Mo 5.8 2610 
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Vacuum deposition of crystalline materials on LTCC surfaces has been limited primarily 

to RF sputtering, where many materials such as Pb(ZrTi)O3 (PZT) , ZnO [94], and AlN [95]–[98] 

have been demonstrated. Sputtering has the added advantage of supplying kinetic energy to the 

depositing material through the plasma in the sputtering process rather than substrate heating. This 

allows for crystalline deposition at relatively low substrate temperatures. Crystalline orientation in 

these films is desired for applications as heat spreading dielectrics, electroacoustic devices, and 

epitaxial templates. In each of these applications it is more favorable to have a smooth, highly 

oriented substrate to improve performance.  

2.3.1 Ceramic Applications 
 

Beyond its application as a multilayer interconnect structure, LTCC can be shaped and 

processed into unique Microelectromechanical systems (MEMS). MEMS has predominantly been 

done using Silicon as a mechanical material because it has a long history in microelectronics where 

a library of fabrication techniques have been developed along with well documented material 

properties. It is well adapted to produce structures such as cantilevers and dense interdigitated 

combs on the order a single micron or lower, which is greatly beneficial in shrinking sensors and 

lowering their power consumption. Scaling of some devices this small may not be beneficial to 

their use or cost effective. This is true when considering devices focusing on power generation, 

millimeter and micrometer RF, chemical synthesis, and fluidics where larger surface areas may be 

needed. Silicon may also chemically reactive with fluids used microfluidic applications and has 

significant expense related to the fabrication and production technology needed to produce 

submicron scale features, making it suitable only in large volumes.  

An example of an application where silicon may not be applicable is seen in Figure 12, 

where two coils are shown from a multilayer coil structure used in a microgenerator built from 
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LTCC. In their work 28 coils were fabricated on a 50 mm disc using 2, 8, 10 and 12-layer designs 

with 200 µm linewidths. Their best results (8 layer design) generated 589.91 mW at 11827 rpm 

[99]. To fabricate this device using silicon would be significantly more expensive not only due too 

the large area of crystalline material needed, but more complicated patterning and bonding 

techniques would be needed. 

 

Figure 12: 2 coils from a 28-coil structure using in an LTCC micro generator device fabricated at Wrocław University of 
Technology. The linewidths shown are 200 µm with up to 12 layers laminated in a single 50 mm diameter disc [99].  

 

LTCC has also been used as a MEMS material in a variety of microfluidic applications. 

The integration of microfluidic channels in a planar device can be done using graphitic sacrificial 

fill materials that are fully decomposed upon final lamination, leaving a hollow cavity within the 

sintered structure. A recent article showing several examples of microfluidic devices can be seen 

in [100], where 3D serpentine paths and passive hydrodynamic structures are fabricated from 

multilayer ceramic processing techniques. The channels can be designed using CAD software to 

produce novel fluidic mixer and filter elements. These paths can be located very close, and even 

sandwiched between embedded heaters/sensors along their path.  
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3. Applications 

In this chapter the operation of the Schottky diode will be discussed as well as the effects 

of high temperature operation with an emphasis on the fundamental limits that are faced by silicon. 

The Schottky junction is a fundamental device that used in many different diodes and transistors, 

and the ability to fabricate and characterize these junctions is critical in understanding device 

performance. 

Section 3.1 will cover the Schottky diode using band theory to describe the current voltage 

characteristics of the device. This model can be used to explain carrier transport through the barrier 

and how device parameters such as threshold voltage and leakage current can be affected by 

surface states. Temperature has significant effects on the current voltage characteristics of all 

electronic devices due too its effect on the fermi level in materials. This can lead to changes in 

important device parameters such as series resistance and junction capacitance, covered in section 

3.2. Diffusion of point defects and dislocation movement can occur at elevated temperatures 

leading to irreversible changes in device properties. Diffusion can also occur at metal-

semiconductor and metal-oxide junctions leading to contact failures. Permanent failure modes 

caused by thermal expansion mismatch are a major contribution to device failure at high 

temperatures. Section 3.3 briefly covers device packaging with ceramic substrates used in 

thermally robust package design. 

3.1. Schottky Diode 

The simplest device that could be fabricated using the LTCC/GaN system an n-GaN 

Schottky diode. A lateral diode structure is achievable using two different metal contacts on the 

surface of the GaN. The formation of back contacts through the LTCC itself can be fabricated 
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during the green tape stage of its processing. A vertical device is generally more desirable since 

vertical devices can utilize their entire surface, scaling of drift regions does not change the surface 

area of the device, and the ohmic contact can be internally connected in the LTCC stack.   

A Schottky diode consists of an ohmic and rectifying metal semiconductor junction. The 

device acts analogously to a p-n junction diode. When the metal contact and the semiconductor 

are brought into electrical contact a built-in field arises from the diffusion of electrons across the 

metal-semiconductor junction, which may then form the rectifying energy barrier. The height of 

this barrier is determined by the electron affinity of the semiconductor and the metal work function 

as seen in Figure 13. Thermodynamic equilibrium establishes a constant Fermi level (𝐸𝑓) through 

the device.  

 

The built-in potential (𝑞𝜙𝑖) from the alignment of the Fermi levels can be expressed as the 

difference in the two work functions of the materials: 

𝑞𝜙𝑖 = 𝑞(𝜙𝑚 − 𝜙𝑠) (3-1) 

The energy barrier at the interface (𝜙𝐵) can be determined by the difference between the 

work function energy in the metal and the Fermi level of the semiconductor: 

Figure 13: Energy levels in two isolated metal and n-type semiconductor materials and after contact with electron diffusion. 
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𝜙𝐵 = 𝜙𝑚 − 𝜒𝑠 (3-2) 

Where 𝑞 is the electron charge constant, 𝜙𝑚 is the work function of the metal, 𝜙𝑠 is the 

semiconductor work function and 𝜒𝑠 is the semiconductor electron affinity (𝜒𝐺𝑎𝑁 = 4.1 eV) [2]. 

From Figure 13 this can be rewritten in term of the conduction band (𝐸𝑐) and the Fermi level (𝐸𝑓). 

𝜒𝑠 = 𝜙𝑠 + (𝐸𝑐 − 𝐸𝑓𝑠) (3-3) 

Combining equations (3-1), (3-2) and (3-3) 

𝜙𝐵 = 𝜙𝑚 − 𝜙𝑠 + (𝐸𝑓𝑠 − 𝐸𝑐) 

𝜙𝐵 = 𝜙𝑖 + (𝐸𝑓𝑠 − 𝐸𝑐) (3-4) 

To demonstrate rectification this barrier energy (𝜙𝐵) must > 0, which is accomplished by 

choosing a metal contact with a higher work function higher than GaN (𝜙𝑚 > 𝜙𝑠). If a lower work 

function metal is chosen, electrons will diffuse from the metal into the semiconductor, 

accumulating at the interface and the contact will be ohmic. Some examples of  Schottky metal 

contacts used are Au (𝜙𝐴𝑢 = 5.1 𝑒𝑉), Pd (𝜙𝑃𝑑 = 5.12 𝑒𝑉), Ni (𝜙𝑁𝑖 = 5.15 𝑒𝑉) and Pt (𝜙𝑃𝑡 =

5.65 𝑒𝑉) [101], whereas a common ohmic contact metal Ti (𝜙𝑇𝑖 = 4.33 𝑒𝑉) or Al (𝜙𝐴𝑙 =

4.28 𝑒𝑉) [102].  

A high work function metal is desired for Schottky contacts to increase 𝜙𝐵 and a low work 

function metal is ideal for ohmic contacts. A metal stack is often used to decrease undesirable 

effects such as intermetal diffusion which can result in non conducting alloys (Au-Al purple 

plague), and oxidation where non conducting oxides can be produced (Al-O). A common ohmic 

metal stack for GaN is Ti/Al/W/Au, where the Au cap removes the possibility of oxidation of Al, 

and W provides a diffusion barrier against the Al-Au [103]. Titanium contacts the GaN surface 

and upon annealing, causes nitrogen to diffuse into the metal, creating TiN near the interface and 

nitrogen vacancies in the GaN. Nitrogen vacancies are known shallow electron donors and pin the 
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Fermi level near the surface, thinning the energy barrier on the surface so it acts as a tunnel 

junction, while the Al limits this diffusion to only the Ti layer. Variations of this may change 

metals within the stack, but their purpose is the same. Though less thermally stable and oxidation 

resistant, a significantly simpler ohmic contact can be formed from an indium dot which shows 

ohmic behavior with no annealing necessary [104]. The contact resistance can be lowered from a 

300 °C anneal, attributed to a thin InN interfacial layer [105]. 

When the two materials are initially in contact the concentration gradient drives diffusion 

currents to equalize the Fermi levels, and a field is built up from the positive charges left over from 

the electron removal in the semiconductor. The built-in field opposes the diffusion current and 

continues to grow until an equilibrium is reached. When a positive voltage is applied to the metal 

(𝑉𝑎) with respect to the semiconductor in the diode structure, the built-in field is compensated. As 

the voltage is increased from zero, the barrier height seen for the electrons in the semiconductor 

will continue to decrease. When 𝑉𝑎 = 𝜙𝑖  the flat band condition is reached and there is no barrier 

to electrons from the semiconductor to the metal, diffusion current can continue, and macroscopic 

current can be observed through the diode. When a positive voltage is applied to the semiconductor 

(reverse bias voltage 𝑉𝑟) the built-in field is enhanced, and no current can flow. This blocked is 

ideally effective we reach the critical field value for GaN (3.0 MV/cm) where impact ionization 

and avalanche breakdown can occur. These two scenarios can be seen in Figure 14. 



  

27 
 

An idealized diode with a series resistance (𝑅𝑠) can be modelled using the Shockley diode 

equation. 

𝐼 = 𝐼𝑠 (𝑒
(
𝑞(𝑉−𝐼𝑅𝑠

𝑛𝑘𝑇 )
− 1) (3-5) 

𝐼𝑠 = 𝑆𝐴∗∗𝑇2𝑒
−(

𝑞𝜙𝐵
𝑘𝑇 ) 

𝐴∗∗ =
4𝜋𝑚∗𝑘2𝑞

ℎ3
 

Where 𝑘 is the Boltzmann constant, 𝑇 is the temperature, 𝑛 is the diode ideality factor, 𝑆 

is contact area, 𝐴∗∗ is the effective Richardson constant (24 A cm-2 K-2 assuming 𝑚∗ = 0.2𝑚𝑒 

[106]) and 𝜙𝐵 is the potential barrier and the junction. This equation assumes that all the current 

is from thermionic emission (TE) over the barrier, but in the case of high carrier concentrations 

there may be additional components due too tunneling through the barrier or tunneling itself may 

be the dominant transport mechanism in the extreme cases of high doping or high temperature.  

Figure 14: Band diagrams of the Schottky junction in forward (left) and reverse (right) bias. In forward bias the barrier shrinks, 
and the fermi level slowly returns to its isolated position. Once 𝑉𝑎 = 𝜙𝑖 we return the isolated material scenario seen in Figure 13 
(right) and the diffusion current is free to flow. In the reverse bias the applied voltage 𝑉𝑎 is the same direction as the built-in 
potential 𝜙𝑖 and only adds to the current blocking field, depleting more carriers from the surface and extending the depletion 
region. Only carriers with enough energy to jump the barrier (𝜙𝑏) and thermally/optically generated currents can flow.  
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3.1.1 Surface States 

Surface states in semiconductors can differ from the bulk due too the free bonds at a surface 

and the minimizing of their energy. The minimization can introduce states in the bandgap, oxides 

can often grow due too ambient exposure, point defects such as vacancies can be present, 

dislocations can reach the open surface and terminate, and contaminant atoms such as carbon can 

be present. Each of these can introduce interface states that can dominate the interface properties, 

effectively pinning the Fermi level near the surface.  

The effect of the surface states can be reduced by a post deposition annealing of the contacts 

on an oxygen environment. For Ni and Ni/Au contacts a post deposition annealing performed 500 

°C for 10 mins can allow for effective passivation of states by diffusion of Ni into the interface, 

significantly reducing the reverse leakage current [107]. The Au capping is helpful in preventing 

the formation of NiO on the surface of the contact but annealing should be kept below 600 °C 

where Ni-Ga formation occurs and a possible migration of the gold contact to the surface occurs, 

replacing the nickel [108].  

3.1.2. Thermionic Field Emission (TFE) and Field Emission (FE) 

The Shockley diode equation assumes a thick enough barrier that tunneling through the 

barrier can be neglected. This is not the case when the depletion depth (𝑥𝑑) is in the range of single 

nm thickness. The depletion depth can be found from: 

𝑥𝑑 = √
2𝜖𝑠𝜙𝐵

𝑞𝑁𝐷
 (3-6) 

As the doping density 𝑁𝐷 becomes high the barrier becomes thin and less effective at 

blocking the tunneling of electrons at room temperature. High temperatures increase the tunneling 

current component as more electrons are thermally excited to regions where the barrier becomes 
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thin. More donor states may also become ionized, increasing 𝑁𝐷 at higher temperatures. Eventually 

as temperature or donor concentration increases, the Shockley TE model cannot fit the forward or 

reverse current and a combination of field emission (tunneling) and thermally excited carrier must 

be considered. This is generally observed as a slower ramp of the current in the I-V curves (an 

increase in the measured ideality factor (𝑛) to > 2).  The Thermionic Field Emission (TFE) model 

is given by: 

𝐽 = 𝐽0 (𝑒
𝑞(𝑉−𝐼𝑅𝑠)

𝐸0 − 1) (3-7) 

𝐽0 =
𝐴∗∗𝑇√𝜋𝐸00𝑞(𝜙𝑏 − 𝑉 − 𝜉)

𝑘 cosh (
𝐸00

𝑘𝑇)
 𝑒

(−
𝑞𝜉
𝑘𝑇

−
𝑞
𝐸0

(𝜙𝑏−𝜉))
 

𝐸0 = 𝐸00 coth (
𝐸00

𝑘𝑇
) 

𝐸00 = (
𝑞ℎ

4𝜋
)√

𝑁𝐷

𝑚∗ε𝑠
  

Where 𝐽 represents current density (A/m), 𝑞𝜉 is the energy difference between the Fermi 

level and the conduction band (𝐸𝑓𝑠 − 𝐸𝑐), 𝑚∗ is the effective mass of electrons (0.2me [106]) and 

ε𝑠 is the electric permittivity (8.9 in GaN, 8.5 for AlN, 15.3 for InN [106]). For even higher donor 

concentrations (>1018) the current can be dominated by the tunneling which can be approximated 

by [109]: 

𝐽 = 𝑒
(
−𝑞𝜙𝑏
𝐸00

) (3-8) 

3.1.3 IV Curves 

The analysis of a diode’s performance is determined by examining its current-voltage (I-

V) relationship on a graph. The ideal IV curve behaviour is given by the Shockley Diode equation 
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(3-5)) as previously covered with 𝑛 = 1. A commonly used graphical analysis technique to 

determine the device parameters is outlined in [110]. Assuming the voltage drop across the diode 

𝑉𝐷 > 3
𝑘𝑇

𝑞
  (reasonable given 𝑘𝑇

𝑞
= 0.025𝑒𝑉) the ideal diode equation can be written as  

𝐼 = 𝐼𝑠 (𝑒
(
𝑞(𝑉−𝐼𝑅𝑠

𝑛𝑘𝑇 )
) 

Rearranging and considering the current density 𝐽 =
𝐼

𝐴
 and 𝛽 =

𝑘𝑡

𝑞
 

𝑉 = 𝑅𝑠𝐴𝐽 + 𝑛𝜙𝑏 + (
𝑛

𝛽
) ln (

𝐽𝐴∗∗

𝑇2
) (3-9) 

Differentiating this voltage with respect to the log current density gives 

𝑑𝑉

𝑑(ln(𝐽))
= 𝑅𝑠𝐴𝐽 + (

𝑛

𝛽
) (3-10) 

A plot of 𝑑𝑉

𝑑(ln(𝐽))
 vs 𝐽 can then be used to determine the series resistance (𝑅𝑠) from the slope of the 

linear regions and the ideality factor (𝑛) from the y intercept. These values can be used to 

determine the barrier height (𝜙𝑏) from equation (3-9). 

𝐻(𝐽) = 𝑉 − (
𝑛

𝛽
) ln (

𝐽𝐴∗∗

𝑇2
) = 𝑅𝑠𝐴𝐽 + 𝑛𝜙𝑏  (3-11) 

A plot of the function 𝐻(𝐽) vs 𝐽 will have a y-intercept giving 𝜙𝑏 and the slope can be used to 

double check the consistency of the series resistance previously found.  

