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I  

Abstract 

Unpaved roads have a significant role in Canada's transportation and service activities, 

accounting for close to 60% of Canada's total public road networks. Furthermore, they 

connect agricultural, mining, recreational areas, and small communities to the nearby towns 

and businesses. An effective maintenance program for a network of unpaved roads requires 

a detailed assessment of the road surface’s condition, and such assessment is usually made 

by visual inspections which can be time-consuming and error prone. The main part of these 

evaluations aims to identify distresses on the road surface, such as washboarding 

(corrugation), potholes, and rutting. Many research studies have developed methods to 

automate condition assessment of asphalt roads by combining machine learning algorithms 

and low-cost unmanned aerial vehicles (UAV), but the research on the automated assessment 

of unpaved roads is very limited. A system has been developed in this study to automate the 

assessment of unpaved roads by coupling computer vision methods, namely deep 

convolutional neural networks, and UAV-based imaging. This automated system could be 

used as an alternative method to reduce the need for human effort and possible manual errors, 

and therefore improve road maintenance programs in remote areas. The performance of the 

proposed method was evaluated using different test settings, and despite having some 

challenges, such as false positives, it showed promising outcomes that can contribute to the 

proposed purpose of this research. This proposed method has a potential for further 

improvement and the findings can be used as a basis for similar studies. 
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Chapter 1: Introduction  

1.1 Background and research motivation 

Unpaved roads play an indispensable role in the road transportation system of many countries, 

especially in the countries with large territories, such as Canada, The United States, and Brazil. 

The importance of these roads is even more evident in the regions where scattered 

communities, farming, forestry, and industrial activities are present. In Canada, unpaved roads 

account for 60% of the total length of its public road network (Transport Canada 2018), while 

in Brazil it accounts for 88% of the total road network, and in the United States, the unpaved 

roads make up about 35% of the country’s total road network (CIA 2021).   

It is important to mention that unpaved roads play an essential role in the social and economical 

prosperity of remote regions, such as Indigenous communities, agricultural, mining, and 

recreational areas (e.g., provincial parks and conservation areas), which connect those 

communities to the nearby towns and businesses. Some of the unpaved roads connect farms to 

the closest cities, making them high-traffic roads in seasonal times. 

Given the importance of unpaved roads in the socio-economic growth of remote communities, 

it is necessary to monitor the deterioration of these infrastructures due to various factors, 

including high levels of traffic load (e.g., used by heavy forestry or farming equipment), road 

structural design (for example, road crown and drainage system), weather and precipitation 

conditions, and the properties of the road surface materials. The road surface condition may 

affect vehicle operating costs by more than 50% (such as fuel consumption, and tire and 

maintenance costs), and it also affects the ride quality at a significant level (Archondo-Callao 
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2004). These items highlight the importance of evaluating unpaved road conditions to maintain 

these infrastructure assets at an acceptable level of service. 

The surface deteriorations in unpaved roads can manifest in several physical forms, such as 

potholes, ripples (also known as washboarding or corrugations), rutting, and loose aggregates. 

There are various methods to assess unpaved roads conditions, but two methods are widely 

used:  physical measurements of the irregularities on the longitudinal profile of a road, such as 

the International Roughness Index (IRI) method, and qualitative and quantitative visual 

assessment of the condition of unpaved roads, such as the methods proposed for civil roads 

(Eaton et al. 1989; Walker 1991).  

The methods for physical measurement of the longitudinal profiles of the roads are effective 

and accurate ways to measure the road surface condition; however, they require special and 

expensive vehicles equipped with on-board sensors and laser profilers. But due to the limited 

budget and lack of resources, the visual methods are more common for the assessment of 

unpaved roads. Nevertheless, the visual assessment methods can run into some barriers, such 

as the subjectivity of the assessments and the amount of labor work and time required to 

perform such assessments (Saeed et al., 2020). 

To address the subjective and demanding nature of manual road condition assessments, many 

research projects have developed methods to improve the automation level of road condition 

evaluation (for both paved and unpaved roads). Different data collection and processing 

methods, such as computer vision algorithms, vertical acceleration data processing, and 3D 

laser scanning, have been used to develop automated condition assessment systems (Saeed et 

al. 2020; Sattar et al. 2018). 

UAVs are promising imaging platforms for inspecting unpaved roads because they can be 

operated at a relatively low cost and their operation in the sparsely populated areas is generally 
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not restricted by the flight restrictions that exist in many urban areas (Transport Canada 2019, 

2020). Therefore, they can be a reliable tool to enhance the automation level of the road 

condition assessment processes, namely when they are coupled with computer vision-based 

methods.  

Computer vision methods use image processing and machine learning algorithms to detect 

different road surface defects in the road images or video frames, which can provide a cost-

effective solution for the assessment of the road surfaces (Saeed et al. 2020; Sattar et al. 2018). 

There are several studies on the application of such assessment methods on asphalt and concrete 

roads (Cao et al. 2020; Harikrishnan and Gopi 2017); however, only a small number of research 

projects focused on unpaved roads (Saeed et al. 2020). For example, there are a few research 

efforts that used computer vision algorithms for segmentation of the unpaved roads in images 

(Pereira et al. 2018) and detection of road surface damages (Nasiruddin Khilji et al. 2021; 

Dobson et al. 2013; Zhang and Elaksher 2012). 

Due to significant advances in high-performance computing systems (such as CPU, GPU, and 

RAM) at reasonable costs, computer vision-based methods have achieved considerable 

attention in the past decade (Sahari Moghaddam et al., 2020). Moreover, incremental 

improvement of computer vision algorithms has encouraged the use of these methods for road 

condition assessment. For example, an obvious pattern has emerged since 2016, when most 

research projects switched to deep learning-based methods to detect defects. 

Before deep learning, computer vision-based methods generally applied preprocessing filters 

to improve image lighting conditions and remove visual noises, and then extracted certain 

features (such as edges and histograms) to detect defects (Doycheva et al., 2016; Koch et al., 

2015; Radopoulou and Brilakis, 2015). However, the Deep Convolutional Neural Network 

(DCNN) models provide an end-to-end method with better performance in detecting road 
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defects under different lighting conditions and visual noises. Several studies have investigated 

different DCNN models for detecting a single type of road defect, such as cracks (Liu et al. 

2020; Li et al. 2020; Pan et al. 2018) and potholes (Pei et al. 2021; Ye et al. 2019). Most of 

these research efforts, however, focused on the paved roads (mostly asphalt roads) and the 

research on the application of DCNN-based methods for assessment of the unpaved roads is 

very limited; therefore, this research employs DCNN-based models to detect main defects on 

the unpaved road surfaces, including potholes, rutting, and washboarding, in the video frames 

captured by an UAV.  

1.2 Research objectives 

The aim of this research is to conduct a study on automated assessment of the unpaved roads. 

A system is developed by integration of methods from computer vision and machine learning 

(namely deep convolutional neural networks), infrastructure condition monitoring, and 

unmanned aerial systems to process UAV-captured images and identify distresses on the 

unpaved road surfaces.  

The use of UAVs can increase the automation level and improve time savings of the condition 

assessment of these road networks compared to the conventional methods, which require 

extensive field observation by professionals to evaluate and classify these infrastructure assets. 

These manual methods are time consuming and require intense work and may present some 

safety concerns, especially due to the traffic flow. 

Automating the road condition assessment process, such as automated detection of distresses 

on images, presents a valuable alternative for condition assessment. Therefore, this research 

aims to employ and assess the performance of different DCNN models in the segmentation of 
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the road surface and detection of three main defects, including potholes, washboarding, and 

rutting, on the identified surface of unpaved roads.  

1.3 Research methods 

This research proposes a system composed of UAV-based imaging for data collection and deep 

learning for distress recognition on the unpaved road surfaces. The collected data included 

UAV-captured videos from unpaved roads, where it is possible to visually spot surface defects, 

such as potholes, washboardings, and rutting. Different DCNN models were trained and 

assessed for the detection of defects on the road surface. In addition, a postprocessing method 

was proposed to enhance the detection results. The system was developed using the MATLAB 

platform with several toolboxes, including Computer Vision, Image Processing, Deep 

Learning, and Parallel Computing. A schematic workflow of the proposed research is shown 

in Figure 1. 

 

Figure 1: Schematic workflow of the proposed method 

UAV-captured	videos

Automated	process	to	prepare	
training	samples	(images)

Labell	images

Train	the	DCNN	with	the	
labelled	images

Surface	road	defects	detection	
using	the	trained	DCNN

Postprocessing:	
morphological	operations.	
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1.4 Thesis organization 

This thesis consists of five chapters. Chapter 1 introduces the research background and basic 

concepts in this research area.  Further, the research motivations, objectives, and the 

methodology of this research are presented. Chapter 2 provides a comprehensive literature 

review on the topics related to this research. Chapter 3 breaks down the framework of the 

methodology and describes the development of the proposed system. In addition, Chapter 3 

explains the tools, software product, processes, and algorithms used to develop and enhance 

the proposed system.   

Chapter 4 presents the results on the tests performed on sets of distinct samples (images), as 

well as the findings from the postprocessing technique applied to enhance the results, and 

discussion about the results obtained and potential reasons, and/or solutions for the presented 

outcome. Chapter 5 presents the conclusions for this research which summarizes the results, 

discusses the existing limitations, and provides recommendations for future developments.  
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Chapter 2: Literature Review 

2.1 Unpaved roads fundamentals and maintenance 

Unpaved roads have a significant role in transportation and service activities in Canada. 

According to the Transport Canada, unpaved roads account for 60% of the total length of public 

road networks in Canada (Transport Canada 2018). These roads are critical for the accessibility 

of remote areas, such as Indigenous communities, local agricultural, mining, and recreational 

areas. Some of these roads connect farms to the closest cities, making them high traffic roads 

in seasonal times. Despite the lower construction costs compared to the paved roads, unpaved 

roads could suffer from frequent damages due to the environmental conditions and traffic load, 

requiring constant attention, including assessment and maintenance operations (Archondo-

Callao 2004). Unpaved roads as referred to in this research are those roads with a surface made 

of earth material, gravel, or treated gravel, and they are periodically resurfaced with a motor 

grader (Huntington and Ksaibati 2009).  

According to the Government of Canada, provincial/territorial jurisdictions are responsible for 

the management and maintenance of their highway and road networks (Transport Canada 

2021). Condition assessment is a main requirement for effective maintenance of the road 

networks as it facilitates informed decision making about allocation of limited available 

resources for maintenance and rehabilitation of the existing roads (Cambridge Systematics, Inc. 

and Meyer 2007). Conventional road evaluation methods consist of field observation by 

qualified professionals and extensive fieldwork. These types of assessment could face safety 

issues, especially on roads with a high volume of traffic. They also require significant time and 

are labour-intensive (Zhang and Elaksher 2012). 
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The surface condition in unpaved roads, and the frequency and quality of the applied 

maintenance program could affect vehicle operation costs by more than 50%, and they also 

substantially affect the ride quality levels (Archondo-Callao 2004). These findings highlight 

the importance of the condition assessment in keeping such infrastructure in an acceptable 

serviceability level. 

In order to comprehend the condition assessment process in unpaved roads, it is necessary to 

describe a typical unpaved road structure, since it has a significant role in the road’s 

performance. A gravel road is composed of a crowned driving surface, shoulder areas, and 

ditches on the sides of the road as shown in the cross-section illustrated in Figure 2. 

 

Figure 2: The components of an unpaved road cross-section 

The cross-section shape plays an essential role in the road performance, including its 

maintenance, because this cross-section should keep the water drained away from the road 

surface. It is known that standing water on the road surface is one of the primary reasons for 

the distresses and failure of a gravel road (Maine Department of Environmental Protection 

2016). According to Zhang (Zhang 2010), rainfalls remove small particles from the crowned 

driving surface which cause a loss of material and disturb the surface layer gradation. In 

addition, the water trapped on the road surface can be one of the causes of potholes.  
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A primordial reason to build a crown into the roadway is to drain water off the roadway quickly. 

According to MDEP (Maine Department of Environmental Protection 2016), a road crown 

could be smoothing or super-elevating of the gravel road. The crown can also be defined as 

building a high point that runs lengthwise along the center of the road so that either side of this 

high point is sloped gently away from the center toward the outer edges of the road, as presented 

in Figure 3. 

 

Figure 3: Crown profile: ½ " of crown per foot of road width (e.g., ½ " x ½ x 12' road = 

3" crown) 

Usually, a gravel road should have a 1/2 inch or 3/4-inch slope per foot of the road width. The 

MDEP (Maine Department of Environmental Protection 2016) recommends that the crown 

maintenance must be done annually, because the weather wear and traffic load could deteriorate 

this mild slop.  

Another approach is the super-elevation concept, which similar to the crown, prevents the water 

from puddling on the road surface. In the super-elevation approach, instead of building a higher 

point in the center of the road cross-section, it tilts the entire roadway surface (except the uphill 

shoulder) in one direction. Unlike the crown, a super-elevation will not only drain the water, 

but it is also built on the horizontal curves as a safety measure, as shown in Figure 4. 
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Figure 4: Super-elevation profile: ½ " of super-elevation per foot of road width (e.g., ½ 

" x 12' road = 6" crown) 

The MDEP (Maine Department of Environmental Protection 2016) defines the shoulder area 

as the region between the roadway edge and top of the ditch. Its width ranges from 18" to 48". 

The shoulder's main functions include: 

● transfer the surface drained water to the ditch. 

● fit a snowbank area. 

● provide a safe visibility zone and emergency parking space. 

● provide structural support for the roadway surface. 

● serve as a safety transition zone between the roadway and the top of the ditch. 

On the unpaved roads, the shoulders usually have a gravel or grass surface. It is necessary to 

stabilize the shoulder with vegetation or rocks to avoid erosion. The MDEP (Maine Department 

of Environmental Protection 2016) recommends that the minimum drop should be 1.5” to 2” 

for a 2-foot shoulder. For a 4-foot shoulder, the minimum drop should be 3” to 4”. The 

transitions between the roadway and the shoulder should be smooth for the driver; therefore, 
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the shoulder should be shaped from the roadway edge, ensuring a seamless transition. The 

shoulder maintenance is performed by removing winter sands and debris, ensuring the grade is 

adequate, and the vegetation should be mowed during the Spring and Summer seasons. 

In some ideal cases, the road can be built without a ditch. When the local topography favours 

that condition, the water flows out of the shoulders as a non-erosive dispersed flow of water in 

a thin layer over the surface. Nonetheless, it is not a usual situation, because the local 

topography often does not allow this type of design and the road requires a ditch. A ditch is a 

U-shaped excavation channel adjacent to the road. Its main function is to collect and carry the 

drained water downward the slope. Some factors must be considered in construction of a ditch, 

such as the watershed size, degree of the road slope, width of the right-of-way, ditch size and 

shape, and the soil type.  

The ditch maintenance process consists of keeping it clear of obstructions and erosions. It is 

done by cleaning out the leaves, especially in the Fall, and by stabilizing the ditch with grass, 

erosion control blankets, or stones. Another measure is to install turnouts in the ditch to reduce 

the amount of water that flows down in the ditch.  

Unpaved roads frequently present distresses and failures due to their structural design 

combined with environmental and operational conditions, such as weather and heavy traffic. A 

weak subgrade combined with heavy traffic loads, for example, results in the surface failure, 

even if its cross-section is shaped according to the standards.  

To develop an efficient maintenance plan and keep the roads in an acceptable serviceability 

level, the operators first need a condition inventory that locates road sections with major 

distresses, such as rutting, potholes, and washboardings. A conventional road assessment 

generally consists of visual inspection conducted by a trained expert. Since this type of 

assessment relies on visual evaluations, the process is time-consuming and labour-intensive, 
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and could be error prone. Therefore, several studies proposed methods to automate road 

assessment processes using advanced sensing technologies, such as computer vision and 

Unmanned Aerial Vehicles (UAV) systems coupled with machine learning (Wu et al. 2019, 

Dobson et al. 2013, Zhang and Elaksher 2012, Sattar et al. 2018 and Koch et al. 2015). 

2.2 Visual methods to evaluate road surface condition 

Various road condition assessment methods have been developed for the asphalt and concrete 

roads over the last decade; however, the same level of efforts have not been applied for the 

assessment of unpaved roads, namely regarding the application of new sensing technologies. 

Therefore, it is still common to use traditional methods to evaluate unpaved road networks, 

which are discussed in this section.  

In order to rate the condition of an unpaved road, researchers such as (Walker 1991), pointed 

out two considerations: First consideration is to assess the drainage, crown condition, and the 

adequacy of the gravel thickness. Second, the assessment should measure the road surface 

defects, such as washboardings, ruts, potholes, and dust.  