3.2 High Temperature Materials 

The wide bandgap and thermal stability of III-nitrides (particularly GaN and AlN) offers 

several advantages compared to silicon in terms of temperature, in addition to the relative chemical 

inertness and a resistance to ionizing radiation due too the strength of the III-nitride bond. The 
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fundamental thermal limit of silicon-based electronics comes from its background carrier 

concentration. At a given temperature any semiconductor material has a certain number of 

thermally excited carriers given by: 

𝑛𝑖 = √𝑁𝑐𝑁𝑣𝑒
−

𝐸𝑔

2𝑘𝑇  (3-12) 

Where 𝐸𝑔  is the bandgap of the semiconductor (1.11 eV for Si), 𝑁𝑐 is the density of conduction 

band states and 𝑁𝑣 is the density of valence band states. As temperature is increased the number 

of background carriers is increased, which lowers the energy barriers in p-n junctions given by:  

𝜙𝐵 =
𝑘𝑇

𝑞
ln(

𝑁𝑎𝑁𝑑

𝑛𝑖
2

) (3-13) 

Here 𝜙𝐵 is the barrier height in eV, 𝑁𝑎 is the acceptor doping level and 𝑁𝑑 is the donor dopant 

levels typically given in cm-3. Equations (3-12) and (3-13) show an inherent decrease of the 

bandgap due too background carrier which is unavoidable and not material specific. P-n junctions 

are often used for device isolation in silicon devices, and a reduction of the barrier results in signal 

leakage between devices. The increase in temperature will also minorly lower the bandgap due too 

the expansion of the lattice. This has been described through the Varshni expression through 

empirical fitting parameters 𝛼 and 𝛽 [1], [111], [112]:  

𝐸𝑔 = 𝐸𝑔0 −
𝛼𝑇2

(𝑇 + 𝛽)
 (3-14) 

 

Table 4: Varshni parameters for several semiconducting materials. 

Material 𝑬𝒈𝟎 (eV) 𝜶 (eV/K) 𝜷 (K) 
Si 1.17 4.73 x 10-4 636 
Ge 0.7437 4.77 x 10-4 235 

GaAs 1.519 5.41 x 10-4 204 
GaN 3.507 9.09 x 10-4 830 
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AlN 6.230 1.799 x10-3 1462 
InN 0.690 4.14 x10-4 454 

 

These isolation junctions are critical to reliable device operation, and lowering energetic 

barriers causes an exponentially increasing leakage through them. Increased temperature also 

generates hotter carriers that can jump these lowered barriers, leading to increased thermionic 

emission (TE) current. 

These effects limit bulk silicon device operation to around 150 °C [113], where thermally 

generated carriers are significant compared to doping levels and lowered barriers can increase 

junction leakage to the point of device failure. More advanced silicon technologies such as silicon 

on insulator (SOI) and silicon-germanium (SiGe) have been developed to address these limits in 

silicon. SOI and SiGe can alleviate the electrical isolation issues encountered with bulk silicon 

using buried oxides, trench isolation, and Si-Ge heterojunctions and are compatible with CMOS 

processing but devices are still limited to below 300 °C due too fundamental bandgap limitations 

in silicon [114]. Simpler designs such as junction free piezoresistive devices have been 

demonstrated up to 600 °C using SOI isolation technology [115]. 

It is clear from equations (3-13) and (3-14) the wide bandgap of nitride materials gives 

them better isolation than Si as temperature increases. Operation of nitride based transistors has 

been demonstrated at temperatures up to 1000 °C for short periods in vacuum for lattice matched 

InAlN/GaN devices [116]. Study of the failure mechanisms in these HEMT structures shows high 

temperature instabilities are related to stability of the Schottky contact metals. The thermal limits 

of various metals commonly used are reported to be 300 °C for Pd, 400 °C  for Pt, 575 °C for Au 

and 600 °C  for Ni [117]. Interfacial reactions with GaN can result in the diffusion of the contact 
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into the GaN structure, forming an ohmic junction such as with Au [118], of the diffusion of Ga 

into the metal contact as with Ni [119], [120]. To avoid undesirable diffusion effects, annealing is 

usually done in a rapid thermal annealing (RTA) oven for short periods [121]. 

3.3 Device Packaging 
 

Die attach for LTCC includes metallization of the attaching die using a sputtering or 

electrochemical plating processes. Metallization of the LTCC is performed with screen printing of 

metal and glass frit mixtures. During firing the glass mixed with the metal can penetrate the metal 

and mechanically anchor it to the surface. Flip chip solutions can also be used with LTCC 

substrates where organic underfills add mechanical strength. Direct glass bonds with or without 

metal inclusions can also be employed with ceramic-silicon and ceramic-ceramic bonding due too 

the oxide nature of the substrate [122]. 

Bonding of the two metallized surfaces is done with eutectic metal solder alloys of lead, 

tin, bismuth, zinc, silicon, and germanium, however most of these alloy liquidus points are < 300 

°C. Silver and gold can be alloyed to increase the liquidus point and thermal conductivity.  Silver 

offers the best electrical conductivity of all materials and second-best thermal conductivity, along 

with lower cost than gold, so it is favored for high temperature and high-power applications [18], 

[114]. However even with high temperature alloys, such as 82Au-18In solders, the solidus point 

only reaches 488 °C [123].  

A good die attach material has a melting point (solidus point for alloys) higher than the 

operating temperature, good thermal conductivity, low toxicity, thermal expansion comparable to 

the substrate and active die, and low thermomechanical fatigue. From a packaged device 

perspective, the contacts and the die attach metals are crucial aspects of reliability as the 
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temperature is increased [124]. A common thermal device failure occurs by lift off of the contacts 

and die attach, related to thermo-mechanical fatigue at their interfaces. The high conductivity 

metals used in LTCC (Cu, Ag, Al) as well as different solder alloys and many organic materials 

tend to have higher thermal expansion coefficients than crystalline materials and the difference 

generates shear stresses that can lead to cracking. Organic attach materials also have lower overall 

temperature limits compared to metals and glasses. 

Device packaging for semiconductors serves as electrical, mechanical, and thermal 

interfaces, as well as providing environmental protection. For applications where extreme 

temperatures (-55 °C>T>300 °C) may be encountered, packaging becomes more of a challenge 

and many factors such as thermal expansion, thermal conductivity, melting points, and thermal 

fatigue become more important to device reliability. Thermal expansion difference between the 

substrate and die can results in delamination or cracking of the die as temperatures are increased. 

A list of different materials relevant to packaging can be seen in Table 5 [90], [125]–[127]. 

Table 5: Coefficient of Thermal Expansion (CTE) for several materials related to electronics and packaging [90], [125]–[127]. 

Metals CTE 
(106/˚C) 

 
Ceramics CTE 

(106/˚C) 

 
Semiconductors CTE 

(106/˚C) 

 

304 
stainless 

steel 
17.8 

 
AlN 4.3 

 
GaAs 5.8 

 

Ag 19.7 
 Alumina 

(96%) 6.4 
 

Si 2.7 
 

Al 23.5 
 Alumina 

(99%) 6.5 
 GaN (a-axis, 

300K) 3.43 
 

Alloy 
42 4.9 

 
BeO 7.8 

 AlN (a-axis, 
300K) 4.35 

 

Au 14.2 
 

BN 3.7 
 InN (a-axis, 

300K) 3.83 
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Cu 16.8 
 Fused 

Silica 0.56 
 ZnO (a-axis, 

300K) 4.31 
 

Invar 1.6  Quartz 13     
Kovar 5.5  SiC 3.8     

Mo 5.1  SiN 3     
Ni 13-15  LTCC 3.0-11.6     

63Sn-
37Pb 25 

 
  

 
  

 

95Pb-
5Sn 28 

 
  

 
  

 

Ti 10        
W 4.5        

  

 

 

 

 

 

 

 

 

 

Mechanical failures may be prone to occur at higher temperatures due to die package 

melting and failure of die attach mechanisms due too differences in thermal expansion. Metallic 

contacts may also experience their own failure mechanisms due too diffusion into the device, 

Organics CTE 
(106/˚C) 

Epoxy 
Resin 50-80 

FR-4(x-y) 14.8 

FR-4(z) 80-90 

Polycarbonate 50-70 

Polyimide Glass 
(x-y) 12-14 

Polyimide Glass 
(z) 60 

Polyimides 40-50 
Polyurethanes 180-250 

RTV 800 
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Kirkendall void generation, or unintentional alloying of metal contacts in the stack or the device 

itself.  

Part of the motivation for this work is to avoid the die attach process, since it is a point of 

failure in high temperature operation due too the fact that most metals have high thermal expansion 

coefficients compared to crystalline materials and lower melting points. From this perspective it 

would be beneficial to have an inorganic material with a closer TCE match and higher melting 

point. Metal oxides fit this description however, they have lower thermal and electrical 

conductivity than metals and should be as thin as possible. Wet chemistry coating techniques such 

as dip coating can produce nanoscale thin films with crystalline quality and will be used in this 

work to apply oxide coatings on LTCC. 
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4. Deposition Technology 
 

4.1 Dip Coating 

The solution-based deposition can be applied in a variety of ways including spray coating, 

spin coating, dip coating, and even inkjet printing depending on the size, shape and thickness of 

the coated layer. Of these techniques, dip coating represents the oldest commercially applied 

process. It can be used with a large variety of solutions and non-planar geometries in a simple 

experimental setup. The process can be divided into three distinct steps: 

1. An initial immersion and dwell in the sol-gel solution. The dwell time in this step allows 

for the solution to fully wet the surface and ensures the substrate and solution are the same 

temperature.  

2. Withdraw at constant speed. The hydrodynamics of this stage determine the thickness of 

the final coating. There is a delicate balance between solution drainage, capillary pressure 

and solvent evaporation that determines the coating thickness. 

3. Evaporation rate. The solvent and undesirable organic by-products can fully evaporate, 

leaving behind the metal oxide gel network on the surface of the substrate. This is usually 

done at elevated temperatures to ensure evaporation before subsequent coatings, however 

too high of a temperature will rapidly evaporate many by-products at once and disturb the 

layer. 

These three steps are relatively easy to implement, as all that is needed is a solution bath 

and a mean of constant withdraw from the bath. The evaporation should take place in an open 

furnace to allow removal of vaporised organics.  
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A mathematical treatment of the process was first developed in 1965 by L. Landau and B. 

Levich in order to predict the thickness of photosensitive layers in film reel production (A 

republication of their work can be seen in [128]). In their work they showed that the thickness of 

the wet deposited layer (h0) is dependant on the gravity induced drainage and viscous solution 

drag, which can be determined by the aptly named Landau-Levich equation: 

ℎ0 = (
𝜂𝑈0

𝜌𝑔
)

1
2
∙ 𝑓 (

𝜂𝑈0

𝛾
) (4-1) 

Where 𝜂 is the liquid viscosity, 𝛾 is the liquid vapour surface tension, 𝜌 is the liquid density, 

𝑔 is the gravitational constant and 𝑈0 is the withdraw speed from the bath. The 𝜂𝑈0

𝛾
 term is known 

as the capillary number and is used to describe the effect of surface tension on the layer thickness. 

If the capillary number is < 10−2 we can consider 𝑓 (
𝜂𝑈0

𝛾
) = 𝑐 (

𝜂𝑈0

𝛾
)

1

6 where 𝑐 is a solution 

dependant constant of ~0.9 that is found empirically. In this case we can consider [129]: 

ℎ0 = 𝑐
(𝜂𝑈0)

2
3

𝛾
1
6(𝜌𝑔)

1
2

 (4-2) 

As the speed is further increase the viscous drag becomes much more significant than the surface 

tension and 𝑓 (
𝜂𝑈0

𝛾
) ≈ 𝑐. In this case we consider: 

ℎ0 = 𝑐 (
𝜂𝑈0

𝜌𝑔
)

1
2
 (4-3) 

Where 𝑐 is typically found to be of ~0.8 [130]. The important thing to consider here is the 

power dependence of the layer thickness changes from 2
3
 to 1

2
  when the withdraw speed is high and 
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surface tension becomes less significant. The rest of the values can be considered constant process 

properties and can be lumped into a single constant 𝐷 to give: 

ℎ0 = 𝐷𝑈0

2
3 (4-4) 

To relate this to the dried film thickness (ℎ𝑓) an additional material dependant proportionality 

constant 𝑘 can be included: 

ℎ𝑓 = 𝑘 (𝐷𝑈0

2
3) (4-5) 

These results are valid only until very low withdraw rates where additional effects due to 

evaporation come into play. When the withdraw rate is very low the solvent may evaporate faster 

than it is withdrawn from the bath, resulting in capillary feeding towards the drying line on the 

substrate. In this case the thickness can be determined from [131]: 

ℎ𝑓 = (
𝐶𝑀

𝛼𝜌
)

𝐸

𝐿𝑈0
 (4-6) 

Where 𝐶 is the solute concentration, 𝑀 is the molar mass, 𝛼 is the volume fraction or 

porosity of the film, 𝐸 is the evaporation rate and 𝐿 is the width of the substrate. The material 

dependant parameters in equation 4-5 can again be grouped into a single constant 𝑘. 

ℎ𝑓 =
𝑘𝐸

𝐿𝑈0
 (4-7) 

The combination of these two equations gives a full description of the dry film thickness. 

ℎ𝑓 = 𝑘 (
𝐸

𝐿𝑈0
+ 𝐷𝑈0

2
3) (4-8) 
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The film thickness vs. withdraw speed curve defined by equation 4-8 is characteristic of all dip 

coating experiments and a plot can be seen in Figure 15 [132]. 

 

Figure 15: Film thickness vs withdrawal speed from the bath. The drainage and capillary region are comminated by different 
mechanisms [133]. 

This analysis only considers the steady state scenario where an infinite plate or continuous 

roll is withdrawn from a bath. One important consideration is the uniformity of the coatings across 

larger wafers. Surface tension will cause a curvature to arise at the edges of the film, causing a 

thinning of the film along edges parallel to the pull direction. Samples are also assumed to be at 

constant pull velocity, and therefore at initial acceleration of the samples out of the bath the viscous 

drag is lower than the steady state condition. Surface features large enough to disrupt the flow of 

draining solution can also cause additional solution to accumulate and cause and unwanted 

swelling of the film. Additional effects such as premature evaporation of the solvent can cause 

also cause variations in the thickness which may lead the undesirable sacrificial areas on the wafer. 

 4.1.2 Dip Coater 
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The dip coater used in this setup was designed in the lab for this application. In basic 

principle all that is needed to perform dip coating is a method to pull a sample from the liquid bath 

at a controlled rate. Within the last decade many advances in the field of 3D printing have emerged 

and now a low cost setup can be found for only a few hundred dollars. In fact, the dipping arm and 

case for the dop coater itself were printed using ABS in the one of the newly acquired makerspaces 

at Lakehead University. The wide adoption of 3D printing on a hobby level has driven cost down 

and a wide range of solutions exist for motor control. A basic overview of the dip coater design 

can be seen in Figure 16. 

 

Figure 16: Basic schematic of dip coater. 
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 The dip coater is controlled using STM32FC103 “blue pill” microcontroller, TMC2208 

stepper drivers and a 30A logic level relay. With dip doating it is simple to integrate a heating 

element into the process that can achieve the temperatures required. The sample is lightly clipped 

the main arm of the dip coater, which rides two guide rails and the main 400 mm leadscrew. The 

stepper motor moves the sample fully into the bath (distance set by user push button) and fully 

withdraws it to the top end stop where the heater is located. In this design the heater is located 

above the bath so samples can be dipped and pulled into the heater without intervention.   

While spin coating is a viable alternative and was explored, however the process requires 

a baking at temperatures upward of 300 °C every dip followed by a higher temperature anneal. 

The spin coater is already a closed system in order to prevent spraying of the spin off material and 

leaves no room to include a heating element in the setup. Spin coating would therefore require 

constant attention and manual handling of the sample every dip, which may introduce random 

errors between samples. The appeal of complete automation made dip coating the method of 

choice.   

The heating power is controlled using an external Variac rated for 2HP, with temperature 

calibration performed using type a K thermocouple inserted bottom up into the heater. The board 

is supplied with 28V from a linear bench supply for the motors and an LM7805 provides a 5V rail 

for the logic. Two user inputs are possible, one for setting a predetermined dip depth and one for 

initiating the program. A limit switch is used to set the upper limit of the dip withdraw.  

The stepper motor in Figure 16 coupled to a 400 mm long leadscrew (8mm pitch) and is 

controlled using 16 micro stepping. This gives a z-step resolution of 8

16×200
= 0.0025 𝑚𝑚. A 

typical withdraw speed used in these experiments ranges from 1-10 mm/s. A simple to use program 
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was made in the lab to control the dwell time, withdraw speed, number of dips, heating duration 

and the velocity profile of the sample after withdrawing from the bath.  