A major study, indicated in (Walker 1991) and conducted by the Transportation Information 

Center at the University of Wisconsin in Madison, developed a model (called Gravel-PASER 

system) that introduced a set of  criteria for rating unpaved roads. Besides the gravel roads, this 

system also included criteria for the assessment of asphalt and concrete roads.  

The Gravel-PASER manual introduces a visual assessment system that determines a rating 

scale based on the type and severity of defects, focusing on the type of maintenance that would 

be more appropriate for the existing defects (Walker 1991). This assessment relies on the 

judgement of the person responsible for conducting the assessment. This rating system will 

provide better results when the judgement is made in the field. If the staff cannot conclude by 



 
 

13  

visual inspection, additional evaluation methods, such as sampling tests, can be used. Although 

it requires a good knowledge of the road defects, and the responsible staff require extensive 

background. The candidates can quickly receive training on this rating system.  

Walker (Walker 1991)  introduced a simplified rating system to document the condition of the 

gravel roads. This system includes three steps: The whole roadway is parcelled out and 

categorized according to its pavement thickness and traffic volume. Later an inventory of each 

parcel is proposed according to its characteristics, such as geometry, traffic volume, and 

functional classification. Finally, the road condition is determined by assorting the type of 

distresses, their extent, and severity.  

The process of rating a gravel road differs from the rating of the paved roads. By definition, 

the rating process focuses on determining the type of maintenance each road section will 

require. To rate a gravel road, the staff should consider three major factors, including two 

primary factors: the road crown and drainage, and lastly: the adequacy of the gravel layer.  

The primary factors, including roadway crown and drainage, can be visually inspected. The 

third factor, the adequacy of the gravel, needs more information, such as the road thickness and 

the aggregate quality. A good indicator of the adequacy of the gravel is the existence of 

distresses on the road surface. These distresses can be manifested as rutting or potholes, which 

indicate that the road’s capacity of carrying traffic loads has been compromised. Afterwards, 

other distress types, such as washboarding, loose rocks, and dust, will be evaluated (Walker 

1991). Walker (Walker 1991) stated that although relevant, such defects usually indicate 

traffic-related issues and are less critical for maintenance planning.  

As discussed above, the road crown is necessary to drain the water away from the road surface. 

A proper crown maintenance should provide a crown grade between 1/2 and 3/4 inches per ft 

of road width. To provide an adequate water flow and to avoid the water to flow over the road 
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surface, drainage is the next primary factor to be inspected where the dimensions of the ditch 

and the obstructions (e.g., tree branches and leaves) should be assessed. It is also necessary to 

observe any erosions and to fix or prevent them.  

Adequacy of the gravel layer is the third evaluation factor as it plays a major role in the road 

performance. The gravel layer must provide a smooth driving experience. The process of 

evaluating the gravel layer mainly includes identifying, classifying, and rating the signs of 

distress. Surface distresses can be classified into five main groups:  

● Washboarding  

● Potholes  

● Rutting 

● Dust 

● Loose aggregate  

2.2.1 Washboarding 

Washboarding, also known as corrugation, is as series of spaced ridges and valleys that are 

perpendicular to the longitudinal axis of the road and usually have rather similar intervals 

(Eaton et al. 1989), as presented in Figure 5. It was mentioned that washboarding can be caused 

by traffic load action and loose aggregates (Eaton et al. 1989; Walker 1991).  
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Figure 5: Washboarding (corrugation) of an unpaved road surface 

In addition to the heavy traffic loads, the MDEP (Maine Department of Environmental 

Protection 2016) identifies poor road surface material  as a cause of washboarding. It states that 

the lack of fine material (silts and clays) can cause this type of distress. In order to rate 

washboarding distresses, a guideline  classified washboardings according to their severity, 

dividing them into three severity levels: L, M, and H (Eaton et al. 1989).  

The severity level L (low) means that the corrugation (washboarding) depth is less than one 

inch, and the severity level M (Medium) indicates depths ranging from one to three inches. 

Finally, the corrugations deeper than three inches are classified as H (High) (Eaton et al. 1989). 

This classification is based on the PAVER PMS Method, which was developed by the U.S. 

Army Corps of Engineers and the American Public Work Association. It is possible to classify 

this type of distress using the concept of Deduct-value, which is presented in  Figure 6. 
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Figure 6: Deduct-value curves for corrugations (Eaton et al. 1989) 

Deduct-value is a rating metric proposed in PAVER PMS, based on a number from 0 to 100, 

where 0 means that the distress has no impact on the road surface condition (i.e., there is no 

distresses on the road surface) and 100 indicates a very severe impact to the road (failure) which 

is caused by the existing distresses.  

2.2.2 Potholes 

Potholes are localized depressions on the road surface. They typically have a diameter less than 

3 ft, as shown in Figure 7. The MDEP (Maine Department of Environmental Protection 2016) 

identifies poor drainage of the road surface and insufficient road crown as the main causes of 

potholes on the road surface. Eaton (Eaton et al. 1989) stated that the potholes occur when 

traffic abrades small pieces of the road, and they grow as the water gets trapped inside them. 
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Figure 7: Potholes on an unpaved road surface 

Potholes’ extension and depth indicate lack of strength on the road surface and highlight the 

need for a major repair (Walker 1991). For example, it is a major concern when potholes are 

more than 4 inches deep and cover more than 25 percent of the road surface area (Walker 1991). 

Trapped water in the pothole can also accelerate deterioration of the road surface.  Accordingly, 

potholes can be classified into Low (L), Medium (M), and High (H) severity levels  using Table 

1 (Eaton et al. 1989). In addition, based on the PAVER PMS method, deduct values can be 

calculated for the potholes similar to the graphical approach presented in Figure 6.  

Table 1: Pothole’s severity levels according to Eaton (Eaton et al. 1989) 
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2.2.3 Rutting 

Rutting are long depressions that occur on the road surface parallel to the road's longitudinal 

axis (in the wheel path) (Eaton et al. 1989), as shown in Figure 8. Rutting can be an indicator 

of heavy traffic volume in the area (Eaton et al. 1989). According to Walker (Walker 1991), a 

rutting deeper than 3 inches can indicate a lack of sufficient gravel thickness. The MDEP 

(Maine Department of Environmental Protection 2016) goes further in explaining the possible 

reasons for rutting in the unpaved roads. Besides the high volume of traffic, ruts also expose a 

poor road base material, which prevents an efficient drainage, and insufficient ditching can also 

be pointed as one reason for rutting. All the cited reasons contribute to the softening of the road 

surfaces, and their combination with high traffic volume cause the rutting.  

 

Figure 8: Rutting on an unpaved road surface 

Eaton (Eaton et al. 1989) defined  a method for rating of the rutting distresses, which were 

categorized into three severity levels and integrated into the PAVER PMS Method. The ruts 

with less than 1 inch depth are classified into the L category. When the rut depth is between 1 

and 3 inches, it fits into the class M category and the ruts deeper than 3 inches are categorized 
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in the H severity level. Then, their deduct values can be calculated similar to the graphical 

approach presented in Figure 6.  

2.2.4 Dust 

Dust is a phenomenon that occurs due to the abrasive action of traffic on the unpaved road 

surfaces, as shown in Figure 9. Several conditions implicate in the dust defect, including 

gradation of the aggregate layer, traffic volume, and weather conditions. According to Walker 

(Walker 1991), dust can be a precedent to other severe defects, because it removes fines from 

the road surface. Dust can also cause safety issues as it can impair the drivers' vision. 

 

Figure 9: Dust on an unpaved road surface (From Oransi 2021) 

 
Eaton (Eaton et al. 1989) classified dust into three severity levels as well. The L severity 

indicates a thin dust that does not impair the driver's sight. A medium-thick dust cloud makes 

the traffic slow down because of the low visibility (M), and a thick cloud that obstructs almost 

the entire sight (H).  

Eaton (Eaton et al. 1989) proposed this rating method by driving a vehicle at 25mph and 

watching the dust cloud. The deducted values for dust are determined as 2 points for low (L), 

5 points for medium (M), and 15 points for high (H).  
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2.2.5 Loose aggregate 

Loose aggregate occurs when the road's largest aggregate particles separate from the surface 

layer, which leads to the loosen base aggregates on the road surface. These loose aggregates 

can disrupt the traffic flow by collecting the particles between wheels paths. They can also 

negatively affect the road drainage ability. A sample road with loose aggregate is shown in 

Figure 10.   

 

Figure 10: Loose aggregate on an unpaved road surface (From Jahren Charles 2015) 

 

In the classification model proposed by Eaton (Eaton et al. 1989), loose aggregate can be 

classified into three severity levels, similar to the previous distresses. When the depth of 

aggregate berm is less than 2in, it fits in the severity level “L”. The berms between 2in and 4in 

are classified as severity level “M”, and they are considered in the “H” level when their berms 

are larger than 4in.  

Unlike Eaton (Eaton et al. 1989), Walker (Walker 1991) proposed a simplified 5-point rating 

scale based on the Gravel-PASER system, which follows:  
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● 5 (Excellent): The road’s crown is in good condition and its drainage system and gravel 

layers are adequate. Usually, it occurs on new roads.  

● 4 (Good): The road presents good conditions, where its crown, drainage, and gravel 

layer usually do not need repair.  

● 3 (Fair): The road needs small repairs such as grading and, or ditch maintenance. 

● 2 (Poor): The road needs major repairs, such as additional aggregate and or major 

drainage maintenance. 

● 1 (Failed): The road should be reconstructed.  

The Gravel Road PASER Manual (Walker 2002), as presented in Table 2, follows the 

evaluation system which was proposed earlier by the same researcher (Walker 1991). This table 

represents the PASER rating system and corresponding treatment measures.  
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Table 2: Gravel Road rating system according to the Gravel Road PASER Manual (Walker 
2002) 

 

Walker (Walker 1991) estimated that a field rating crew could cover 20 to 40 miles of roadway 

per day. Thus, a small road network operated by a small township could be covered in a day or 

two. It might take longer for larger road networks, which highlights the need for automation of 

these evaluation processes.  

2.3 Quantitative measurement of the longitudinal road profile 

Several studies used the International Roughness Index (IRI) as a measure to quantify the road 

surface condition. It is stated that the IRI has been extensively used for assessment of the paved 

roads, because it is considered a consistent index (Alhasan et al. 2015).  The World Bank 

initiated the IRI development in 1982, seeking to unify the road condition data acquired 

worldwide and to suit the process for different road profilers (Sayers and Karamihas 1998) . 
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Road roughness was defined  as an inconsistency on the road surface (Archondo-Callao 1999). 

The IRI is the methodology used to evaluate the roughness of the road surface. It varies from 

zero to twenty (m/km), being zero referred to as a planar (smooth) roadway, and 20 m/km 

indicates a road surface that is too damaged (Archondo-Callao 1999). The IRI measures the 

accumulated vertical movements between the wheel and body of a moving vehicle, divided by 

the length of the road travelled, thus the results are in the slope units (Sayers et al. 1986).   

In addition to the assessment of the road surface condition, IRI could also serve as a tool to 

measure the overall ride quality and vehicle operating costs (Sayers and Karamihas 1998). A 

graph was developed to present the IRI ranges matching different road surface conditions, as 

shown in Figure 11 (Sayers and Karamihas 1998). 

 

Figure 11: IRI ranges accordingly to the road surface condition (Sayers and Karamihas 1998) 
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The Guidelines for Conducting and Calibrating Road Roughness Measurements (GCCRRM) 

advocates four generic roughness measurement methods that fit into many approaches used in 

the world (Sayers et al. 1986):  

• Class 1: Precision profiles 

• Class 2: Other profilometric methods 

• Class 3: IRI estimates from correlation equations 

• Class 4: Subjective ratings and uncalibrated measures 

According to the GCCRRM (Sayers et al. 1986), it is necessary to measure a wheel track's 

longitudinal profile to perform the Class 1 assessment. A range of accurate elevation points 

closely spaced along the travelled wheel path is necessary to create the IRI basis calculation 

value. Profilometers can be used to determine the Class 1 method's accuracy, which the 

GCCRRM stipulates as the most accurate class of measurements (Sayers et al. 1986). The 

employed profilometer (e.g. Laser profilometer) should be validated against high precision 

measurement equipment, such as the rod and surveyor’s level, which is considered as the most 

precise approach to measure the roughness (Sayers et al. 1986). 

The GCCRRM established that the distance interval between the surveyed samples should be 

less than 250mm (4 measures/meter) and the elevation measures' precision must be at least 0.5 

mm for the very smooth pavements (Sayers et al. 1986). For rough surfaces, the Precision 

profiles class can accept measurements with lower precisions. 

The rod-level method is the most well-known and accessible profile measurement technique 

because the required equipment can be easily bought or rented, and the measurement process 

is straightforward. However, this process is very labor-intensive and expensive. Therefore, the 
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authors recommended this method when only a limited number of profiles should be measured 

or the road surface condition is critical, such as airport runways (Sayers et al. 1986). 

The Class 2 method includes all the profilometers that can measure the IRI (Sayers et al. 1986). 

In the Class 2 method, the road profiles are usually measured and computed with high-speed 

profilometers. The GCCRRM mentioned the APL Trailer as the dynamic profilometer 

validated by the International Road Roughness Experiment (IRRE) roughness range (Sayers et 

al. 1986). 

IRI can be estimated using correlation equations in the Class 3 method (Sayers et al. 1986), 

which use measurements acquired through the response-type road roughness measurement 

systems (RTRRMSs). The RTRRMSs depend on the response measurements provided by 

sensors installed on a vehicle. The movements of a vehicle allow the measurements to yield 

roughness properties correlated to the IRI. 

The GCCRRM recommends that equations should calibrate the results obtained in the 

RTRRMSs methods (Sayers et al. 1986). This calibration aims to unify the different results 

obtained due to the different dynamic proprieties of each vehicle. A method for measuring 

roughness qualifies as Class 3 if it uses the "calibration by correlation" approach (Sayers et al. 

1986).  

Class 4 approach includes subjective ratings and uncalibrated measures, which are used when 

the road assessment does not require a high level of accuracy. The main focus is to obtain a 

roughness data base (Sayers et al. 1986). This method relies on subjective evaluation, which 

usually involves a ride to test the road or visual inspections. Alhasan et al. (Alhasan et al. 2015) 

presented examples that fit the Class 4 method for measuring roughness. However, such 

assessments did not present any IRI values (Alhasan et al. 2015). 
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2.4 Computer vision, machine learning, and UAV applications for condition 

assessment of the roads 

Assessing civil infrastructure assets is crucial to ensure that they still meet their service 

requirements. Such assessments provide the required data to develop models that can predict 

future conditions and determine if there is a need for maintenance (Koch et al. 2015). 

A study by Koch et al. (Koch et al. 2015) brings forward that the infrastructure condition 

assessments usually rely on a visual inspection performed by qualified professionals (Koch et 

al. 2015) and highlights that they are susceptible to failures, raising questions about the 

reliability of manual assessments. As an example of such concern, the study presented the I-

35W Highway Bridge collapse in Minneapolis in 2007 due to inadequately conducted 

inspections.   

Automated assessment methods, such automated detection of distresses in the road images, are 

potential alternative for condition assessment. By using artificial intelligence approaches, 

including image processing and machine learning, it is possible to automate the infrastructure 

assessment processes which could reduce the need for human effort and possible errors. 

Several research studies demonstrated that the improvements in technology, including digital 

data capturing and processing, provide vast opportunities to automate data collection and 

assessment practices (Sahari Moghaddam et al. 2020; Sattar et al. 2018). Namely, there are a 

growing number of studies that used computer vision algorithms to improve infrastructure 

condition assessment processes. For example, studies conducted by Wu et al. (Wu et al. 2019) 

and Cao et al. (Cao et al. 2020) are instances of the combination of infrastructure engineering 

and computer vision areas. 
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Koch et al. (Koch et al. 2015) discussed the state-of-art computer vision solutions that were 

developed to automate the assessments of civil infrastructure assets. Those systems mostly 

relied on conventional image processing methods (before deep learning), such as template 

matching, histogram transforms, background subtraction, filtering, region growing, edge and 

boundary detection, and texture recognition, to detect defects on the surface of different 

infrastructure assets, such as roads and bridges. In addition to the defect detection, such 

methods can facilitate classification and rating of the defects, paving the way toward full 

assessment of civil infrastructure assets (Koch et al. 2015). This study categorized computer 

vision methods used for detection, classification, and assessment of some defects in 

infrastructure assets as presented in Figure 12. 

 

Figure 12: Categorized general and specific computer vision methods for defect detection, 
classification, and assessment of civil infrastructure (From Koch et al. 2015) 

 

Computer vision techniques are promising tools to improve infrastructure condition 

assessments. While the defects can be detected by a simple visual inspection, the measurement 

requires more effort to achieve the accuracy needed for certain types of reports. In some cases, 
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advanced inspection methods, such as computer vision techniques can provide a better 

accuracy for the structural assessments (Koch et al. 2015). 