Several iterations of design were performed on the dip coater by changing the heating 

element and modifying sample holder design to be reliable when heated to ~300 °C without 

cracking the sample or dropping it. Several heating elements were attempted including a 

commercial heat gun, Inconel stove elements, IR heating elements and nichrome wire. The layers 

were found to be extremely sensitive to ambient conditions and excessive air flow was found to 

lead to amorphous layers.  

All dips were performed in the closed fume hood housed in the research lab. An open tube 

style furnace was found to give the best results with a nichrome coil providing radially uniform 

heating to the sample. The initial design and testing was performed on soda-lime glass slide 

samples using ZnO recipes derived from literature. The best results for this work were determined 

from XRD profiles and AFM scans.  

4.2 Sol-Gel  

Sol-gel is a relatively low-cost, powderless, wet chemical process for producing nano-scale 

metal oxides such as Al2O3, SiO2, Yr2O3, and ZnO in solution. It is a two-step process wherein a 

metal alkoxide (a metal bonded to an alkyl group through oxygen) or metal salt is dissolved in 

water or a polar solvent (such as alcohols). Within the solvent the precursor undergoes hydrolysis 

and condensation to generate nanoparticles of metal oxides.  

The wet chemical nature of the metal oxide nanoparticle solution gives large flexibility in 

how it can be further processed. Because the metal oxides are formed as colloids suspended in the 

solution, they can be applied through coating methods such as spin coating, dip coating or spray 
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coating for thin, uniform layers. This is attractive as it avoids the use vacuum systems, has a low 

thermal budget, is cost effective and can easily be scaled to large areas and nonplanar surfaces.  

The thermal requirements for the process are determined by the evaporation of organic 

additives and solvents from the final product, and in some cases a final sintering. The temperature 

required for these steps is lower than in VPE techniques since we are not required to break metal-

oxide bonds, thus allowing a large flexibility in the choice of substrate from low melting point 

glasses and ceramics to organic polymers. A wide range of powders, fibres, films, and dense 

ceramic structures have been demonstrated by controlled solution chemistry.  

There are several significant parameters that effect the final product of the sol-gel process 

[134]. These properties of the sol determine the layer thickness when dip coating through the liquid 

viscosity and its density. By controlling the amount of material deposited per dip in the process 

we determine the influence of particle-particle and particle substrate interactions in the layer 

formation, which in turn determine the crystallinity of the film upon annealing. The controlling 

factors include the nature of the precursor and its concentration, the used solvent and additive 

species used, the method of coating of substrates and its speed, the nature of the substrate, and heat 

treatment procedure. Each of these factors needs to be considered in the rational design of the 

coating solution and the process parameters used.  

4.2.1 ZnO Sol Chemistry 
 

For the sol-gel synthesis of ZnO the most common precursor used is Zinc Acetate 

Dihydrate (ZAD) (Zn(CH₃CO₂)₂·2H₂O). ZAD is used because of its relatively high solubility in 

alcohols, additionally the acetate ions produced can act as chelating ligands in the gel formation 

process and acetic acid produced as a result of the hydrolysis can easily be removed by thermal 
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treatment [135]. Alternatives such as Zinc Nitrate Hexahydrate (Zn(NO3)2·6H2O) produce more 

difficult to remove anionic species [136].  

The concentration of the zinc precursor used will influence the viscosity, density and the 

volume fraction of solvent which will remain after the preheating after every dip. The solubility of 

ZAD in alcoholic solutions depends on the dielectric constant of the alcohol and will therefore be 

more soluble in shorter chain alcohols. The most common alcohols in literature are methanol and 

2-methoxyethanol. While the choice of solvent varies over published literature, in most cases it is 

a short chain alcohol. A list of alcohols commonly used can be seen in Table 6 [137]. 

Table 6: Various alcohols used in sol-gel ZnO synthesis [137]. 

 

The general trend is a longer alcohol chain leads to a lower dielectric constant, higher 

boiling points, and higher viscosity. For enhanced crystallinity in the deposited layers it is 

important that the disruption of the layer by the evaporation process is minimized, however a 

minimum temperature of 275°C is required to remove the acetate species from the layer [135]. 

Considering this, longer chain alcohols are beneficial because they will evaporate at a slower rate 

and maintain crystalline ordering.  

Alcohol Formula Dielectric 
constant Boiling point ( °C) Viscosity 

(cp, 20( °C)) 
Methanol CH3OH 32.6 64.7 0.55 

Ethanol CH3CH2OH 24.55 78 1.10 

Propanol CH3CH2CH2OH 20.1 97 2.26 

Butanol CH3CH2CH2CH2OH 17.80 117.7 2.95 

Methoxyethanol CH3OCH2CH2OH 16.90 124.5 1.72 
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A review of ZnO sol-gel chemistry by Znadi [134] shows two primary clusters that lead to 

the formation of ZnO upon condensation. One is the zinc oxo-acetato species ZnO1-x(AcO)2x which 

takes the form of Sierpiński pyramid clusters formed by (Zn4O)6+ tetrahedra with acetate serving 

as a bridging ligand on each edge [138]. 

 

Figure 17: Zinc oxo-acetato species formed from the zinc salt in the sol-gel process. The Zn4O clusters are charge balanced by 
accommodating an acetate ion on each external edge of the tetrahedra [139]. 

 

These are formed from initial salt by following reaction [140]: 

4 Zn(Ac)2·2 H2O → Zn4O(Ac)6 + 7 H2O + 2 HAc 

These pyramids can further aggregate into larger structures with an increase in ageing time of the 

precursor solution, releasing zinc acetate: 

4 Zn4O(Ac)6 → Zn10O4(Ac)12 + 6 Zn(Ac)2 
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The presence of these clusters has been used an explanation for an observed discrete blueshift in 

the UV absorption spectra of aging solutions, resulting from the quantum confinement within the 

nanoparticles. 

The released water molecules lead to an H2O/OH− induced reorganization of these 

tetrahedral structures, resulting in a second primary cluster through these proposed routes [140]:  

Zn4O(Ac)6 + Zn(Ac)2 + 9 H2O → Zn5(OH)8(Ac)2(H2O)2 + 6 HAc 

Zn10O4(Ac)12 + 16 H2O → 2 Zn5(OH)8(Ac)2(H2O)2 + 8 HAc 

Zn10O4(Ac)12 + 8 H2O + 8 OH− → 2 Zn5(OH)8(Ac)2(H2O)2 + 8 Ac− 

Zn5(OH)8(Ac)2(H2O)2 is sometimes referred to as layered hydroxide zinc acetate (LHZA) or zinc 

double salt (ZDS) due too its sheet-like structure with zinc hydroxide octahedra layers intercalated 

with water and acetate ions. The rate of these production of the hydroxide species is presumed to 

be slow due too the low amount of water supplied by the ZAD [141].  

Figure 18: Layered hydroxide zinc acetate (LHZA) or zinc double salt seen in sol-gel zinc oxide synthesis [139]. 
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Upon heating, the acetate and water evaporate leaving any hydroxide and oxide species 

behind. The hydroxide species present undergo condensation to form ZnO and water which is also 

then evaporated to leave the ZnO network.  

The Sierpiński pyramid structures are more desirable for ZnO crystalline layers since the 

tetrahedral unit cell is already formed, lowering the energy required to form ZnO crystallites. The 

initial production these pyramid structures releases water into the solution, which inevitably 

contributes to the formation of the LHZA species. In the interest of growing dense, crystalline 

films additional water should therefore be avoided and care should be taken to remove water from 

experiment. Samples were always subjected to a bakeout prior to their initial dip and solution baths 

were dried in vacuum after cleaning to help remove water from the surface.  

4.2.1.1 Stabilizing Agents 

Due too the low solubility of ZAD in an alcohol solution, a stabilizing agent is usually 

added to the sol gel mixture. These stabilizers can form complexes with the dissolved zinc and 

acetate ions, significantly increasing the solubility in the non-polar alcohol used as a solvent. 

Figure 19: The proposed stabilized complexes formed from Monoethanolamine (MEA) stabilized ZAD. The a) monomer structure 
b) dimer and c) tetramer all increase the solubility of ZAD in nonpolar solvents [135]. 
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Several different stabilizing agents have been explored in literature  to determine which have the 

greatest impact on the orientation of the films [139].  

Table 7: Stabilizing agents examined for their impact on crystal orientation in ZnO dip coated films [139]. 

 

 

TeA and MEA were shown to give the highest degree of c-axis orientation on glass 

substrates under identical dip conditions determined by XRD. MEA is commonly used as a 

stabilizing agent in literature [52], [142]–[144] for the growth of oriented films, since for many 

applications device performance improves with crystallinity. It can be used to increase the metal 

salt solubility, has relatively low viscosity as to not drastically increase layer thickness and boiling 

point high enough to not rapidly flash off and disrupt the layer. A 1:1 MEA:ZAD ratio was used 

the stabilizing agent based off literature review. 

4.2.1.2 Doping 

In the interest of increasing the conductivity for transparent conductive oxide (TCO) 

aluminum doped zinc oxide (AZO) has been a widely researched. The prospect of this work is 

Name 
(abbreviation) 

Chemical 
formula 

Boiling 
point ( °C) 

Density 
(g/ml) 

Viscosity 
(mPa s, 

@25  °C) 
pH 

Monoethanolamine 
(MEA) 

(CH2CH2OH)-
NH2 170 1.012 19.4 11.8 

Diethanolamine 
(DEA) 

(CH2CH2OH)2-
NH 271 1.097 351 11.5 

Triethanolamine 
(TEA) 

(CH2CH2OH)3-
N 335 1.124 592 11 

Triethylamine (TeA) (CH2CH2)3-N 90 0.726 0.363 12.7 

Ethylenediamine 
(EDA) 

H2N-(CH2CH2)-
NH2 118 0.899 1.8 11.9 
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replacing the relatively expensive ITO contacts. The aluminum doping is typically a few % of the 

zinc concentration and acts as a donor species by substitution of Zn, where an extra electron on 

the Al 3s orbital is donated to Zn 4s conduction band states [145]. The relatively small size of the 

Al atom combined with the formation of Al2O3/ZnAL2O4 clusters leads too a decrease in the 

conductivity due too passivated donors and decreased mobility [146]. Literature review shows 

these species to form as low as 2% in sol-gel samples. Higher percentages (7.8% [147]) have been 

demonstrated with vacuum deposited layers. The high surface area of the sol-gel colloids likely 

makes the formation of these species easier in sol-gel samples.  

Results from The X-ray diffraction (XRD) experiments performed on glass substrates can 

be seen in Figure 20.  

 

Figure 20: Semilog plot of XRD peaks in the range of 2Θ=25˚ to 45˚ for increasing Al content in the film. Each sample is 15 dips 
on a glass slide. The highest peak (blue) is 0% doping, next (red) is 0.5% and green is 1%.  
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From these experiments a decrease in the overall peak heights is observed as aluminum content 

increases, roughly an order of magnitude for 1.0% doping. A small peak in the semilog plot was 

observed at 37.4˚ which can be attributed to (112̅0) Al2O3. The formation of this insulating oxide 

is undesirable and 1.0% aluminum doping was taken as the maximum doping level in this work. 

4.2.1.3 Baking 

The substrate melting point is important because it sets the upper limit for thermal process 

of both the ZnO films and further processed layers. In this work the upper limit is taken to be 

650°C for ZnO from the observed decomposition under vacuum. The baking process in sol-gel is 

used to evaporate water, alcohol and organic by-products of the gel process. Insight into the 

dynamics of the baking process can be found using Thermogravimetric/Differential Thermal 

Analysis (TG-DTA) on dry samples. Results published in [135] can be seen in Figure 21. 

Figure 21: TG-DTA analysis of the baking process for ZAD sol-gel showing weight loss beginning at 275 °C [135]. 
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 The weight loss in these graphs corresponds to the vaporization of different component of 

the sol-gel film. These results were paired with FTIR in this work to identify which components 

where responsible for the weight loss. The results show a significant reduction of the carboxyl and 

amine related peaks at 275 °C. The endothermic peak around 430 °C was observed to be onset of 

Zn-O bond formation through the combined measurements. To minimize the disruption of the 

annealing and crystallization by the organic evaporation it is therefore important to separate these 

two processes as far apart in temperature as possible. The minimum bakeout temperature is 

therefore taken at 275 °C. The current through the heater coil was adjusted to reach a maximum 

of 275 °C on the calibration thermocouple.  

4.2.1.3 Dip Rate 

The dip rate refers to the rate that a sample is pulled from the solution bath and coated. It 

is not necessarily part of the chemistry, but once the solution is prepared it is the final control 

variable to change the thickness of deposited layer. As shown in Figure 15 there exists a cross over 

regime between the entrenching and draining dominated regimes where the minimum film 

thickness occurs. There are two effects that constrain the choice of dip rate: 

1. High dip rates will deposit too much material at once. To achieve crystallinity in these films 

the deposited layer must have a homogenous nucleation on the previous layer. If the 

deposited layer is thicker than the average crystallite size nucleation may not occur on the 

previous layer but in the volume of layer (heterogeneous nucleation), causing porosity and a 

decrease in the relative texture of the XRD and an increase in surface roughness [135]. The 

minimum thermally stable diameter of ZnO is reported to be in the range of 60-70 nm [148]. 

The withdraw rate should not exceed values which deposit more than this per dip.  
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2. Too low of a deposition rate is inefficient at depositing material, but can also transition the 

deposition to the capillary regime (Figure 15) . The transition to this regime can increase the 

deposition rate, possibly introducing heterogenous nucleation. The so-called coffee-ring 

effect is also prevalent due too the high evaporation of the alcohol [149]. 

The optimal dip rate changes between experiments because of variation in the viscosity 

and density of the different alcohols/stabilizing agents. To determine the optimal dip rate, a fixed 

number of dips are tested at different withdraw rates. Beyond the optimum dip rate, the surface 

will roughen as it becomes polycrystalline and a decrease in the XRD FWHM will be seen.  

4.3 Chemical Vapour Deposition (CVD) 
 

The most common production methods for III-Nitrides are Hydride Vapour Phase Epitaxy 

(HVPE) Metal Organic Chemical Vapour Deposition (MOCVD). The vapour used in the reaction 

is a precursor to the deposited film, requiring elevated temperature to initiate a chemical reaction 

near the substrate surface and deposit the desired material. The thermal decomposition creates a 

concentration many orders of magnitude higher than the equilibrium vapour pressure of the 

material and drives a condensation on the surface of the substrate. The consumption of the near 

surface vapour phase precursor creates a diffusion current to grow the crystal, assuming the 

temperature is high enough completely decompose the precursors. Too low a temperature will be 

limited by the thermodynamics of precursor breakdown, known to have Arrhenius exponential 

dependence. The result is exponentially decreasing growth rates and an increase in surface 

roughness. Too high a temperature can also occur, where desorption of deposited material reduces 

the observed growth rate. In both techniques a stable window exists where the optimal growth 
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occurs. A typical growth rate curve bounded by these effects for GaN CVD can be seen in Figure 

22. 

 

Figure 22: Growth rate curve showing three distinct deposition regimes. At low temperatures, the growth is limited by the precursor 
breakdown and at high temperatures decomposition and evaporation occurs. In between these two regimes the transport from the 
gas phase is diffusion limited, the growth rate is high and stable [150]. 

 

CVD and HVPE are preferred on a commercial scale for nitrides due to the relatively low 

vacuum conditions needed compared to Physical Vapour Deposition (PVD) techniques. In MBE 

and sputtering a long mean free path of gas atoms is needed to deposit on a substrate. Techniques 

which rely on vaporizing elemental sources and gas kinetics in this way require Ultra High 

Vacuums (UHV, <10-8 Torr), making it more difficult to scale the reactor volume and more time 

is required to fully re-establish vacuums after maintenance. PVD techniques are also non 

conformal, the beam-like path of the precursor elements means they primarily coat in line of sight, 

giving higher anisotropy in their coverage. CVD does not require long free paths and is driven by 

temperature gradients near the surface, thus can be used to coat complex geometries and non line 
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of sight features. PVD is useful on research scale work since it can have lower impurity levels and 

lacks process by-products. The deep vacuums used allow for electron diffraction tools such as 

Reflection High Energy Electron Diffraction (RHEED) to be used in real time to monitor the 

growth dynamics.    

HVPE is distinguished from other growth techniques due too the production of a hydride 

anion (H-) in the initial reaction of a metal precursor with hydrogen chloride. This produces metal 

chlorides which are transported downstream to a heated substrate and the substrate supersaturation 

occurs. The higher reactivity of the chlorine species vs. organic ligands which are used in metal 

organic CVD (MOCVD) allows for fast reaction kinetics to occur and significantly higher growth 

rates can be achieved. Given the additional hydride production that occurs in these systems and 

the fast deposition rates, it is difficult to create superlattice and multi quantum well structures used 

in LED and some transistors. HVPE is therefore largely applied for thick film growth or 

freestanding GaN growth since growth rates as high as 1800 µm/h are possible [151]. 

For device layers in III-Nitrides the most common technique is Metal Organic CVD 

(MOCVD), the lower deposition rate and abrupt control allows for thin quantum well structures. 

In MOCVD group III precursor is a triethyl- or trimethyl-(aluminum, gallium, indium) gas. The 

source of nitrogen for III-Nitride deposition is typically ammonia (NH3), because the nitrogen 

molecule itself is very stable (N-H = 3.25 eV vs. N≡N = 9.80eV [152]) deposition with N2 is not 

feasible. Other gas phase sources have been considered in research such as hydrazine (NH2- NH2), 

methylamines (NH2-CH3) and molecular single precursors such as dimethylgallium amide 

([(CH3)2GaNH2]3), [153]–[155] that can directly deposit GaN, but ammonia remains by far the 

most common and well established choice.  
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Single crystal epitaxy of III-Nitrides has been successful with low alloying content AlGaN 

and InGaN for transistors and optoelectronic applications, with many products currently available 

from companies such as Cree [156], [157]. A typical device structure with MOCVD begins with a 

thin (20-30 nm) AlN interface layer on either (111) silicon or sapphire to produce a closer lattice 

match seed layer between the substrate and GaN. This is initiated with N2 exposure at elevated 

temperatures [158] or at lower temperatures in plasma systems [159], [160] to produce a thin (~1 

nm) interface layer. GaN growth then proceeds with low temperature (~550 °C) buffering structure 

which is then annealed at the growth temperature (~1050 °C). The low temperature growth induces 

the VW island like growth mode which grow along the angled {112̅2} facets. The growth along 

this direct facilitates the bending of dislocations towards the growth surface so that upon 

coalescence they can annihilate one another. The annealing at above growth temperatures causes 

a redistribution of the surface atoms (both Ga and N) through evaporation and local redeposition 

on the surface [161]. This redistribution preferentially removes the high energy {112̅2} facet to 

create larger islands faced with {0002}. A thick (1-3 µm) GaN layer can then be grown to reduce 

substrate effects in the active devices layer. Thicker layers can be grown on free standing GaN 

substrates to be used as drift layers in high power vertical devices, but wafer bowing limits 

thickness on sapphire and silicon. 

The flow rates of the precursors are usually determined empirically from observing 

characteristics of the grown layers, such as surface roughness, photoluminescence spectra, X-ray 

diffraction spectra, carrier mobilities and growth rates. Since the decomposition of NH3 is 

relatively small and the vapour pressure of nitrogen is high over the substrate, III/V ratios are 

typically on the order of 4000 to help lower nitrogen vacancies [162], significantly higher a ratio 

of 1-10 seen in GaAs growth [163].  
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A dual or two-flow system was pioneered in the early 90’s by Nakamura while developing 

blue LED’s while at Nichia [164]. These are cold walled systems where a main carrier gas subflow 

(H2, N2, Ar) is mixed with a reactant gas through a separate injection port, usually located above 

the substrates. A plasma source can be easily incorporated into this reactor design by placing an 

excitation chamber in series with the subflow. This could be an inductively coupled plasma (ICP) 

coil, a microwave cavity, or DC/RF capacitive plates.  

Plasma sources have benefits over ammonia as a nitrogen source, where temperatures must 

be >600°C for efficient cracking of the molecule. The increased reactivity of the nitrogen species 

from plasma excitation is a benefit to its availability in thin film growth, however the presence of 

excited nitrogen species mixed with the group III precursors can lead to increased gas phase 

reactions, seen as a powder formation on the surface of the substrate. A surface powder can be 

removed by a simple scotch tape adhesion test or ultrasonic cleaning but may still introduce 

impurities in the layers. The addition of small amounts of hydrogen can help to decrease the 

Figure 23: Basic dual flow system used in nitride epitaxy proposed in the early 90's [129]. 
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amount of carbon-nitrogen species evidenced by optical emission spectroscopy measurements 

[165], [166]. 

Another method to decrease the powder formation is alternating the injection of the 

precursors to eliminate overlap in the chamber. This technique is referred to as migration enhanced 

epitaxy (MEE) in MBE systems or flow modulated epitaxy (FME) when used with CVD [167]. 

The idea is the same in both cases, group V precursors tend have higher vapour pressures which 

leads to poor sticking of the atoms on the surface and desorption. III-V growth therefore tends to 

occur in group V rich conditions so that the surface is heavily bombarded with N/As/P during 

growth. In this case it is possible that a migrating Ga atom on the surface can recombine with a N 

atom on the surface before migrating to an appropriate edge or kink in the surface. Without 

sufficiently high temperature to increase migration distances this can lead to the so called Volmer-

Weber (VW) island-like growth modes and rough surfaces of small grains. By separately injecting 

the precursors, the group III precursors can migrate further on the surface, stimulating island plus 

layer Stranski-Krastanov (SK) growth, where crystallites grow on the {112̅0} facets to expand the 

monolayer (Figure 2). The increased migration allows for grains to expand two dimensionally on 

the surface and complete surface coverage before new layers are started. 

 Deposition in FME and MEE techniques occurs by repeating a series of short growth loops 

which can be tailored to control composition. The alternating injection also allows additional time 

for the group III precursors to migrate on the surface, since the formation of immobile nitride 

species cannot occur until the nitrogen injection phase of the growth loop. This has been 

experimentally demonstrated to increase the crystalline quality in deposited films [168]–[171]. An 

overview of the system used, and the gas control cabinet are given in Figure 24 and Figure 25. 
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FME and MEE are also closely related to Atomic Layer Epitaxy (ALE), where a saturation 

of the growth surface occurs during each growth cycle. This can be achieved by isolating the 

growth chamber during each precursor injection and purging the system after each injection. The 

temperatures used in this technique are intentionally low to avoid complete removal of the methyl 

groups on the group III precursor. This prevents additional precursors from coating the surface and 

self limits the growth to one layer. These techniques usually take place <500 °C since incomplete 

breakdown is necessary, and no surface migration is needed to complete the monolayer.  The 

additional purge and isolation steps in the growth recipe combined with the upper limit of one 

monolayer per growth cycles give very low growth rates that are not suitable for device production. 

The highly conformal low temperature films are however very useful in thin quantum well 

structures, gate oxides and passivation layers in devices [9], [172], [173].
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Figure 25: Gas delivery system used to supply the MOCVD system seen in Figure 24. 
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While thermal ALE is possible [9], [174], the addition of a plasma source bodes well with 

the low temperature requirements and ALE. The equipment featured in Figure 24 can perform both 

ALE and FME within the same growth by adjusting the structure of the loops.  

The head itself is a modified capacitive plasma system, where the bottom plate acting as 

the cathode has an array of holes patterned into it, each acting as a plasma aperture into the system. 

This enables additional generation of nitrogen radicals through the hollow cathode effect [175]. 

The system is reported to provide significantly higher electron densities as measured by Langmuir 

probe compared to parallel plate systems [176]. The design can also be scaled by increasing the 

area of the array and avoids any oxide windows that can be a source of contamination. The cathode 

and anode can be seen in Figure 26. The cathode array dimensions, anode-cathode gap and source 

substrate distance are fixed geometric features that determine an optimal operating pressure, which 

can be determined empirically from the XRD and AFM measurements. 

In this work, flow modulation epitaxy (FME) is combined with the hollow cathode plasma 

system in a dual flow style system seen in Figure 24. N2 is used as a carrier gas for the TMGa 

during the Ga deposition, provides background pressure and is a source nitrogen plasma. The 

nitrogen used in this experiment is Praxair semiconductor 5.0 grade (99.9999%) purity. The 

significant impurities here include oxygen (1 ppm), water vapour (3 ppm), CO2
 (1 ppm), CO (2 

ppm), H2 (2 ppm) and various hydrocarbons (1 ppm) [177]. The growth conditions have been 

selected from work performed with sapphire samples. Some techniques such as nitridation are not 

applicable to LTCC and are not performed.   
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Figure 26: Top-down view of the hollow cathode (lower) and the patterned anode (upper). 
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4.3.2 Amorphous Deposition 

The deposition of nitride materials on amorphous/polycrystalline substrates is a common 

goal of many different researchers looking to improve on limitations imposed by sapphire. These 

included but are not limited too, cost, available wafer size and thermal conductivity. In the interest 

of large area rigid substrates, the main contender is float (soda-lime) glass due too its low-cost 

production and very large surface areas available. The deposition on glass substrates presents a 

similar challenge to deposition on glass ceramics since the glass phase mixture of these ceramics 

gives them their low firing characteristics. A challenge in both cases comes from a lack of an 

underlying crystal structure to control the orientation of nitride materials during growth, however 

glass ceramics present the additional challenges of a heterogeneous and rough surface. 

It is important that the initial nucleation on the substrate aligns the growth directions for a 

single orientation along both the a and c axis of the crystal. Normally an underlying single crystal 

substrate provides an atomically smooth surface and alignment with both axes. Multiple buffering 

layers between GaN device layers and the substrate are used to mitigate mismatch. This is often 

accomplished with depositing thin AlN layer [3], [178], [179], a low temperature GaN nucleation 

layer [4], [180] or more complicated superstructures [181]–[183] followed by several microns of 

bulk material to further allow dislocations to form loops and annihilate.  

For deposition on amorphous substrates a direct deposition is possible [184]. Since the 

{0001} facets have the lowest surface energy, growth will preferentially orient along this direction, 

however the initial glass surface may be inhomogeneous with no crystalline order and impurities 

such as sodium and boron are present. Initial nucleation will be randomly oriented and therefore 

many dislocations will be generated on coalescence. Figure 27 shows the behaviour of GaN 

nucleation on polycrystalline (a), single crystal (b) and amorphous substrates (c). 
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A buffering layer can be applied to homogenize the surface and provide a surface texture 

to help align the grains. Titanium has a hexagonal close packed structure giving only a 7.4% [185]–

[187] mismatch with GaN, significantly better than sapphire (16.1%) and silicon (17%). The use 

of a metallic buffering layer also allows its dual purpose as a back contact and is additionally stable 

with temperature and the NH3/H2 environment of MOCVD. Titanium is primarily deposited 

through vacuum techniques such as electron beam evaporation and sputtering to produce a mosaic 

structure where grains are aligned vertically but randomly rotated. Like most metals, the thermal 

expansion is higher than that of crystalline materials and therefore may cause residual stress in the 

structure and unintentional alloying with GaN is possible.  

AlN has been used as a growth template for GaN on both glass and LTCC substrates for 

GaN growth and can be deposited through reactive sputtering to give a (0002) mosaic texture.  

Much like GaN, AlN will preferentially orient itself along the c-axis to minimize surface energy 

provided enough adatom mobility, and additional polishing can be applied to lower the roughness. 

Figure 27: Nucleation behaviour of GaN nucleation on polycrystalline (a), single crystal (b) and amorphous substrates (c) [160]. 
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Limited research has been done on its applications with LTCC, with some as a heat spreading 

dielectric [95], [97], and recently as a template for MBE GaN [96], [188].  

ZnO has been deposited on several substrates, including glass [189], [190], silicon [191], 

[192], and sapphire [193]–[195] using a variety of vacuum techniques such as MBE, ALE, PLD, 

and MOCVD. A major disadvantage of using it as a buffer for nitride growth is how easily it is 

reduced by the ammonia used as the nitrogen precursor in many growth techniques, especially at 

growth temperatures upwards of 1050 °C. The stability of ZnO due too the high vapour pressure 

of zinc was also found to be an issue, contributing to system contamination (see 2.2.1.1). Use of 

ZnO buffers for GaN are therefore not expected to be possible under conventional MOCVD 

growth conditions.  

4.3.3 Surface Roughness 

The reduction in surface roughness of the substrate is a critical step in preparing substrates 

for thin film deposition. For crystalline substrates this is done through a chemical-mechanical 

polishing using fine particles in a slurry. This technique can be applied to ceramics, however the 

inhomogeneity of ceramic surface combined with voids induced in the structure from the sintering 

process limit the roughness achievable. Examination of the electrical properties of sputtered AlN 

layers has shown the importance of a smooth surface in aligning columnar grains to reduce leakage 

currents and structural voids [96].  

The initial LTCC sintered surface is rough (0.4 um rms) with several microns of waviness 

over the surface. Both properties measure surface height, but as a distinction the waviness can be 

considered as lower frequency variations that the roughness is imposed upon. This distinction can 

sometimes be difficult to discern in rough samples and an arbitrary threshold between the two may 

have to be chosen. Both properties can however be improved through a multi step polishing 
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process. Recent work on polishing has been reported to reduce the average roughness to 345 nm 

measure via laser scanning microscopy (LSM) [96], and an rms roughness as low as 120 ± 5 nm 

with AFM [196]. The pore structure was then effectively filled by sputtering 8 microns of AlN, 

reducing the rms roughness to 42 nm [197]. The sputtered AlN layer were then polished in a similar 

manner to further reduce the rms roughness to 5.6 nm over a 5x5 μm area [197]. An overview of 

the process can be seen in Figure 28. 

These layers were used as a template for GaN growth using MBE, with ALN thicknesses 

between 0.75 µm and 9.90 µm tested [188], [197]. The deposited GaN layers were approximately 

400 nm in thickness with temperatures varying from 600-900 °C using Dupont 9k7V LTCC. The 

GaN layers under all conditions were found to be columnar polycrystalline layers, with the best 

results showing a relative texture coefficient of 80% for the (0002) planes and rms roughness of 

only 5.7 nm over a 1x1 µm2 AFM scan, largely dependant on the MBE process conditions. Some 

of the large surface features of the LTCC were still found to be present in the upper GaN layer, in 

some cases leading to thin or absent sections. 

Figure 28: AlN sputtering treatment of the bare LTCC (a). The initial surface polishing (b) levels the waviness and opens surface 
voids, decreasing the initial rms roughness to 120 nm. The sputtered AlN (c) reduced the roughness again to 42 nm and a final 
polishing (d) reduced the roughness to 5.6 nm measured on a 5x5 µm AFM scan [188].  



  

68 
 

Similar work on the planarization of LTCC has been performed using silica derived from 

Tetraethyl orthosilicate (TEOS) [72]. TEOS is a well-established precursor for sol-gel silica, an 

amorphous silicon dioxide layer used in spin-on-glass techniques. The chemistry involved is 

similar to the ZnO chemistry previously covered, however no crystallization will occur with the 

silica. Multiple coatings of TEOS layers were observed to crack upon reaching a critical thickness 

due too difference in TCE. This was improved by using a composite silica coating, where larger 

silica particles (35 nm diameter) were mixed with TEOS sol-gel to decrease the shrinkage (and 

thus strain) on drying. At a 1:3 ratio of TEOS silica to nanoparticle silica the average surface 

roughness was reduced from 350 nm to 64 nm using spray pyrolysis, 81 nm using dip coating and 

72 nm for spin coating measured by Laser Scanning Microscope (LSM). The thickness in these 

layers was increased to around 1 µm/coating for each method and cracking was avoided. This work 

demonstrates the ability of sol-gel to coat LTCC and reduce roughness, however it is clear thick 

layers are required and cracking may occur. The work in [72] was performed on unpolished LTCC 

(CT700) substrates, therefore it can be expected polishing to further improve these results.  

Planarization of many different metallic substrates such as Hastelloy [198], [199], Ni-W 

[200], [201], Mo [202], stainless steel [203] has been demonstrated in the last decade using the 

solution deposition planarization (SPD) technique. In all of these works an amorphous oxide 

material is deposited on the rough metal surface through dip coating to significantly lower the 

surface roughness and act as a diffusion barrier for the metal substrate. One or many texture layers 

are then applied though a PVD technique such as Ion Beam Assisted Deposition (IBAD) or 

sputtering. The texture material is usually MgO (111), but AlN (0002) has been demonstrated 

through reactive sputtering  [204]. The substrates in these works are usually metal foils that have 

been polished to an RMS roughness on the order of 10-100 nm and using the planarizing properties 
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of the liquid surface tension, this technique has shown the reduction of surface roughness to <2 

nm RMS [205]. These textured metal foils have been shown as suitable substrates for MOCVD 

growth of YCBO superconductor films [206] and III-Nitride devices [202].   