There has been a noticeable trend in the research efforts after 2017, as most of the projects have 

used deep convolutional neural networks (DCNN) for detection of defects. For example, the 

research presented by Wu et al consisted of collection of a large set of images representing the 

infrastructure condition, including different types of distresses (Wu et al. 2019). The collected 

sets of images were used to train DCNN classifiers. Wu et al. (Wu et al. 2019) highlighted that 

the amount and quality of the collected images are crucial for the DCNN training, being 

essential to proceed with the next steps. A major issue with the DCNN classifiers is the need 

for manual labelling of the collected images by trained individuals. The road distresses should 

be identified and categorized, which in that study, they followed the ASTM D6433-07 

standard.  They used a smart camera system, including a Raspberry Pi computer, a Pi camera, 

a Wi-fi adapter transmitter, a receiver, and an AC power cable, to collect images. Later, they 

programmed the trained DCNN classifier into the smart camera through the Raspberry Pi to 

streamline the classification process. 

Image processing methods and UAV platforms have been also used together to assess unpaved 

roads. Dobson et al. (Dobson et al. 2013) focused on using an unmanned helicopter to collect 

images from the roads that were subsequently used for condition assessment of the roads. They 

used a single-rotor UAV equipped with a Digital Single-lens Reflex (DSLR) camera to obtain 

images from unpaved road surfaces. It was suggested that the use of UAV and image processing 

can offer a low-cost alternative for the assessment of unpaved roads.  They also pointed out 

some obstacles that this field of study can face, such as the regulations for operating UAVs. 

For example, all UAV operators must have a drone pilot certificate to operate a drone between 

250 g and 25 kg in Canada (Transport Canada 2019). Dobson et al. (Dobson et al. 2013) used 
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the structure from motion method to generate 3D scenes of the road surface from the UAV-

captured images, which allowed identification of height differences on the unpaved road 

surfaces as the height difference on the road surface could be a main indicator in most distress 

types. Using a commercial off the shelf solution, they extracted some information that aligned 

predetermined size bins. The proposed approach had the following steps (Dobson et al. 2013): 

● Used the Bundler software to generate a 3D point-cloud.  

● A multi-view stereo algorithm was used to increase the density of the point-cloud. The 

Patch-based Multi-View Stereo Software was used to perform a finer point-cloud.   

● A mask was created by applying a windowed entropy filter to the road surface. This 

mask represented the road surface, differentiating it from the surrounding areas, such 

as vegetation. By using a Fourier-based technique, it created a watertight surface from 

the point-cloud.  

● With the use of singular value decomposition, the developed system determined the 

best plane (z-axis) and then it was rotated to become normal to the road surface.  

● By choosing the lower entropy, the road surface was segmented, thus it was possible to 

analyze the road surface and discarding the adjacent areas.  

● Application of the Circular Hough Transform allowed the system to find and calculate 

pothole's locations and dimensions.  

● Gabor filters were used to find ruts and washboarding.  

● The Crown was determined by the height-field acquired before.  
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Another system was developed using an unmanned helicopter equipped with a digital camera 

to survey unpaved roads (Zhang and Elaksher 2012). This system had an onboard flight control 

system and a ground control station (GCS) that enhanced the automation level of the imaging 

process. That system allowed a programmed flight trajectory tracking. An autopilot software 

controlled the prototype to fly on the desired path and the GCS enabled the digital camera to 

capture frames automatically. The collected images were used to create a 3D scene of the road 

which provided a clear view of the surface distresses and enabled a detailed evaluation of the 

road... A recent project also employed structure from motion method to generate 3D scene of 

logging roads from UAV-captured images, and then used the 3D scene to estimates the depth 

of wheel ruts on the roads (Marra et al. 2021).   

All these proposed UAV-based systems for assessment of unpaved roads used overlapping 

images from the surveyed roads to create 3D scenes of the roads and detect distresses (Marra 

et al. 2021; Dobson et al. 2013; Zhang and Elaksher 2012), but this approach requires multiple 

overlapping frames from each section of the road which considerably slows the assessment 

process. Thus, the proposed method in this study aims to accelerate the surveying process by 

developing a method which requires a single flight pass over a road. 

Several studies have investigated methods for automated damage recognition and classification 

in the asphalt roads. Such studies have developed methods to improve the accuracy of distress 

recognition and lower the associated costs (Cao et al. 2020). The use of vibration sensor-based 

to recognize road distresses is another approach for this problem, but the results usually have 

lower accuracy (Cao et al. 2020; Harikrishnan and Gopi 2017), as the vibration data must be 

indirectly interpreted. Laser scanning-based systems are another alternative assessment method 

that can provide a high accuracy (Cao et al. 2020). However, these systems are relatively 

expensive and have high implementation and maintenance costs (Yamada et al. 2013). 
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With that summary, image processing techniques (IPTs) have been a promising alternative for 

defect detection in asphalt roads (Cao et al. 2020). In particular, the dramatic improvement of 

the image processing methods has had a noticeable impact on the asphalt road assessment in 

the last few years. But they can still encounter some inaccuracies, mostly due to inadequate 

background illumination and the asphalt texture itself (Cao et al. 2020).  Several studies 

highlighted machine learning approaches to improve accuracy of the defect recognition on the 

asphalt roads.  

2.5 Deep learning-based methods 

The conventional systems proposed in many studies (mostly before 2017) consisted of image 

acquisition, image processing (including preprocessing and feature extraction), and machine 

learning (i.e., classification) methods to assess whether the identified regions in images are 

defects or not. However, there were some issues in these approaches which required 

improvement, such as lighting conditions, false negatives, and the hand-picked feature 

extraction of IPTs (Cao et al. 2020). More modern systems, namely in the last five years, have 

been using end-to-end deep learning methods which do not require separate feature extraction 

and classification steps, and in addition, the feature extraction processes are automatically 

carried out. 

Figure 13 provides a hierarchical representation of the artificial intelligence field and deep 

learning concept to help visualize and comprehend it. Deep learning is a sub-class of machine 

learning which is a sub-field of artificial intelligence. The deep learning approach embraces 

the concept of the brain's neural structure. The neural network behaves analogously to the 

human brain, where the Artificial Neural Networks (ANN) would behave similarly to the 

brain's functions. 
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Figure 13: Deep learning hierarchical classification and explanation 

 
A neural network is composed of layers. The neural network layers include processing 

elements, called nodes, and the connection elements, also known as links.  The neural network 

layers can be divided into the input layer, hidden layer(s), and output layer. The deep neural 

networks have multiple hidden layers between the input and output layers. An external source 

is used to feed the input layer, while the hidden layers receive and process the information 

carried by their prior layers. Finally, the neurons on the output layer process that information 

to generate the outcome.  

The transformations between the input and the output layers are divided into dense, 

convolutional, pooling, and recurrent layers. Each one of those categories is more appropriate 

for a specifics process. For example, the convolution is the most used process for image 

processing purposes (Rawat and Wang 2017).  

In the human brain, when the neurons are activated, they produce an electrical impulse. This 

activation occurs due to multiple stimulations. To develop a similar pattern, the ANNs work 
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with an activation function, correlating an input value to a specific output. The output of a node 

is carried by the connecting elements, working as an input for the next node.  

It is possible to connect several nodes to one unique node in the following layer, and to include 

such connections in the network, each link between the nodes should have a weight. This way, 

the receiving node will receive the weighted sum of the outputs from nodes in the previous 

layer. Therefore, the optimization of these weights is considered as a major step in the training 

process of the artificial neural networks.  

Given that the purpose of an artificial neural network is to recognize a specific pattern(s) in the 

input images, this approach requires three steps, including training, validation, and testing. The 

training step consists of optimizing the weights to obtain the optimal value that would match 

the correct output classes.  

The validation step primarily consists of a procedure similar to the training, creating and 

comparing predictions on the data and the labels. It differs from the training process only by 

the weights that are not updated. Finally, a set of images different from the images utilized to 

train and validate is used for testing the developed network. 

As mentioned above, the transformations between the input and the output layers are divided 

into dense, convolutional, pooling, and recurrent layers. The Convolutional layers are present 

in Deep Convolutional Neural Networks (DCNN). They operate using filters to detect image 

patterns, such as edges, shapes, colours, and textures. Simultaneously, the pooling layers 

simplify the output by performing nonlinear down sampling, which reduce the number of 

parameters the network would use to learn. Finally, the Rectified linear unit (ReLU) layer 

provides faster and more effective training, it carries forward to the next layer only the activated 

features (MATLAB 2021). 
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The convolution process consists of a filter applied to the regions of the input image, and this 

filter (kernel) can be represented by a matrix with a specific size, and it slides across the input 

image until it covers the whole image. The filter performs an operation in each position it passes 

through, which  generates the output (DeepLizard 2019). This process is represented in Figure 

14. 
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Figure 14: Representation of a convolutional operation (From DeepLizard 2019) 
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There are different architectures of DCNNs which are used for semantic segmentation and 

object recognition in images. These networks were pre-trained using a dataset of more than one 

million images and can classify up to 1000 categories in images. The use of a pre-trained 

network helps to accelerate the training process on a new image dataset and new classes, and 

this process is called transfer learning (Mathworks 2019).  It has been shown that the transfer 

learning can accelerate the training process when a pretrained network, which was trained using 

an unrelated dataset, is used as the base network (Pan and Yang 2009). 

The deep learning algorithms extract representative and discriminative features from the 

bottom to the top level of an input dataset, such as an image (Cao et al. 2020). These extractions 

are performed automatically and hierarchically, as shown in Figure 15.  Several studies showed 

promising results in infrastructure defect recognition using the deep learning-based methods 

(Aparna et al. 2019; Butcher et al. 2014; Mandal et al. 2019; Mei and Gül 2020; Song et al. 

2018) which used transfer learning on pre-trained feature extraction models such as Inception 

(Rawat and Wang 2017), Residual network (Resnet) (He et al., 2016), Vgg16 (Simonyan and 

Zisserman 2014), and MobileNet (Sandler et al. 2018). 

 

Figure 15: Automatic and hierarchical defect extraction from the bottom to the top level of an 
inputted data 
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The Inception model consists of approximating and converting an optimal local sparse structure 

in a convolutional vision network to readily available dense components. It also works using 

dimension reductions wherever the computational requirements would increase too much 

otherwise (Szegedy et al., 2015). In other words, as the network goes deeper, the less 

computational power it would require. 

He et al. (He et al., 2016) explained that the network depth (number of stacked layers) is crucial 

for the accuracy of the results, questioning how a network depth can affect the results. Further, 

it was explained that when deeper networks start converging, they face a degradation problem, 

where the network depth is increased, the accuracy gets saturated and decreases quickly. The 

Resnet model is brought as an alternative for the degradation problem. It works by fitting the 

stacked layers to a residual map instead of fitting it to an underlying mapping (He et al., 2016). 

The MobileNet architecture aims at a lighter network, and it relies on depth wise separable 

convolutions to achieve that (Sandler et al. 2018). This model works by factorizing a standard 

convolution into a depth wise convolution. It applies the regular convolutional operations in 

the input layer, while it applies the depth wise convolutional operations in the following layers 

(Howard et al. 2017). The VGG16 model is another popular DCNN architecture. It has a total 

of 16 layers, including thirteen convolutional layers and three fully connected layers (Simonyan 

and Zisserman 2014). 
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Chapter 3: Methodology 

This research aims to develop a framework to enhance the automation level of the condition 

assessment processes in the unpaved roads. It proposes a system composed of UAV-based 

imaging for data collection and artificial intelligence for distress recognition on the road 

surfaces. The collected data included UAV-captured videos from unpaved roads, where it is 

possible to visually spot surface defects, such as potholes, washboardings, and rutting. 

MATLAB platform with several toolboxes, including Computer Vision, Image Processing, 

Deep Learning, and Parallel Computing, were used to develop the methods used in the 

proposed system. 

The schematic workflow of the proposed system is illustrated in Figure 16. In this approach, a 

large number of frames were extracted from the UAV-captured videos and were manually 

labelled and used for the training of DCNN-based classifiers using the transfer learning 

approach. In addition, a postprocessing method was proposed to improve the results. Following 

subsections describe the details of the methods used in this research. 
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Figure 16:  Schematic workflow of the proposed method 

3.1 Data acquisition 

The videos from the roads were captured using a micro-UAV, named Mavic Mini, which has 

a takeoff weight of 249g, with folded dimensions of 40×81×57 mm, and unfolded dimensions 

(with propellers) of 245×289×55 mm. This drone can fly up to 30 minutes with a fully charged 

battery. It has a built-in camera with 1/2.3" CMOS sensor and 12 MP resolution (Da-Jiang 

Innovations 2021).  The Mavic Mini records videos in the MP4 format with up to 2.7k 

(2720×1530 pixels) resolution. The photos are captured in the JPEG format in two aspect ratios 

and sizes, including 4:3 with 4000×3000 pixels and 16:9 with 4000×2250 pixels. Figure 17 

shows this UAV that can be controlled by a smartphone through its flight.  

UAV-captured	videos

Automated	process	to	prepare	
training	samples	(images)

Label	images

Train	the	DCNN	with	the	
labelled	images

Surface	road	defects	detection	
using	the	trained	DCNN

Postprocessing:	
morphological	operations.	
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Figure 17:  Mavic Mini Aircraft  

 

As previously mentioned, the Canadian Aviation Regulations (CARs) stipulate that operation 

of drones that weigh 250g up to 25kg require a drone pilot certificate (Transport Canada 2020). 

The Mavic Mini model was chosen in this research to avoid the requirements of the CARs. The 

Canadian Aviation Regulations also require that a drone should not fly up more than the 

maximum altitude of 122m. It must fly away from bystanders, at a minimum horizontal 

distance of 30 metres for basic operations, away from emergency operations and advertised 

events. It also should avoid forest fires, outdoor concerts, and parades. It must fly 5.6 km away 

from the airports and 1.9 km away from the heliports and outside controlled airspaces 

(Transport Canada 2020).  

The flight altitude of the UAV was maintained between 5m and 6 m from the road surface and 

the pitch angle of the UAV was set at -20˚ from the horizontal line during the data collection. 

The video resolution of 1920 x 1080 pixels was selected and the vertical field of view of the 

camera was 83˚. If the drone flies at the altitude of 6 m from the road surface, the bottom half 

of the frame will cover about 13.2 m of the road surface, as shown in Figure 18. Nonetheless, 

the covered road surface distance can vary based on the geometrical proprieties of the road, 

e.g., due to the slope of the road and curves (Nasiruddin Khilji et al. 2021). These videos were 
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captured from more than 10 different unpaved roads within 100 km vicinity of Thunder Bay, 

Ontario. 

 

Figure 18:  UAV field of view during flight (From Nasiruddin Khilji et al. 2021) 

 
Figure 19 shows a sample frame extracted from the video captured using the proposed setup. 

A MATLAB code was developed to automate the process of frame extraction. This step is 

discussed in the next section (3.2).   

 

Figure 19: A sample captured frame 



 
 

42  

3.2 Data preparation process  

An automated process was developed to prepare training samples which includes two steps: 

The first step grabbed frames from the videos (see Figure 20. a), where it was set to get frames 

on a certain interval (e.g., every 4 seconds). The second step consisted of cropping extracted 

images to focus on the road surface by excluding surrounding areas, such as vegetation, and 

setting those images in a similar size (400x300 pixels) and aspect ratio of 4:3 (see Figure 20. 

b). That way, the defects become more visible for labelling. The codes utilized for the data 

preparation process can be found in the Appendix. The results of such a data preparation 

process can be seen in Figure 20.  

 

Figure 20: a) Image frame acquired from a captured video; b) frame cropped and resized 
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3.3 Image labelling 

Since the supervised learning approach is used to train the DCNN classifiers, the training 

process requires a large number of labelled training samples. The labelling process consisted 

of manually labelling each prepared frame. All the training images were resized to 400 x 300 

pixels. The size of training images might seem small, but this size was determined to create a 

balance between the massive required computational power and the available computing 

resources (e.g., GPU, CPU, and RAM). The labelling process was the least automated portion 

of this research because it required significant amount of human effort to label more than 1000 

images. Most of the labelled images were used for training and the rest were used for the testing 

purpose. This step provided a base for the training process of the DCNN classifiers, as a solid 

training process is based on the variety of patterns and features available in the training 

samples, which can consequently enhance the performance of the classifiers. The labelling 

process was performed using the Image Labeler app available in the Computer Vision toolbox 

of MATLAB® 2020b software. The images were labelled on a pixel level using the polygon 

tool in the Image labeller App. Figure 21 depicts the steps taken to label images. 
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Figure 21: Image labelling process using Image Labeler tool of MATLAB® 2020b software 

The labelling process was carried out in three sessions of five hundred and sixty, seven 

hundred, and one thousand images, to assess the effect of training numbers on the performance 

of the classifiers. Recent studies showed that the number of images used to train the classifiers 

can affect the performance of the DCNN (Mei and Gül 2020; Dung and Anh 2019), such studies 

used 500 images or less to train the classifiers using the transfer learning approach with 

promising results. Thus, it can be stated that the presented models were trained with enough 

samples. 