In this work the surface of polished LTCC will be planarized and homogenized through 

three different oxide coating techniques. Al2O3, SiO2, and ZnO are coated LTCC through three 

different low temperature techniques for GaN growth. Alumina was deposited through anodic 

oxidation of metallic aluminum, silicon dioxide through spin coating sol-gel TEOS solutions and 

zinc oxide through ZAD sol-gel. The first two techniques and LTCC polishing were performed by 

our research partners at TU Sofia and TU Ilmenau. ZnO dip coating and GaN CVD on all samples 

was performed in the Lakehead research lab.   

  



  

70 
 

5. Defects In III-Nitrides 

Defects in the crystal structure are deviations from the perfect crystal which have influence 

on its optical and electrical properties. At high enough concentrations they can be the controlling 

factors in device operation and lead to undesirable device behaviour. They are classified according 

to their dimensionality, acting from a single point in the lattice (0D), along a line (1D), in a plane 

(2D) or in a volume (3D) of the material.  

In this chapter a review on the defects is given mainly through density functional theory 

(DFT) computations found in literature. This computational technique relies on approximating 

bulk material properties by creating a supercell of repeated unit cells and using a functional is used 

to describe the electron density. Defects and impurities can be introduced into the lattice to observe 

their electrical, optical, and physical properties. A typical supercell can consider on the order of 

hundreds of atoms before becoming computationally prohibitive (a 96-atom supercell is common). 

The motivation behind this technique is to reduce the dimensionality of the many body electron-

electron interactions to just three spatial dimensions of the density. Many different approximation 

techniques exist all of which trade some accuracy of the exact Schrodinger solution for 

computational speed. The solutions found using any computational method have some degree of 

error which may be impossible to estimate, it is therefore important to use these results as a 

supplement to experimental data when possible. 

5.1 Extended Defects 

Extended defects are those which exist over long distance in one (dislocations) or two 

dimensions (planar defects), both of which can extend the full device structure to the surface. 

Experimental observation in GaN has generally shown that these defects alone tend to be 
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electrically inactive under the absence of dangling bonds and wrong bonds (Ga-Ga, N-N bonding). 

Even in the case of edge and screw type where dangling bonds may be present, three-fold 

coordinated dangling bonds from Ga atoms are expected to relax into sp2 coordination and lose an 

electron the doubly occupied nearest neighbour nitrogen, leaving an empty Ga state above the 

conduction band minimum and occupied N states below the valence band maximum. The ionicity 

of the III-N bond gives a high formation energy to wrong bonds which makes them unlikely to 

form. It is believed that this ionicity induced behaviour is responsible for the ability to produce 

efficient LED’s despite many orders of magnitude more dislocations than other III-V materials 

[207].  

Though they are not expected to generate gap states on their own, extended defects serve 

as ionized lattice distortions and are undesirable since they will decrease charge mobility in the 

layers. The local strain caused by these defects may also lower the overall formation energy for 

impurity point defects that can introduce gap states.  

Three types of perfect threading dislocations are seen in GaN, known as edge, screw, and 

mixed type with burgers vectors (𝑏⃗ ) of 1
3
〈1120〉, 〈0001〉 and 1

3
〈1123〉 respectively. The Burgers 

vector is defined by the completion of a clockwise closed loop around the dislocation as seen in  

Figure 29 and Figure 30 for the edge and screw type respectively. These are referred to as 

perfect dislocations since the magnitude of the burgers vector is equal to a lattice spacing, in 

contrast to partial dislocations where it is smaller. 
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Figure 29: a) Edge dislocation resulting from the insertion of and extra half plane and b) normal lattice with burgers circuit 
overlay to show the burgers vector [208]. 

Figure 30: Screw dislocation and b) normal lattice with burgers circuit overlay to show the burgers vector [208]. 

 

Growth of crystalline layers on foreign substrates inevitably leads to dislocations due too 

lattice and thermal expansion mismatch between the materials. This mismatch is expressed as the 

difference in the crystallographic planes perpendicular to interface of the two crystals. In the case 

of (111) Si /GaN the relationship is (11̅00)𝐺𝑎𝑁 ‖ (110)𝑆𝑖 and in sapphire/GaN systems it is the 

(11̅00)𝐺𝑎𝑁 ‖ (112̅0)𝐴𝑙2𝑂3
 planes. For ZnO (and 6H-SiC) no rotation is necessary since the lattice 

is the same shape and close in size and the match is (11̅00)𝐺𝑎𝑁 ‖ (11̅00)𝑍𝑛𝑂.  
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Misfit dislocations will also appear at the interface in these systems after a certain layer 

thickness to accommodate growing biaxial strain as thickness increases. Since these appear along 

the interface, they tend not degrade the performance of device where the active region is further 

away near the growth face of the crystal.  

Dislocations originating from the interface which travel (thread) vertically through the bulk 

of the material towards the growth face will typically pierce interfaces, creating inhomogeneous 

regions or act to scatter lateral current flow in devices. A major aspect of improving active layer 

mobility and increasing device lifetimes is the reduction of these dislocations. During the initial 

nucleation of systems with relatively large mismatches (such as GaN on Si and Sapphire), growth 

initiates as individual island crystallites that will continue to expand along (0001) and (11̅00) 

low energy facets provided enough thermal energy for adatom migration. Low temperature 

buffering layers are usually grown first to encourage growth along (112̅2) facets which can act to 

bend dislocations formed at the interface into one another. The initial grains eventually coalesce 

into a layer where their relative orientation (tilt and twist) to one another will induce dislocations 

along their interface. If islands meet with a relative rotation about the c-axis (Figure 31b) edge 

type dislocations will be generated, with the amount depending on the degree of relative rotation. 

If grains meet with a relative rotation about a 〈11̅00〉 edge (Figure 31a) they will generate a screw 

dislocation parallel to the c-axis and another along 〈112̅0〉 [209]. This leads to a so called mosaic 

structure in GaN, where a lateral correlation length can be observed due the limited size of the 

grains (Figure 31).  
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Screw type dislocations have been experimentally shown through a combination of 

cathodoluminescence (CL) mapping and selective defect etching to not be electrically active 

recombination sites in LED’s, whereas mixed and edge type act as non radiative recombination 

centres, and have been shown to getter impurities due to local stress fields [210]. Studies on their 

role in Schottky diodes have shown that mixed and pure edge dislocations can act as current traps, 

lowering the overall conductivity of layers and leakage primarily occurs at screw dislocations 

[211]–[213]. These leakage studies on Schottky diodes use conductive AFM mapping combined 

with selective defect etching to correlate large etch pits with open screw type dislocations and 

reverse current leakage. The behaviour of impurities at these site has been examined in literature 

using scanning transmission electron microscopy (S-TEM) combined with electron energy loss 

spectroscopy (EELS) to show that oxygen preferentially segregates to the inner surfaces of open 

screw type dislocations, where it substitutes nitrogen acting as a donor [214]. These effect of these 

dislocations on Schottky diodes can be reduced by modifying the interface with a passivating oxide 

between the Schottky contact and GaN layers [215], [216]. Thermal treatment of the diode in 

Figure 31:  the effect of grain tilt (a) and grain twist (b). Tilt (a) causes slight variations in heights of the coalescing nuclei leading 
to screw type dislocations. Twist (b) introduces edge type dislocations [109].  
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ambient environment has been shown to create a 2-3 nm Ga2O3 layer that can passivate the surface 

donor states, decreasing leakage and increasing effective barrier height.  

5.2 Point Defects 

Research in point defects is heavily focused on their formation energies and charge states 

calculated from first principles using some variation of density function theory (DFT). These 

formation energies are related to the defect concentration by: 

𝑐 = 𝑁𝑠𝑒
−𝐸𝑓

𝑘𝑇  (5.1) 

Where 𝑁𝑠 is the number of possible sites the defect can occupy and 𝐸𝑓  is the formation energy 

determined from the DFT calculation. 

5.2.1 Vacancies 

Several publications have comprehensive review of point defects in GaN using DFT to 

determine the most abundant defects present and their likely charge state [222]–[224]. The 

calculated formation energies from [222] using the semi local Perdew, Becke, and Ernzerhof 

(PBE) density functional are shown in Figure 32. 
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Figure 32: Formation energy for native point defects in GaN under a) Ga rich conditions and b) N rich conditions [222]. 

 

Their results agree well with the other works and the lowest formation energy seen in both 

Ga and N rich layers is the nitrogen vacancy, with a negative formation energy for p-type 

conditions. These vacancies are therefore a significant source of compensation donors in p-type 

materials and were originally presumed to be the source of high n-type background concentrations 

found in nominally undoped layers, however similar calculations for the formation energy and 

charge state identify oxygen donors to be the most significant source [222].  

5.2.2 Impurities 

The most common impurities found in nitride growth are carbon, oxygen and hydrogen. 

Carbon and hydrogen are by-products of the decomposition of the metalorganic precursors and 

oxygen comes from residuals in the vacuum, impurities in the nitrogen source and water vapour.  
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5.2.2.1 Carbon 

Computational studies of the role of carbon using the hybrid functional developed by Heyd, 

Scuseria, and Ernzerhof (HSE) in GaN have shown the most energetically stable position for 

carbon is a nitrogen substitution, CN. The exceptions to this are gallium substitution (CGa) only 

seen in nitrogen rich conditions where the Fermi level is below the mid gap and interstitial carbon 

(Ci) in Ga rich conditions [225].   

Figure 33: HSE-DFT calculations of the formation energies of gallium substitution (CGa), nitrogen substitution (CN) and interstitial 
carbon (Ci) for carbon impurities. Gallium rich (a) and nitrogen rich (b) stoichiometries are considered [225]. 

 

Previous work from the same group calculated the CN state to be a deep level acceptor with 

an activation energy of 0.90eV above the valance band [226]. In this work they also proposed the 

C0
N → C-

N transition to be responsible for the yellow luminescence seen many MOCVD grown 

devices [227], [228]. Due too its tendency to form deep acceptor states, carbon has been used as a 

compensating dopant for unintentional donors present in GaN.  
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5.2.2.2 Oxygen 

Oxygen has been identified as the primary candidate for unintentional background n-type 

doping in nitride materials. HSE-DFT calculations (Figure 34) have shown the formation energy 

of the oxygen substitution on nitrogen sites to be the most favorable position for the impurity 

where it forms a shallow single donor with an activation energy of 29-32.4 meV [229]–[232].  

Figure 34: HSE-DFT calculations for oxygen with various positions and charge states in wurtzite GaN. In both a) nitrogen rich 
and b) gallium rich conditions the most stable position for oxygen is a nitrogen substitution (ON) where it forms a single donor 
[233]. 

 

Given the relatively large concentration of threading defects and their ability to concentrate 

oxygen contaminants, high levels of oxygen can be particularly detrimental since the combination 

can create conductive line defects that run vertically through devices. Oxygen may also incorporate 

up to 25 at% in GaN without disturbing the sp3 bonding and lead to high levels of background 

donors even in highly crystalline samples due too the relatively close bond length to Ga-N [234].  

5.2.2.3 Hydrogen 

Hydrogen is known to act as an acceptor in n-type materials and a donor in p-type materials. 

Due too its relatively small size, in the +1 state it is energetically favorable for it to sit in between 

Ga and N bonds parallel to the c-axis forming a bridge between the atoms, only distorting the Ga 
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tetrahedral position. For the -1 and neutral charge states it is located in an octahedral position  

[233]. Figure 35 shows the stable occupation position for each of these charges in the wurtzite unit 

cell. Figure 36 gives the formation energy of each of these complexes given the position of the 

Fermi level.  

 

Figure 35: Stable positions of hydrogen in the GaN wurtzite lattice for the a) +1 donor state where it is in line with the Ga-N bond 
b) the octahedral neutral charge state c) the octahedral acceptor charge state and d) the H2 molecule [233].  

Figure 36: Hydrogen interstitial formation energy for different charge states of hydrogen [233]. 
 

The carbon nitrogen substitution (CN) and carbon gallium substitution (CGa) in Ga rich 

condition are also included in Figure 36 since their complex formation is energetically favorable 
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in n-type conditions. Hydrogen is known to passivate dangling bonds in many materials (such as 

amorphous silicon) and was concluded to be the source of unintentional Mg passivation in early 

p-type doping. Due too the low diffusion barrier of hydrogen in GaN (0.7eV) it was able to be 

removed with annealing. Hydrogen may also form double donor complexes with carbon gallium 

substitutions in p-type materials and compensation acceptor type carbon nitrogen substitutions 

(CN). Figure 37 shows the formation energy of these complexes along with the interstitial positions 

of hydrogen [233]. 

Figure 37: Interstitial hydrogen charge states and complex formation energy in a) nitrogen rich and b) gallium rich conditions 
[233]. 

 

Substrate diffusion may also be a factor in device processing. The stability of sapphire 

substrate and relative thickness used in planar device does not make this an issue for sapphire 

heteroepitaxy, but in silicon significant diffusion of Ga has been observed into the wafer, 

disturbing the morphology of the subsequent growth (meltback etching). However, Zn-O bonds 

are weaker than Al-O bonds and an intermixing diffusion at the interface is possible. Reports of 

Molecular Beam Epitaxy (MBE) grown GaN on ZnO have shown at 700 °C a thin (3-4 nm) 

interdiffusion layer can be observed with TEM, likely  resulting in the formation of Ga2O3 and 

Zn2N3 [235], [236]. Zn is known to be a deep acceptor on substitution of Ga (ZnGa) and was 
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originally researched as a potential dopant for p-type Ga [237]. However, due too the relatively 

high ionization energy (0.46eV) compared to Mg (0.26eV) it saw little application in real devices 

[238].  

5.3 Conclusions 

The influence of screw dislocations on the interface is the most concern for Schottky 

contacts. They present a high surface area and local strain attracts oxygen substitution that acts as 

an n-type donor. To maintain a significant barrier in the Schottky diode the unintentional doping 

should be kept low. As far as the controllable process factors go, this means lowering the surface 

roughness as much as possible to minimize the generation of edge and screw defects which may 

act to getter oxygen due too their local strain field. Any oxygen impurities in the layer will act as 

an n-type donor by occupying a nitrogen site in the lattice. Screw dislocations can have open cores 

which segregate more oxygen donors on their (1-100) interior surfaces and can diffuse oxygen 

down their length. They are primarily generated in the coalescence stage of the growth from grain 

due too differences in rotation around the 〈11̅00〉 direction.  

In the case of solution deposited ZnO as a buffering technology it is also possible that 

oxygen diffusion may be a significant contribution. Impurities related to oxygen are largely 

unavoidable aside from keeping low water content in the vacuum system and using high purity 

precursor materials. High temperatures and low pressures are generally desired to encourage 

trimethyl group dissociation as far from the substrate as possible, however these process 

parameters are fixed from the low melting point of the glass phase in the ceramics and the cathode-

anode gap in the capacitive plasma head.  
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6. Instrumentation 

 Process dependant material properties that can affect device performance such as defect 

densities, crystal texture, surface roughness and impurities can be detected using a wide range of 

characterization tools. This chapter is dedicated to the tools available at the semiconductor 

research and instrumentation labs at lakehead university.   

6.1 X-ray Diffraction (XRD) 

X-ray Diffraction (XRD) is a non-destructive, non-contact method of determining the 

crystal structure in solid samples. This technique relies on the constructive interference of scattered 

X-rays from the crystal lattice of the sample. Samples are placed in the path of a collimated beam 

of X-rays where the angle of incidence (𝜃) is swept over a set range to determine which angles 

satisfy the Bragg condition.  

Diffraction in general can occur when a wave encounters a series of regularly spaced 

scattering sites spaced on the same order as the wavelength of the incident wave. The X-rays used 

in these experiments are usually from a copper anode held in a vacuum tube where a high-tension 

voltage (10-40kV in our system) is applied across to tube and the emission current is controlled 

(5-45mA). High voltages are required since L to K transitions are needed for wavelengths of 

interest (λ≈1Å). Additional X-rays generated from higher shells can be filtered by lower atomic 

weight metal foils since absorption edges tend to increase along rows in the periodic table (Ni is 

used for copper anodes). Additional apertures and collimator slits are used to limit beam 

divergence. In high resolution applications a finer bandpass filtering can be achieved using a single 

crystal monochromator on the input and an analyzer crystal on the output. The input 

monochromator consists of a quality single crystal sample (graphite or (220) Ge are commonly 
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used). The beam divergence may also be lowered by the inclusion of parabolic mirrors on the 

incident beam.  

When the X-rays are incident on the sample, they will scatter on the electrons at each atom 

with both inelastic and elastic scattering. The Inelastic scattering (Compton, Bremsstrahlung) leads 

to a broad incoherent background in the detector, while elastic scattering allows the observation 

of interference, dependant on the crystal structure and the incidence angle 𝜃. The Bragg-Brentano 

scan geometry used by the PANalytical X’Pert Pro in this work can be seen in Figure 38. 