The same labelling process was applied in the testing dataset, for this dataset it was labelled 

one hundred and twenty-two images, as showed in Section 3.5.  Figure 22 shows three samples 

of manually labelled images, in which the labels are overlayed on the original images. 
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Figure 22: Sample labelled images: a) Rutting; b) Washboarding; c) Pothole 
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3.4 Training DCNN classifiers  

The transfer learning approach was used to train defect classifiers using three pre-trained 

DCNN architectures, including MobileNetV2, ResNet50, and Vgg16. These architectures are 

discussed in Chapter 2, and previous research showed a great performance of these three 

networks architecture in semantic segmentation, specially related to infrastructure’s defect 

detection (He et al. 2016; McLaughlin et al. 2020; Sandler et al. 2018; Simonyan and Zisserman 

2014; Yang and Ji 2021). 

These three network architectures were previously trained using more than a million images 

from the ImageNet database (ImageNet 2020) for generic object recognition. The chosen 

architectures differ based on their proprieties as shown in Table 3.  

Table 3: Pretrained DCNN proprieties (Mathworks 2019) 

Network Depth Size Parameters (Millions) Image Input Size 

mobilenetv2 53 13 MB 3.5 224-by-224 

resnet50 50 96 MB 25.6 224-by-224 

vgg16 16 515 MB 138 224-by-224 

The training process was performed using the machine learning toolbox of MATLAB® 2020b 

software. The stochastic gradient descent with the learning rate of 0.01 and the momentum 

value of 0.9 was employed to carry out the training process. The labeled training images were 

augmented to enhance the variety of training images by random X and Y translation, and right 

and left reflection of pixels. The training was done in batches of six images with 100 epochs, 

when the loss rate was plateaued. The training sessions were performed using GPU-based 

parallel computing on a desktop computer with the following specifications: 

CPU: Intel® Core™ i7 9700 (8-Core, 12MB Cache, up to 4.7GHz); GPU: NVIDIA® GeForce 

GTX® 1660Ti 6GB GDDR6; RAM:16GB DDR4; and OS: Windows 10. 
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The training processes took from 2.5 to 4 hours to train each of these models, and the training 

process was run three times. For each round, extra images were added, the first training process 

included 560 images, while the second run had 700 images (including 560 images from 

previous session), and the third had 1000 images (including 700 images from two previous 

sessions). 

3.5 Testing and postprocessing  

The trained deep neural network models were developed to assess the surface condition of 

different unpaved roads. A new set of images was used to perform such an assessment. These 

images were collected using the same procedures performed to collect the set of training 

images. This test dataset included one hundred and twenty-two images; a few samples are 

shown in  Figure 23. 
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Figure 23: Sample of testing images 

Each deep neural network model (MobileNetV2, ResNet50 and Vgg16) was trained three times 

(560, 700 and 1000 images), providing nine different classifiers to test. The testing process was 

developed in two steps. First, the set of 122 images were manually labelled, using the same 

process described in section 3.3. However, the test images had varying sizes (e.g., 640 x 480, 

and 400 x 300 pixels). Then all the trained classifiers processed the test images. Figure 24 

provide a sample of manually labelled image and the result of segmentation on the same frame.  
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Figure 24: a) Image manually labelled; b) DCNN segmentation using mobilenetv2 trained with 
700 images 

 The results of segmentations were compared against the manually labelled ones, using the 

Intersection Over Union (IOU) metric, which measures the overlapping between the manually 

labelled image and the segmentation result by the deep convolutional neural network. The 

concept of IOU can be seen in Figure 25, where it shows the overlapping areas of the samples 

presented in Figure 24. 

 

Figure 25: Intersection over union of defect showed previously 
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The IOU is calculated as:  IOU = overlapped area/ (overlapped area + not overlapped areas). 

As mentioned before, the recent machine learning approaches for image processing methods 

can still produce errors, including false positives, and the reasons for such errors are discussed 

later in Section 4.5. Therefore, a postprocessing method was proposed in this research to 

mitigate such an issue.   

The proposed method consists of computing algorithms to binarize the segmentation result of 

each defect class, and then the morphological opening is applied to remove small, isolated 

noises and retain the larger elements. Finally, the morphological closing is applied to fill the 

gaps and connect adjacent elements which might have been segmented as a few separated 

patches. This study investigates also, if such procedure could either provide more errors or not, 

considering that when the morphological openings are applied to close and fill small gaps, it 

can remove small defects instances, such as potholes. The possible outcome of such post-

processing is discussed in Section 4.5 of this thesis.  

An example of the proposed methodology is shown in Figure 26, in which Figure 26 .b shows 

the initial segmentation result, and Figure 26 .c shows the binary mask of the pothole class. As 

it can be seen in Figure 26 .d, many small patches are removed by the morphological opening, 

and adjacent remaining particles are connected in Figure 26. e. Figure 26. f shows the image 

with the postprocessed segmentation result. 
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Figure 26: a) raw image; b) overlaid segmented image; c) binary mask of the pothole class; d) 
mask after morphological opening; e) mask after morphological closing; f) segmentation after 

postprocessing 

 

The false-positive instances can often be the result of light variations on the image and 

vegetation shades on the road surface, as shown in Figure 27, where the red arrows indicate 

false positives.  
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Figure 27: Road surface segmented with DCNN using Mobilenetv2_1000 for the same pothole: 
a) raw image obtained flying in the same direction of light; b) DCNN segmentation of image 

“a”; c) raw image obtained flying against the light; d) DCNN segmentation of image “c” 

 

To reduce possible errors and optimize the region of interest in the captured frames, DCNN 

classifier was used to segment the road surface and limit the region of interest. It was performed 

by applying a DCNN classifier trained to segment the road surface, making it possible to 

exclude the surrounding areas, such as vegetation. This method reduces the required 

computational power than using the entire image. It also decreases the possibility of false 

positives. 

The DCNN classifier used to recognize the road surface is part of the previous research by 

another graduate student in the research team (Nasiruddin Khilji et al. 2021), compounding a 

whole study on the automation of unpaved road assessments. In this method, the DCNN 

classifier segments the pixels into unpaved road and others (Figure 28. b). Then, similar to the 

previous part, morphological opening and closing were used to unify the binarized road’s 
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segmentation result, which allows excluding surrounding areas and possible noises (Figure 28. 

c). Then the frame is cropped around the unified road segment (Figure 28. d) and the bottom 

part of the frames is used for detection of the distresses (Figure 28 e and f). This way, the 

system will assess the distresses that are closer to the drone, and it excludes assessment of the 

farther areas which might result in errors. As the drone continues its flight over the road, the 

upper half of the frame will appear in the bottom half of the subsequent frames and will be 

processed. 

 

Figure 28: Road segmentation: a) raw image; b) overlaid segmented image; c) binary mask of 
the road surface; d) trimmed surrounding areas to reduce noise; e) binary cropped bottom half 

of the road; f) cropped bottom half of the road 

 

As mentioned before, the Intersection Over Union is one of the common metrics to assess the 

performance of the classifiers in segmentation of the areas of interest. However, a more 

objective assessment approach is Object Level Detection, which assesses the performance of 



 
 

54  

the classifiers in detection of individual defect instances, rather than the pixel-level 

identification. The results can be presented in terms of Accuracy and Precision which are 

calculated based on the number of true positives, false positives, and false negatives. Accuracy 

and Precision are calculated using the Equation 1 and Equation 2. 