Figure 38: Bragg-Brentano goniometer experimentally used for XRD. Measurement of planes parallel to the surface are performed 
using a Θ-2Θ scan where the sample remains flat with the source and detector moving at the same constant rate.  

  

This system is designed to focus on the plane of the sample with high intensity and detect 

crystal planes parallel to the surface. The type of scan used in this work is a Θ-2Θ scan where the 

sample remains flat and the source/detector are moved at the same constant rate. It cannot be used 

to produce full reciprocal space maps or produce high resolution rocking curves but can still 
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provide useful information about the crystal unit cell and orientation. To determine useful 

information about the crystal structure the Bragg condition must be applied and a priori knowledge 

of the crystal shape is needed to identify the plane index. For all nitrides and ZnO the structure is 

the wurtzite (WZ) cell and miller indices can be found using: 

1

𝑑ℎ𝑘𝑙
2 =

4

3
(
ℎ2 + ℎ𝑘 + 𝑘2

𝑎2
) +

𝑙2

𝑐2
 (6-1) 

 Since the WZ cell will preferentially orient its c-axis perpendicular to the surface, the 

{000𝑙} peak properties are used for comparing growths.  

The Bragg Condition can be best illustrated with the ideal crystal sample in Figure 39.  

 

For constructive interference to occur X-rays leaving the sample must arrive in phase at 

the detector. X-rays scattering from different planes within the crystal must therefore travel an 

additional distance of 𝑛𝜆 to not disrupt their relative phase. From the geometry in Figure 39 the 

length of the path over which it must do this is 2𝑑𝑠𝑖𝑛𝜃. Therefore when 2𝑑𝑠𝑖𝑛𝜃 = 𝑛𝜆 it can be 

expected that a high intensity of X-ray’s will be detected. This is the Bragg condition and is a very 

useful observation since 𝜃 is experimentally easy to measure and control, while interplanar spacing 

Figure 39: Bragg condition for x-ray diffraction [234]. 
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on the order of 1Å is difficult to observe. The large area and penetration depth of the X-rays can 

sample statistically large volumes of material compared to electron or neutron diffraction and can 

be performed in ambient environment. 

6.1.1 XRD Analysis 
 

  In real crystals there exist imperfections that disrupt the perfect order of the crystal and 

therefore broaden the distribution of scattering centres observed. Given the significant volume 

probed by the X-rays, a statistically large number of 𝑑 planes are sampled and a Voigt profile is 

typically observed. A Voigt profile is a convolution between a Lorentz and Gaussian distribution, 

which for curve fitting analysis is commonly approximated as a linear combination of the two 

(referred to the Pseudo-Voigt distribution). The angular spread of the intensity peak is related to 

the distribution of the d-spacings withing the crystal by the Bragg condition. High quality crystals 

will consistently have the same spacing between planes and a sharp peak will be observed. 

Conversely, as the crystal becomes more disordered the peak will broaden until it flattens into the 

background noise. The broadening of the peaks is largely attributed to shape or size related effects, 

with shape effects contributing to a Gaussian like peak and size effects leading more a Lorentzian 

peak [47]. 

Many different parameters can affect interplanar spacing such as crystallite size (grain 

boundary density), defects and impurities, alloy composition and strain induced from the substrate. 

Additional broadening is contributed from the instrument since beam divergence and linewidth on 

the X-rays is unavoidable, for the purposes of comparison from the same instrument these will be 

ignored. The full width at half maximum (FWHM) is a standard measures of crystal quality for 

XRD. In the case of the Θ-2Θ scans used in this work the broadening is related to the distribution 

of planes parallel to the surface, which can be attributed to strain gradients induced by the substrate 
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and microstrain from impurity atoms and dislocations in the c-plane, and composition gradients. 

The broadening of the peaks in these types of scans does not directly measure the tilt or twist of 

the grains, for which high resolution rocking curves are needed. The lowering of the FWHM 

therefore represents a reduction in the strain induced by TCE/lattice mismatch along the 

LTCC/Oxide/GaN structure. 

6.2 Scanning Electron Microscope (SEM) 

The SEM is a versatile tool for imaging the surface of samples with high resolution in real 

time. The Hitachi Su-70 Schottky Field Emission SEM is capable of resolving 1 nm at 15 kV 

acceleration and is equipped with an Oxford Aztec 80 mm/124 eV Energy dispersive X-ray 

spectrometer (EDX) and solid state back scatter electron (BSE) detector for back scatter imaging. 

The main application of the SEM in this work is with its ability to gather accurate thickness profiles 

along a cross section of a sample as well as its ability to identify surface morphological features in 

an unambiguous way along with chemical composition.  

A typical SEM column can be seen in Figure 40 showing the rastering of the beam over the sample 

surface.  

Figure 40: Schematic diagram of SEM operation [239]. 
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 The electron beam has many different interactions with the surface, producing different 

secondary particles used for analysis seen in Figure 41. The beam itself can penetrate several µm 

of material, however Secondary and Auger electrons generated beyond the first few nm will not 

have enough energy to escape to vacuum and be detected. Secondary electrons are generated from 

impact ionization in greater quantity than the Auger electrons and are the primary source of surface 

imaging.  

Figure 41: Primary electron beam interaction within the SEM. The electron beam can penetrate um of material releasing secondary 
particles along its path [239]. 
 

  Auger electrons are only sometimes released instead of a photon when core holes are 

filled from higher levels. Their kinetic energy is equal to the hole filling transition energy minus 

the ionization energy of the atom. This makes them very useful for elemental composition of 

samples on the near surface, like characteristic X-rays, however unlike X-rays they cannot travel 
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from the bulk of the samples. Both are used in X-ray photoelectron spectroscopy (XPS) for probing 

core level states since their energy is element specific and distinctly defined by the energy levels 

which are involved in the Auger process. The collected Auger electrons are labelled using X-ray 

notation, for example, a KL1M1 Auger electron is a result of a hole in the K shell (1s) being filled 

from the first L subshell (the 2s orbital) and an Auger electron is ejected from the first M subshell 

(M1, or the 3s orbital).  

Secondary electrons of interest are typically low in energy (<50eV) and their trajectories 

are therefore easily altered by the presence of electric and magnetic fields. The detection of these 

electrons is performed using an Everhart-Thornley detector, which consists of a lightly biased 

(300V) grid over the surface of a scintillator crystal to attract free Secondary electrons. These 

electrons are converted to photons in the crystal and coupled out to a photomultiplier tube and 

electronically sampled. The sampled intensity is then used to map a grayscale intensity to a pixel. 

To gather a complete image of the surface needs to be sampled for each pixel. 

The intensity of the collected electrons is a function of the detector position relative to the 

surface of the sample, the work function of the material itself, and the accelerating voltage of the 

primary beam. Contrast in the greyscale image can therefore be an indication of composition 

changes as the work function changes from one material to another. Backscattered electrons (BSE) 

may also be used to generate contrast since the scattering cross section is dependant on the 

elements atomic weight, however they are significantly higher in energy (50%-80% of primary 

beam energy) and can originate deeper than Auger or Secondary electrons. They are therefore not 

useful for high resolution imaging, but the image contrast in BSE measurements can be used to 

distinguish elemental composition based on atomic mass.  
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 Characteristic X-rays are also released from the core hole transitions in the sample and can 

be used in energy dispersive X-ray spectroscopy (EDX) measurements. Since X-rays can penetrate 

significantly more material than electrons, these X-rays can originate from um of depth from the 

surface and cannot be used to map elements but can be used to sample the composition of bulk 

layers. The Oxford Aztec EDX equipped in this work can measure 0-20KeV with 0.124KeV 

resolution.  

In this work Secondary electron images will primarily be used to measured dimensions of 

surface pits and layer thicknesses from prepared cross sections. While the SU-70 SEM does have 

a BSE detector, the resolution is low and may only be used to verify film boundaries.  

6.3 Atomic Force Mircoscopy (AFM) 

The AFM is an extremely useful tool for characterizing the surface of instruments. It can 

be considered a blind microscopy technique, where a probe, laser, and feedback electronics are 

used to sense the surface. A basic outline of the system can be seen in Figure 42. 

 

 

Figure 42: Overview of AFM system (left) and the feedback system (right). The error signal used determine height is generated by 
monitoring the tip sample interaction with a laser and maintaining the setpoint through the high voltage amplifier (HVA) and piezo 
element [240]. 
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The probe itself is made from silicon bulk wafer, shaped into a cantilever with 

predetermined length and width depending on the desired application. The dimensions of this 

cantilever are usually on the order of 100’s of µm in length and 10’s of µm in width with at tip 

radius of <10 nm. The tip is located on the bottom of the cantilever, analogous to a record stylus. 

Stepper motors and piezo elements precisely lower the tip towards the sample until the feedback 

system monitoring the tip sees a change in either its deflection or resonant frequency, depending 

on the operating mode.  

Two types of measurements are employed using the AFM, a contact mode where the static 

tip deflection is measured, and non-contact mode where the oscillation amplitude is measured. 

Both modes work on the same principle, a set point is given to the PI(D) controller in the feedback 

system and the piezo element will control the tip-sample distance to maintain the set point as the 

probe is scanned across the sample. The set point is either a force (usually in nN) or a % of the 

free vibration amplitude. The x-y scanning system moves the probe over a predetermined area as 

the feedback adjusts the height of the probe to maintain the set point.  

Contact mode operates in region 1 of the force distance curve seen in Figure 43, where the 

interaction is repulsive from the surface. Non-contact mode operates in region 2 were the forces 

are attractive towards the surface. Contact mode offers a higher sensitivity to surface features since 

the slope of this curve is significantly higher in region 1, and the inorganic materials imaged in 

when analyzing semiconductor surfaces are not easily damaged from the tip. A noncontact mode 

is used on soft samples where applied force may damage or deform the sample. In this case the 

loading of the cantilever due too attractive surface forces acts to shift the resonant frequency of 

the cantilever and a loss of vibration amplitude is sensed when driving it at its free resonant 

frequency.  
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Figure 43: Force-distance curve showing the operating regimes of (1) contact mode and (2) noncontact mode. In both cases the 
force is attractive towards the energy minimum, but the slope of the curve is drastically different [240]. 

 

6.3.1 AFM Analysis 

The elevation data is gathered from the error of the control loop, therefore convoluted by 

the PI(D) controller response and tip sample interaction characteristics. Both can have a significant 

influence on the image of the surface. The PI(D) settings should be set to avoid slow step response 

and ringing on surface steps and probe tip should be exchanged when the tip becomes worn or 

broken.   

The data gather is a (usually) square matrix of height values that the z-controller needed 

adjust to maintain the set point. An RMS value (𝜎𝑅𝑀𝑆) for this is given as a statistical measure of 

the surface roughness calculated in the same way as a discrete time domain signal. The RMS of 

the surface can be calculated as: 
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𝜎𝑅𝑀𝑆 = √
1

𝑁
∑|𝑧𝑛|2
𝑁

𝑛=1

 (6-2) 

Where 𝑁 is the total number of points in the array and 𝑧𝑛 is the height measured at point 

𝑛. The summation can be done in any order for the set of data, since the RMS value only looks at 

the spread of the heights and does not consider lateral dimensions. This leaves it as a somewhat 

ambiguous description of the surface since any RMS value found can be represented by a sine 

wave which will not represent the measured surface. The RMS roughness should therefore not be 

blindly considered as indicative of surface quality.  

6.4 X-ray Photoelectron Spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) is a surface characterization technique used to 

probe to elemental composition and core energy levels of near surface atoms. Similar to the X-ray 

tube used in XRD, the XPS performs the reverse process, to releasing characteristic electrons using 

X-rays. The XPS uses a monochromatic X-ray source (Al Kα = 0.83401 nm) to excite core 

electrons to vacuum. The electrons travel into a hemispherical analysis chamber where a a 

magnetic field curves their trajectory. The curvature of their path is proportional to their energy. 

The energy of the electrons comes from the energy of the X-ray source minus the ionization energy 

of the core state.  

The photon in/electron out nature of the measurement makes it strictly a surface 

measurement. The core energy levels can be deduced by examining the energy spectra of the 

characteristic electrons collected. Auger electrons are also released from higher core levels as 

explained in section 6.2 Scanning Electron Microscope (SEM). Minor shifts in the core energy 

levels occur from the local bonding of the atom can be detected to determine the nature of bonding. 
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The XPS is useful for its surface selective analysis and its insight into the chemical bonding 

present. It is relatively new to the Lakehead University Instrumentation Lab (LUIL) 

Instrumentation Lab and was not available for all samples. 
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7. Experiments 
 

Experimentation is still a critical step in characterizing a device processing. Due too the 

large number of atoms involved in a macro scale devices and large number of process variables 

interacting during device fabrication, a complete ab initio approach to device design is not 

currently feasible. Computational tools are split into many different applications applications such 

as material modelling (chapter 5) at an atomic scale, finite element methods, and statistical analysis 

on large data sets.  

Sapphire serves as a baseline for the experiments in this work. For the sake of comparison 

all measurements done on ceramic samples will be contrasted to the same films on sapphire. The 

recipes for these growths were developed using results from our high temperature (700 °C in our 

system) growth conditions.  

7.1 Sapphire Growth 

The environmental variables that can be controlled in our system include system pressure, 

temperature, precursor flow rate, plasma power, and precursor exposure time. Migration enhanced 

epitaxy systems works by first introducing the metal species followed by nitrogen. The III/V ratio 

is not completely the same as traditional systems since they are not present in the chamber at the 

same time. The growth is instead divided into repeated cycles of group III rich conditions 

immediately separated by group V exposure. The III/V ratio is controlled by the relative time of 

these two exposures in a growth loop. It is generally desirable to have a high growth rate per hour, 

so these cycles are ideally as short as possible.  
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7.1.1 Temperature 

The temperature should be as high as possible to increase surface diffusion effects in all 

cases. The highest possible temperature in these experiments is set by the softening of the ceramics 

at 700 °C. If ZnO is coated on the sample the upper limit is set at 650 °C to avoid decomposition 

and contamination.  

7.1.2 Pressure 

The pressure is controlled from the downstream throttle valve in Figure 24 and the 

PV3/MFC3 lines in Figure 25. The limiting factor for growth rate in this system is the rate at which 

nitrogen radicals can be provided to the substrate. The trimethyl flow rates can be adjusted through 

the mass flow controllers and their injection time can be used to vary the dose of Ga in any growth 

loop. The plasma head has a maximum power output of 600W which cannot be further increased. 

The species of nitrogen reaching the substrate is therefore determined by the pressure in the system. 

If the pressure is too low however, not enough nitrogen molecules are passed through the plasma 

head. The power output of the head is also observed to decrease as the plasma current is lowered. 

If the pressure is too high the excited plasma species can collide to recombine or relax before 

reaching the substrate. This can be observed visually through the reactor viewports or measured 

with a spectrometer. 

While is it possible in this system to dynamically vary the pressure during growth by 

adjusting the throttle valve position, it generally takes 10-30 seconds to reach steady state on the 

PI controller which can significantly reduce the growth rate per hour if performed twice per loop. 

A single pressure was therefore chosen as the operating pressure for the growth. In order to 

determine the optimal pressure a series of growths were performed varying the pressure from 350 
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mTorr to 1600 mTorr with the otherwise same recipes. The variation in AFM roughness and XRD 

FWHM can be seen in Figure 44.  

Based on these results the optimal growth pressure was determined to be 1400 mTorr. A similar 

effect can be seen on the surface roughness in Figure 44. The pre and post growth AFM image can 

be seen in Figure 50. The bare wafer on the left exhibits an extremely smooth surface with only 

57.83 pm roughness, while post deposition is rougher at 1.219 nm. The increased roughness is 

greater than a monolayer (~0.5 nm) and is observed to be granular. This can be attributed to a 

partial VW type growth where island growth is occurring. To further decrease the roughness 

additional migration energy needs to be supplied to the system, without significant heating of the 

substrate to avoid melting. 

Figure 44: (0002) GaN Θ-2Θ FWHM and surface roughness as a function of growth pressure in our system. 
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A decrease in the temperature can be expected to decrease the observed FWHM and grain size 

and increase the surface roughness by lowering the migration distance of surface atoms.  

7.1.3 Precursor Flow Rate 

The trimethyl precursor flow rate can be used to control to group III dose per cycle. The 

duration of the cycle should be kept as short as possible to increase the growth rate per hour, 

therefore a lower limit for the durations is desirable. The lower limit in this system is 4s, below 

Figure 45: AFM surface image for the bare sapphire wafer (1x1 µm, left) and 700 ˚C post growth surface (2x2 µm, right). The 
measured RMS roughness changed from 57.83 pm (left) to 1.219 nm (right). 

Figure 46: AFM surface image for the 700 °C sapphire deposition (5x5 µm, left) and 650 °C post growth surface (5x5 µm, right). 
The measured RMS surface modifying the roughness from 1.219 nm (left) to 2.891 nm (right). 
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this the flow rate was not able to reach a steady state condition on the system monitor. The 

precursor flow rates are measured in standard cubic centimeter per minute (sccm) by the mass flow 

controllers (MKS Instruments 1179/1479/1640A, MFC1-8 in Figure 25). The flow measurement 

is based on differential heat transfer between temperature sensing heater elements which are placed 

symmetrically in the sensor tube. The system monitor reads a 0-5 VDC signal which is proportional 

to the mass flow by the specific heat capacity and the density of the gas used in the line (nitrogen 

in this case) and needs to be calibrated for different carrier gases. The initial experiments above 

were performed at 0.5 sccm, resulting in an average deposition rate of 0.153 nm/cycle, lower than 

the 0.25-0.26 nm/cycle expected from monolayer deposition. A BSE image was used to see the 

contrast of the film layer with the substrate (Figure 47). 

Figure 47: BSE Image of GaN sapphire growth at 700 °C, 1400 mTorr, 0.5 sccm flow rate. 
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The precursor flow rate was increased to 1.0 and 1.5 sccm with otherwise same recipe as 

above (Figure 47) to observe the effect on the growth rate and XRD FWHM. Figure 48 

summarizes the results. 

 

The increased flow rate was observed to slightly decrease the RMS roughness and Θ-2Θ 

FWHM. The growth rate increased from 0.153 nm/cycle (Figure 47) to 0.26 nm/cycle at 1.0 sccm. 

Based on these results a 1.0 sccm 4 second dose was taken as the group III portion of the growth 

loop.  

The plasma power was kept at 600 W in all cases. The duration of the plasma exposure 

should be minimized in the recipe design, after the complete nitridation of the group III atoms 

additional nitridation is unnecessary. Insufficient exposure per cycle will result in metal 

accumulation in the growth, increasing surface roughness, possibly introducing Ga metal peaks or 
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Figure 48: Effect of varying the TMGa flow rate on the Θ-2Θ FWHM and RMS roughness. 
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polycrystalline GaN peaks into the XRD. Figure 49 shows the effect of decreased plasma duration 

in the system. 

7.1.4 Conclusions 

A plasma exposure of 8 seconds was found to give the best results based on the analysis of 

Θ-2Θ XRD patterns. The optimal growth loop is therefore found to be 4s exposure of TMGa 

followed by 8s of nitrogen plasma. The optimal growth pressure was found to be 1400 mTorr. The 

maximum temperature is taken to be 700 °C based on the observed softening of the LTCC. This 

recipe was applied to the oxide coated samples at their appropriate temperature. 

7.2 Ceramic Properties 

The properties of the deposited films are examined through many different techniques. 

Additional measurements not covered in section Instrumentation were performed by research 

partners in some cases for the purposes of publication.  

Figure 49: A decrease in plasma duration is observed to decrease the XRD peak quality and introduce additional polycrystalline 
peaks. 
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7.2.1 Ceramic Composition 

The ceramics used in this work are the Heraeus CT700 series. X-ray diffraction and energy 

dispersive X-ray spectroscopy (EDX) data for the bare substrate can be seen in Figure 50 and 

Figure 51. 

Figure 51: EDX spectra of the bare ceramic. The EDX gives an elemental analysis of the sample based off characteristics 
X-ray energies. 

Figure 50: XRD spectra of bare ceramic substrate. The significant number and sharp distribution of peaks indicates a non 
oriented multiphase mixture is present. 
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The EDX is useful for probing the composition since it samples the bulk volume, showing 

the ceramic to be a mixture of Ca, Ba, Ti, K, Mg, Al,Si, and O. The XRD confirms there are several 

crystalline phases present in random orientations.  To rightfully perform a quantitative analysis of 

these peaks the intensity needs to be compared to standard sample with known composition. The 

relatively high intensity of the oxygen and silicon EDX peaks however is indicative of the modified 

glass matrix model for the ceramic. The relatively weak XRD spectra shows only a small amount 

of the ceramic is crystalline material. The surface may therefore be considered a network of 

amorphous oxides with some crystalline inclusions.   

7.2.1.1 Surface Roughness 

The morphology of the surface can be seen from atomic force microscope scans of the 

surface combine with SEM cross section in Figure 52.  

Two distinct pore features can be identified. Large surface pits up to several microns in size are a 

result of filler particles that were removed from the surface during the polishing process, while the 

smaller pits are a result of void formation in the sintering process. Both are largely unavoidable 

for the polishing process, as more voids are continuously generated as polishing continues. The 

Figure 52: SEM surface image of the bare ceramic. Two distinct pit sizes are visible in each scan, originating from different 
processing in the ceramic. 
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larger pits present a more significant challenge since many microns of material will be needed to 

fill them.  

7.3 Oxide Properties 
 

The effect of oxide deposition on LTCC surface is investigated here. The surface texture of the 

LTCC refers to the crystal structure facing the surface. 

7.3.1 Surface Texture 

In the case of silicon dioxide and anodic alumina no crystal texture is introduced to the 

system since these layers cannot be annealed without melting of the ceramic. For ZnO, annealing 

can be done at <600 °C and a (0002) WZ surface can be observed under optimal dipping 

conditions. The effect of repeated dips on the (0002) peak properties can be seen on a log scale 

in  Figure 53. The trend shows a clear increase in the ZnO (0002) peak height with increasing 

thickness. 

 Figure 53: Semilog plot showing the evolution of the (101̅0), (101̅1) and (0002) peaks of ZnO on LTCC. The strain free positions 
of these peaks are 31.7768˚, 36.2638˚ and 34.433˚ respectively with a=3.249 Å and c=5.205 Å. 

(0002) 

(101̅1) 
(011̅0) 
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The FWHM of each of these peaks and the position of the (0002) peak is given in Figure 

54. The position of the peak changes from uniform biaxial strain in the layers, which deforms all 

in d spacings the same on average. The strain free position of the (0002) peak should be 34.433˚ 

at based on lattice constants of a=3.249Å and c=5.205Å for ZnO. 

Figure 54: Plot showing number of the effect of subsequent dips on the (0002) peak position to observe lattice strain and FWHM 
to observe the change in ordering along the c-axis.  

 

Repeated dips show a shift of the XRD peak towards the relaxed value. This indicates a 

reduction in the uniform strain in the layer, which is due to the thermal expansion mismatch with 

the substate.  Beyond the initial 5 dips we can observe almost an order of magnitude increase in 

the peak height between each data point, with little change in the FWHM. It is important to 

remember this is measuring vertical strain gradients and micro strain that causes a spread of 

{0002} planes. The lack of improvement in the FWHM indicates the strain gradients are not a 

function of the total layer thickness and are likely related to the annealing of the ZnO nanoparticles.  

7.3.2 Surface Roughness 
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7.3.2.1 ZnO 

The surface roughness of the bare ceramics was measured to be 116.2 nm in Figure 55. 

 

Figure 55: 20x20 µm2 AFM scan of the bare ceramic. The measured surface roughness including the pores is 116.2 nm. 

 

AFM scans and SEM cross sections of 5 repeated dips and 115 repeated dips are shown in Figure 

56. A cross section of a surface pit can be seen in Figure 58. The pit can be seen to be significantly 

larger than the layer thickness of 654 nm. The evolution of the layer thickness can be seen in Figure 

57. 
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Figure 56: SEM cross section and AFM surface scans of ZnO dip coated samples. The upper two images represent 5 dips, 
while the bottom is 100. 



  

107 
 

Figure 58: SEM cross section of a surface pore after 15 coatings. The layer thickness is measured to be 654 nm.  
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Figure 57: Dip coating thickness and deposition rate based on total number of dips. The average per dip is seen 
increase with a greater number of dips. 
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The final thickness of the layer was found to be linearly proportional to the number of 

depositions even up to 115 dips, indicating consistency between dips. The average deposition rate 

was seen to slightly increase as the thickness increased, likely due too evaporation from the dip 

coating reservoir. Evaporation of alcohol from the reservoir leads to an increase in the solution 

concentration, increasing viscosity and the volume fraction upon evaporation leads to an overall 

increase in deposition rate. This is difficult to prevent since the bath must remain open for dipping. 

A possible solution to this may be to decrease the temperature of the bath, however viscosity will 

also decrease and the optimal dip rate in this case will change.  

RMS roughness was calculated over a 10x10 µm2 area on 5 randomly selected spots on the 

surface for averaging surface roughness. Figure 59 shows the results of the AFM measurements 

as a box plot.  
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Figure 59: Box plot of the surface roughness as a function of dip counts. Each of the boxes is determined from 5 measurements of 
randomly chosen spots on the surface. 
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Imaging of the deep surface features in our AFM systems was difficult without introducing 

artifacts in the image. In order to reduce error due too including these in the calculations a mask 

was applied to each image to ignore features greater than 150 nm below average plane.  

Figure 60 shows the results of this masking procedure on the bare substrate. The relative 

area of the pit it taken as the porosity of the sample. The surface roughness in Figure 60b excluding 

the masked regions is 79.91 nm with a porosity of 87.9%. The results of the box plot in Figure 59 

effectiveness of the ZnO layer to reduce the surface roughness of the samples as the thickness 

increases. The samples are observed to becomes more uniform in their coverage as the roughness 

becomes more consistent between measurements. Initially the ZnO has little effect because the 

layers are thin compared to the surface pits. As more material is deposited the pits are observed to 

fill and level out the surface. The surface pits were however still visible after 115 dips (Figure 61). 

Figure 60: Masking of the AFM data to determine porosity and reduce pit induced errors in the data. 
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The porosity of the layers as determined by the masking procedure can be seen in Figure 

62. The decrease in the porosity is expected as the surface is filled. This graph may be somewhat 

misleading since the threshold was chosen arbitrarily. Features that do not fall in the pit criteria 

can still contribute to surface roughness and can still be seen on the surface (Figure 61 for instance 

is %100 filled, but a pit feature can still be seen on the x-axis). 

 

Figure 61: 3D AFM plot of 115 dips of ZAD sol gel solution. The micron scale pits on the surface of the ceramic can still be seen 
to influence the roughness of the layers despite a thickness of 7.1 µm. 
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7.3.2.1 Silica 

The silica layers were deposited using a spin coating technique by partners at TU Ilmenau 

[72]. The samples were prepared using a hybrid dip coating method where 35 nm silica particles 

are mixed with the solution to increase the volume fraction of the deposited layer. Since these 

layers do not require crystallinity µm of material can be deposited in a single dip.  

An AFM scan of the surface can be seen in Figure 64. The RMS surface roughness over 5 

different samples was found to be 28.58 nm. Features of the underlying ceramic can still be 

observed in Figure 64, indicating thicker layers may be required. The amorphous silica layers were 

initially believed to be useful as thick surface filling layers, however annealing at 500 °C was 

observed to induce severe cracking in these samples due too the thermal expansion difference 

between LTCC and the silica.   
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Figure 62: box plot of porosity determined form the arbitrary threshold masking done on the AFM samples. Surface features 
greater than 150 nm from the mean plane are taken as pit features. 
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30  dips of ZnO (~1.5 µm) were performed on these films despite the initial results. The 

cracking in these films was found to propagate through further deposited layers (Figure 65). 

  
Figure 64: AFM scan silica coated LTCC. The RMS surface roughness over 5 different samples was found to be 28.58 nm 

Figure 63: Silica sol gel samples annealed at 500 ˚C. Cracking can be observed in these layers due too thermal expansion of the 
substrate being higher than the silica layer. 
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The relatively low temperature cracking observed in these samples precludes them from 

being used as growth substrates in our system.  

7.3.2.1 Anodic Alumina 

The alumina surface was produced with partners at TU Sofia, Bulgaria. 500 nm of 

aluminum was initially sputtered on the surface. This metal coating was then oxidized using a 

solution of 4% oxalic acid at 40V DC at 15C. The thickness of the layer was chosen to ensure 

adequately low contact resistance, low thermal resistance to the ceramic and low internal 

mechanical stresses. Thick layers of aluminum could result in delamination of the film due too the 

volume expansion of the oxide as well as the difference in thermal expansion between aluminum 

and aluminum oxide. The low thickness required for the anodization on the ceramics does not 

allow for an electropolishing or pre cleaning in alkaline solutions step as the aluminum may 

Figure 65: 1.5 µm thick dip coating layer on the silica sol gel. 
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completely dissolve. For the same reason, a two-stage anodization cannot be performed under 

these conditions.  

One of the significant drawbacks of these films is the top down process used to deposit the 

alumina. Since electrical contact is needed to perform the anodization it cannot be performed 

without depositing new metal to anodize.  

The alumina layers produced under these conditions can be seen in Figure 66. 

The pore structure is visible in Figure 66 but is not as pronounced as layers observed in 

two stage anodized metallic samples. This is a consequence of the random crack nucleation that 

occurs in the one step process. In the cross-section view, vertical striations corresponding to the 

aligned pores can be seen to be perpendicular to the surface but are less visible from the surface 

images. This is again indicative of a random initial nucleation where the pore does not begin 

perpendicular to the metal surface. As the pore progresses the local stress and electric field aligns 

the pore perpendicular to the ceramic surface. A small pit feature can be seen in Figure 66 (left) 

being partially filled. It is clear from these results that elimination of the void structure would not 

be possible with these layers. 

Figure 66: Anodized alumina film on LTCC cross section (left) and surface view (right). 
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7.4 GaN Growth  
 

Direct growth on the ceramics is expected to behave like direct growth on glass substrates, 

where many grains nucleate with many different orientations on the surface due too a lack of 

underlying order. An oblique view from the SEM can be seen in Figure 67. An estimate of the 

layer thickness in this case is not possible since it is difficult to define a layer on the surface.  

 

Figure 67: Oblique view of GaN growth on LTCC substrate with no layer in between, resulting in a dense network of misoriented 
crystallites. 

 

Prior to deposition all samples were cleaned in the same manner. A 10-minute acetone 

ultrasonic cleaning followed by a 10 minute ethanol cleaning and a rinse with DI water is standard 

procedure on all samples.  

7.4.1 Anodic Alumina  
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Anodic alumina results were completed in cooperation with partners at the university of Cádiz in 

Spain for publication [196]. Growth of the films was performed at Lakehead University, and 

electron microscopy was performed by our partners. During this time, the RF source was 

unavailable for powering the plasma head and a DC source was used. 700 °C was used as the 

growth temperature to avoid softening of the ceramic. An SEM cross section of a post growth layer 

is shown in Figure 68 after 3000 cycles. The approximate growth rate is 0.193 nm/cycle, slightly 

less than a monolayer per cycle. 

DC excitation of the plasma head is still expected to produce nitrogen radicals, however 

the voltage required for DC source higher and the optimum pressure changes. RF excitation has 

serveral advantages over DC in that the RF fields can oscilate faster than the ions in the plasma 

can respond. Nitrogen atoms passing through the head undergo many passes of electrons as the 

field oscillates, leading to many more ionization events for the same voltage. The ossilation of 

Figure 68: SEM cross section of 1500 cycles of growth on the anodized alumina/ceramic templates. The amorphous alumina 
homogenizes the composition of the surface, leading to a more uniform nucleation than the bare ceramic seen in Figure Figure 
67. 
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electrons near the grounded surfaces of the reactor also lead to excitation near the surfaces, whereas 

DC excitation can only occur between the plates. The same procedure was followed a in section 

7.1 Sapphire Growthto determine the optimal pressure of 350 mTorr. The same rational design 

was applied, plasma power was kept as high as possible, loops as short as possible. 

Figure 69  a)-h) shows several different features through the volume of the layers. Figure 69 b) 

shows the pore base where it is bonded to the ceramic. The AAO was found to be well adhered to 

the substrate across the sample, no signs of delamination or voiding was present. Figure 69 c) 

shows the AAO GaN interface where polycrystalline GaN has been observed, indicating the initial 

nucleation has no distinct phase. This could be expected from the lack of and underlying crystal 

structure from the AAO. The diffraction map inserts on c) and d) show a mixture of wurtzite and 

cubic phases are present within the first 100 nm indicative of stacking faults. Figure 69 e) shows 

that after about 200 nm the layer will preferentially orient itself towards the c-axis, however cubic 

domains are still present with the diffraction map inserts showing a wurtzite structure with present. 

The grains are observed to tilted and twisted relative to one another Figure 69 f)-h).
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Figure 69: Bright Field Diffraction Contrast TEM (BF-DCTEM) cross section of GaN on AAO growth illustrating several 
structural features of GaN. a) Overview of areas examined. b) The interface between the LTCC and AAO, show an abrupt and well 
adhered interface. c-d) the GaN AAO interface is seen to be mostly polycrystalline for the first 100-200 nm. e) a mixture of cubic 
and hexagonal phases. f)-h) show the grains visible have a relative twist and tilt to one another. 
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No significant penetration into the pore structure can be seen in the TEM images of Figure 69 or 

the EDX line profile in  Figure 70. [196] 

The lack of penetration into the layers shows a back contact to these films through the 

alumina may be difficult to achieve. Given the conformal nature of CVD the lack of pore filling 

could possibly be caused by line-of-sight properties of the plasma and the poor quality of the poor 

opening due too the single stage anodization.  

XRD results from 3000 growth cycles on the AAO ceramic (blue) and sapphire (red) can 

be seen in Figure 71:. The FWHM of the sapphire and ceramic samples was measured to be 0.1477˚ 

and 0.1802˚ respectively.  

 

Figure 70: EDX line profile of the GaN/AAO/LTCC structure. 



  

120 
 

 

Given the same growth conditions the sapphire can be seen to have a peak 4 orders of 

magnitude higher with a lower FWHM compared to the ceramics. The peak in sapphire can also 

be seen slightly closer to the relaxed (0002) position of 34.63˚.  

The results of this growth show that while deposition on anodized alumina is possible and 

represent an improved layer over bare ceramic deposition. Detailed analysis performed using TEM 

measurements indicates these layers contain a mosaic structure with a relative twist and tilt 

between the grains. The layers were observed to well adhered and abrupt, but the lack of 

penetration into the pore structure was observed through EDX.   

 

7.4.1. ZnO 
 

Figure 71: XRD results from 3000 cycles on the AAO ceramic (blue) and sapphire (red). 
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The conditions from experiments on float glass were used to determine and optimum 

withdraw speed of 10 cm/min, 0.7M ZAD concentration, 1% AlCl3 doping and a 1:1 ZAD:MEA 

ratio. The preheating that occurs after each dip was calibrated using a type k thermocouple to be 

275°C in the open tube style surface and the final bake was performed in a closed oven at 600 °C. 

The surface roughness measurements in section 7.3.2.1 ZnO show that many microns of material 

are needed to fill the pores under these conditions. Even after 115 cycles (over 24 hrs of constant 

dipping, > 7 µm thickness) undulations in the surface can still be seen on AFM and SEM.  

For these experiments the RF source was available, and growth occurred at 1400 mTorr 

and 650 °C. The XRD results for GaN on ZnO Ceramic can be seen in Figure 72:. 

One clear issue with using XRD to analyze these growths is the very close size of the ZnO 

and GaN crystals makes distinguishing their peaks impossible. To determine the effect of GaN 

growth an XRD needs be taken before and after to look at the change in the XRD spectra. Doing 

Figure 72: XRD of GaN on ZnO coated ceramic. The red scan represents the pre deposition ZnO surface, while the blue is post 
growth GaN. 
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this assumes the deposition condition in the reactor do not disrupt the ZnO. The initial ZnO peak 

((Figure 73, red) FWHM was found to be 0.2522 ˚.   

The post deposition peak (Figure 73, blue) was found to have a FWHM of 0.2519 ˚. The 

calculated difference (green) was found to have a FWHM of 0.2358˚.  

Surface analysis was performed on this sample using X-ray photoelectron spectroscopy 

(XPS) (Figure 74) to determine impurities on the surface. The quantification of these spectra is 

given in Table 8: XPS peak quantification of GaN deposition on ZnO coated LTCC. and Table 9: 

XPS peak quantification of GaN on sapphire at 700 ˚C. Two important observations are the 

increase in the oxygen levels and the lack of Zn seen in the spectra. The increase in oxygen from 

the sapphire reference samples indicates an additional source of oxygen in these samples, likely 

diffusing from the ZnO layer.  

Figure 73: GaN growth on ZnO coated LTCC. The initial curve can be seen in red and post deposition can be seen in blue. The 
difference between the two curves (green) is a result of the GaN deposition.  
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 A solution to this would be to decrease the temperature if possible, which is undesirable 

for surface migration in the samples. An increase in the growth rate can decrease the oxygen, since 

it is diffusing from the substrate a thicker layer will decrease the concentration reaching the 

surface. In this case the bulk may remain unintentionally doped with oxygen. A third solution that 

may be possible is to change the deposition technique from sol-gel to a vacuum technique. Sol-gel 

layers form as dense networks of crystallites, but as seen in the case with Al doping, the increase 

surface area can have an affect material property that are surface dependant. Since the temperature 

is close to the observed decomposition temperature of ZnO in our system, it is not unreasonable to 

expect this to be a source of oxygen.    

Table 8: XPS peak quantification of GaN deposition on ZnO coated LTCC. 

Table 9: XPS peak quantification of GaN on sapphire at 700 ˚C. 
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An AFM scan of the surface shows an increase in the surface roughness from changes from 

the average of 6.351 nm found in Figure 59 to 12.36 nm in Figure 75.  

7.4.2. IV Curves 

Schottky contacts were deposited on The ZnO sample seen in Figure 75. Contacts were 

also deposited on sapphire samples produced at 700 °C and 650 °C. Cleaning of GaN sapphire 

samples is normally performed using an acid to etch the oxide layer and reduce contact resistance 

[241]. Acid cleaning was not used in this case since ZnO can easily be etched by these acids. 

Attempts to clean samples with (1:1) solutions of HCL resulted in the undercutting of GaN layers. 

Figure 75: AFM Scan of GaN on ZnO LTCC. The surface roughness was observed to increase with GaN deposition. 
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Figure 76 shows the result of a 1 minute etch on the 5 layer sample where a typical surface cleaning 

is 3 minutes [241]. The etching is seen the pronounce the edges of the underlying ZnO layer, 

indicating a etching process is occurring. 

The contacts were Ni/Au pads with an area of ~1 mm2 deposited through DC magnetron 

sputtering. Al was used at the ohmic contact sputtered through the same system. Since these 

contacts contain only a After the contacts have been applied an annealing was performed 500 °C 

for 10 mins to passivate surface donors. The increased roughness in the GaN on ZnO/LTCC, 

Figure 76: 5 dip ZnO on LTCC sample etched in 1:1 HCL for 1 min. The yellowish hue of the GaN layer is visibly removed 
from the edges of the sample. In the cross section the layering of the ZnO structure can be seen. 
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increase in oxygen detected by XPS, and a broader XRD peak are all indicative that the GaN on 

ZnO is n-type.  

In order to examine the junction characteristics of the samples an IV curve be measured 

and plotted using the methods described in 3.1.3 IV Curves to extract the ideality factor (𝜂), barrier 

height (𝜙𝑏) and series resistance (𝑅𝑠). The measured curves can be seen in Figure 77 and Figure 

78. A 50-point moving average was applied to the data to reduce noise in calculated derivatives.  

 

 

Figure 77: GaN sapphire IV curves for 650 ˚C growths. 
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The IV analysis outlined in section 3.1.3 IV Curves was performed on the data gathered in 

Figure 77 and Figure 78. Plots of 𝑑𝑉

𝑑(ln(𝐽))
 vs 𝐽 for the 650 °C and 700 °C GaN sapphire growths 

can be seen in Figure 80 and Figure 79. Linear fits are shown in red over selected regions of the 

IV curves in both cases. 

 

Figure 78: GaN sapphire IV curves for 700 ˚C growths. 
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Figure 80: dV/d(ln(J)) curve for 650 ˚C sapphire growths. 

Figure 79: dV/d(ln(J)) curve for 700 ˚C sapphire growths. 



  

130 
 

Both the 650 °C (Figure 80) and 700 °C (Figure 79) growths show an initial linear regime 

followed by a region of negative resistance (the slope of the linear region is ∝ 𝑅𝑠). This is short 

lived region of negative resistance is indicative of a tunneling mechanism. The high ideality factors 

and symmetry of the IV curve also indicate tunnelling is occurring through the junction. 

 The ideality factor and series resistance can be found using equation (3-10). The extracted 

parameters are listed in Table 10. The ideality factors are determined from least squares linear fits 

over the first linear regions before the observed negative resistance regions. The series resistances 

are found from the slope of the third region fit. The barrier heights are determined using the 

intercept of equation (3-11). A plot of 𝐻(𝐽) vs 𝐽 for the 650 °C GaN sapphire growths and the 700 

°C can be seen in Figure 81 and Figure 82 respectively. 

Figure 81: Plot of auxiliary function H(J) vs. the current density J for the 650 ˚C. 
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The energy barriers are calculated from the first linear region using a least squares fit. The 

slope of the second linear region is used to determine the series resistance 𝑅𝑠
∗ in Table 10. The 

values of 𝑅𝑠 and found 𝑅𝑠
∗ found by equations (3-10) and (3-11) were found to be fairly close to 

one another. Both indicate a high series resistance due too the relatively thin device layers and 

defects in the device layers.  

 

 

 

Figure 82: Plot of auxiliary function H(J) vs. the current density J for the 700 ˚C. 
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Table 10: Calculated diode parameters from Ni/Au Schottky diodes on Sapphire. 

Temperature ( °C) Ideality Factor (𝜼) 𝝓𝑩 (eV) 𝑹𝒔 (𝛀) 𝑹𝒔
∗(𝛀) 

650 16.04 0.5 69658 77249 

700 13.65 0.47 31697 34848 

 

The observed energy barriers are lower than the expected value of ~1.05 eV [242]. The 

energy barrier in both cases is close to 0.5 eV. A significantly lower energy barrier than expected 

from the Schottky-Mott model presented in section 3.1 could be explained by a high density of 

surface states which can lead too fermi level pinning, known to occur on defective GaN surfaces 

grown at low temperatures [242]. Several pieces of evidence such as the negative resistance 

observed in Figure 80 and Figure 79, the symmetry of the IV curves and high ideality factors 

indicate a tunneling mechanism dominates the current flow in both directions. A decrease in 

temperature can be expected to increase the presence of defects in the crystal, increasing the 

number of defect states on the surface as well decreasing carrier mobility in the layers.  

In the case of Ni/Au on GaN/ZnO/LTCC no rectification could be demonstrated. Based on 

the results of the XPS, XRD, and AFM for these layers combined with the behaviour observed for 

sapphire, a higher density of surface states can be expected from the decrease in material quality 

from sapphire. The increased surface roughness (12.36 nm for GaN LTCC in Figure 75 vs 2.89 

nm for GaN sapphire in Figure 46) and the increased oxygen content seen in Table 8 and Table 9 
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can both be expected to increase the junction leakage to the point of making the contact fully 

ohmic.  

The measured IV curves for 30 to 115 dips can be seen in Figure 83. The sample with 115 

coats representing did show some nonlinear behaviour around the origin, but quickly disappears 

and a similar analysis to the sapphire cannot be performed.   

Figure 83: GaN/ZnO/LTCC IV curves for the samples from 7.4.1. ZnO The curves exhibit ohmic behaviour in all cases. In the case 
of 115 dips some nonlinearity can be seen but no rectification can be observed. 

 

The resistance found from the inverse of the slope of these curves was determined using a 

linear least squares fit, summarized in Table 11. 
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Table 11: Summary of resistance values from Figure 84 

 

 

 

 

 

The resistance of the layers was found to decrease below what was observed for the series 

resistance in Table 10. The low resistance observed and its dependence on the ZnO thickness 

indicates current flow is occurring mainly in the ZnO buffer and not the resistive GaN epilayer. A 

possible solution to this could be to grow thicker layers of GaN, or the inclusion of an electron 

blocking layer in the device. 

One useful aspect of LTCC which was illuded too earlier was the ability have vias and 

back contacts embedded in the structure with fine pitch. The vias are fill with a glass frit/metal 

mixture which is usually silver due too its high conductivity. Figure 84: ZnO coated silver via in 

the LTCC structure. 115 coatings ( ~7 µm) of material has been dip coated on the surface.Figure 

84 shows an SEM cross section of a silver via coated in ZnO. Vias were found the have reliable 

vertical conduction after the GaN growth process. No extensive thermal cycling analysis was 

performed on these contacts, but they were found to maintain integrity after a 48h heat exposure 

at 600 °C. 

Number of Dips  Resistance (𝛀) R2 

30 50922 0.9991 

50 14335 0.9991 

100 7383 0.9991 

115 6466 0.9976 
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The vias were found to introduce surface deviations on the scale of 10’s of microns and a 

planarization over their surface was not possible using the number of coating explored in this work. 

  

Figure 84: ZnO coated silver via in the LTCC structure. 115 coatings ( ~7 µm) of material has been dip coated on the surface. 



  

136 
 

8.0 Conclusions 
 

The prototype flow modulation epitaxy (FME) system at Lakehead has been used to 

demonstrate GaN Ni/Au Schottky junctions on sapphire substrates. These devices were shown to 

exhibit leaky junction characteristics (ideality constant >10 in both cases), presumably due too a 

high density of surface states present from defects and oxygen impurities, evidenced by the AFM 

and XPS data. A possible solution to this would be a grow significantly thicker device layers, 

which may allow further reduction of defects. However only a certain amount of group III material 

can be deposited at once in this layer by layer epitaxial process to avoid heterogenous nucleation, 

which can drastically reduce crystalline quality in the material. 

The optimal loop time was found to 12s, leading to a growth rate of ~75 nm/hr. This is 

slow compared to µm/hr rates achievable with continuous thermal systems. A continuous growth 

in a plasma CVD style of system may be able to achieve higher growths rates but mixing of the 

group III precursors with the reactive plasma leads to powder formation, adduct formation, and 

additional impurity incorporation during growth. The limiting factor in the growth loop is the time 

needed for complete nitridation of the group III adlayer, therefore the loops may be shortened if a 

greater flux of reactive nitrogen species can reach the surface. A modification of the anode cathode 

gap in the head may be able to achieve this but is the subject of possible future work with the 

system.  

Porous alumina, sol-gel silica, and sol-gel ZnO coatings were each found to homogenize 

the surface to a point where uniform coatings could be applied. All oxide coatings were observed 

to adhere well to the interface and delamination was not observed. The planarization of the 
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ceramics was found to require several microns (up to 7 µm was explored here) to fill the natural 

voids in the LTCC sintered glass structure.  

Solution deposition processes represent a versatile technique which can be used to 

planarize the surface, however the layer by layer nature of spin or dip coating limits the thickness 

achievable for crystalline materials in a single deposition cycle. As with FME, heterogeneous 

nucleation in solution disrupts the crystalline order leading a polycrystalline texture if the layers 

are too thick. The thickness per cycle is therefore limited close to the lowest thermally stable 

crystallite size (60-70 nm for ZnO). To achieve filling of the surface pits, many dips are therefore 

required if we wish to maintain crystallinity through the layer. This may be necessary in the case 

where transparency or high conductivity is needed, both of which are related to the crystallinity of 

the ZnO. The ZnO (0002) WZ texture could be observed on the surface as early as 5 dips, 

therefore an alternative strategy would be an amorphous fill layer which provides smoothing in 

significantly fewer dips, while a thin ZnO layer provides texture. 

The similar crystal structure of ZnO makes it a good candidate for GaN heteroepitaxy, 

however it can easily be etched by hydrogen, and the high vapour pressure of zinc also makes 

sublimation an issue for vacuum systems. A limit of 650 °C at 1400 mTorr was found in our 

system.  

The GaN deposited on the ZnO buffers was unable to form Schottky junctions in this study. 

Comparatively to the sapphire growths the sample were rougher, more disordered and contained 

more oxygen. No Zn could be detected on the surface of the GaN through XPS measurements and 

ZnO decomposition is not seen in XRD or AFM measurements. Oxygen and water vapour 

contamination from the reactor and precursor gasses are expected to be only a few ppm and cannot 

explain the mass % observed by XPS. Oxides may therefore be forming during the post growth 
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storage environment, which was not explicitly tested. Cleaning of the native oxide was also 

observed to be a technological challenge as any acid treatment used to remove Ga2O3 may also 

remove the ZnO buffer, but at a much higher rate, leading to possible undercutting. 

An alternative approach to this would be to increase the temperature to increase adatom 

and dislocation mobility in the layers but is only possible in the case of sapphire (or other thermally 

resilient materials) and not with glass materials such as LTCC. The use of oxide materials has been 

shown the planarize homogenize the surface, not however to a point where it is comparable to a 

CMP single crystal wafer. In light of the limited growth rate capabilities of the techniques explored 

in this work I believe that the performance of the LTCC/ZnO/GaN diodes could be increased using 

reactive sputtering techniques which may be able to provide higher growth rates for bulk layers.  
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