Equation 1: Accuracy Equation 2: Precision 

𝐴 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁) 

A= Accuracy 

TP= True Positives 

FN = False Negative 

𝑃 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃) 

P = Precision 

TP= True Positives 

FP = False Positive 

Figure 29 shows the comparison between manually labelled defects (Figure 29. a), and the 

defects identified by the DCNN segmentation (Figure 29. b). The red circles in Figure 29. b 

indicates True Positives (TP) for potholes, the red “X” s represents False Negative (FN) for 

potholes, and the blue rectangle indicate a True Positive (TP) for rutting. Considering the 

scenario showed, there are 6 TP and 2 FN for potholes, and 1 TP for rutting. By applying 

Equation 1 and Equation 2, the accuracy rates of 75% and 100% are calculated for potholes 

and for rutting, respectively. Precision rate is 100% for both potholes and rutting classes, as no 

false positive is detected.  
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Figure 29: a) manually labelled image; b) DCNN segmentation with the Mobilenetv2 trained 
with 1000 images 

3.6 Defect distribution, case study of potholes  

Going further, it is also possible to integrate this method with existing classification methods, 

such as the PASER rating system (Walker 1991). Therefore, the last part of this research 

investigates application of the developed image processing and machine learning methods in 

the PASER system. 

The proposed method consists of quantifying the defects distribution over the unpaved road 

surface. This quantification is proposed by applying the DCNN on an input image (see Figure 

30.a), to recognize the road surface, and defects (see Figure 30.b), and then creating a binary 

mask with the results obtained from the DCNN segmentation (Figure 30.c and .d). For example, 

black pixels indicate the road surface in Figure 30.c and their population could be counted. 

Then the mask for the pothole class is created (Figure 30.d) and the number of corresponding 

pixels is measured. This way, it is possible to determine the defect distribution over the road 

surface. The developed code for this process can be found in the Appendix. 
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Figure 30: a) Input image; b) DCNN segmentation (Mobilenetv2_1000); c) Surface Road binary 
image obtained from the DCNN segmentation; d) Pothole binary mask from DCNN 

segmentation; e) outcome integration 
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Chapter 4: Results and Discussion 

This section presents four distinct test setups and analysis using the trained DCNN distress 

classifiers, which include assessment of Intersection over union (iou), object level detection, 

light deflection over the road surface, and defect distribution over the road surface. The last 

section discusses the findings and challenges encountered in this research study.  

4.1 Intersection over union (iou) 

As previously discussed, iou is one of the main metrics used to assess the performance of 

DCNN classifiers in this research, which measures the overlapping of the manually labelled 

areas with the results of the segmentations by deep convolutional neural networks.  

The test dataset included 122 images, and each trained classifier (9 classifiers in total) 

processed test images twice: Once with the regular code where it only used the DCNN classifier 

to segment the defects, and the second code where the morphological operations were applied 

after segmentation to reduce noises, such as small patches and/or false positives. The average 

of ious on the 122 test images without morphological operations are shown in Table 4 and 

Figure 31. While the Table 5 and Figure 32 Show the results with morphological operations. 

Table 4: Average ious for DCNN distress segmentation without morphological operations  

 

classes Resnet50_560 MobilenetV2_560 Resnet50_700 MobilenetV2_700 vgg16_700 Resnet50_1000 MobilenetV2_1000
Other 86 86 90 86 89 90 89
Road 84 83 88 85 88 87 87

Washboarding 29 30 35 31 30 24 23
Potholes 30 30 34 37 31 32 35
Rutting 6 8 17 12 15 18 19

Without morphological
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Figure 31: iou DCNN distress detection without morphological operations 

The results in Figure 31 show that the iou rates for the “Other” and “Road” classes are rather 

considerable and are mostly above 83%. Performance of the different DCNN architectures 

were mostly similar when trained with the same number of training samples, excluding Resnet 

50 with 700 images which outperformed the other two classifiers with the same number of 

training images. Addition of the new training images increased the iou rates for these classes 

as well. However, the iou results were much lower for the three defect classes and the addition 

of new training images did not increase the iou results in the Washboarding class.  

As mentioned in section 3.5 Testing and postprocessing, post-processing morphological 

operations were implemented on the binarized segmentation result of each defect class to 

remove small and isolated noises, and to retain the larger elements. The addition of 

morphological operations has improved the iou rates of the defect classes by up to 3 percent, 

even though these improvements are rather small. 
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Table 5: iou DCNN distress detection with morphological operations 

 

 

Figure 32: iou DCNN distress detection with morphological operations 

4.2 Object level detection  

The Object Level Detection approach consists of calculating the DCNN accuracy and precision 

by using the number of true positives, false positives, and false negatives. The Mobilenetv2 

model trained with 1000 images was used to segment the five classes, including other 

(surrounding), road, pothole washboarding, and rutting, because it was among the best 

performing classifiers (in all classes except washboarding). 

Once the DCNN classifier processed the set of 122 images, the results were compared with the 

manually labelled images, enabling to spot the true positives, false positives, and false 

negatives. If a defect segmentation overlapped more than 50% with an actual defect, it was 

considered as a true positive. The average accuracy and precision rates of the object level 

detection for the Mobilenetv2 trained with 1000 images on the test images were determined in 

classes Resnet50_560 MobilenetV2_560 Resnet50_700 MobilenetV2_700 vgg16_700 Resnet50_1000 MobilenetV2_1000
Other 86 87 90 86 89 90 90
Road 83 83 88 85 88 87 87

Washboarding 31 31 37 34 33 27 27
Potholes 30 30 35 37 32 32 35
Rutting 8 10 20 13 15 19 21

With morphological
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two test setups: without morphological and with morphological operations. The results are 

presented in Table 6 and Figure 33.  

Table 6: DCNN accuracy and precision for object level distress detection 

 

 

Figure 33:  DCNN accuracy and precision for object level distress detection 

W/o morphological operations W/ morphological operations

Pothole 86% 76%
Washboarding 64% 67%

Rutting 81% 82%

Pothole 53% 67%
Washboarding 42% 47%

Rutting 10% 13%
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In the object level analysis, the accuracy rates for the road surface defects, ranged between 64% 

and 86% without morphological operations, and 67% and 82% with morphological operations 

in three defect classes. However, for the precision metric, it was found that the “Rutting” class 

brought the results down to 10% (without morphological operations) and 13% (with 

morphological operations). It highlights the predominance of false positives found by the 

DCNN when it comes to rutting., as shown in Figure 34, where the red arrows indicate the 

spotted false positives for rutting. The vast majority of these false positives were tire tracks 

which are essentially ruts in nature with very mild depths.  

Morphological operations evidently improved precision results in all classes through removal 

of small patches which were false positives, and also slightly increased the accuracy rates in 

washboarding and rutting classes. However, morphological operations had a deteriorating 

effect in the pothole class as they removed some of the small potholes mistaken as small noises. 

This issue, however, might not a major negative impact on the overall road assessment 

outcomes, because small potholes are not a main source of concern in common road assessment 

systems, such as PAVER PMS and Gravel-PASER methods (Eaton et al. 1989; Walker 1991). 

 

Figure 34: Rutting false positives DCNN detection using mobilenetv2_1000 without 
morpological operations 
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4.3 Light deflection over the road surface  

The light deflection over the road surface can have a major effect on the appearance of the road 

surface and its defects. This part of experiments aims to investigate if flying the drone either 

towards the sunlight or against it would alter the defect detection performance, as shown in 

Figure 35.   

 

Figure 35: UAV-captured frames of same road segments from opposite directions 

Figure 35 shows three sets of images from three same road segments, captured from different 

directions, including following the sunlight deflection (left side images) and flying against it 
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(right side images). The first two sets (Figure 35 a. and b., and Figure 35 c. and d). show 

considerable differences in the appearance of the road and distresses, namely in Figure 35 c. 

and d., in which the road surface is wet. However, Figure 35 e. and f. were taken in an overcast 

condition and the visual differences are small. 

To develop such comparison, three different unpaved road sections were selected in sunny days 

and the drone was flown on the same part of the road in opposite directions: one flying towards 

the light and the second flying against the light. The videos were processed as described in 

Section 3.2 Data preparation process, where the frames were acquired to be later visually 

compared and matched, similar to samples presented in Figure 35.  

The Mobilenetv2 DCNN model trained with 700 images were used to recognize the defects 

on the six sets of images. A sample result of segmentations on a corresponding set of frames 

can be seen in Figure 36.  
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Figure 36: DCNN defect recognition. a) UAV flown towards the light; b) UAV flown against the 
light 

The experiment for assessment of the light deflection analyzed three different road segments, 

in two opposite directions. Therefore, by applying an object level detection assessment, as 

proposed in section 4.2 Object level detection, the results were calculated and provided in Table 

7. 
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Table 7:  DCNN Accuracy and Precision according to the light deflection 

Accuracy 

  Towards the light  Against the light  

Pothole 94% 79% 

Washboarding 33% 50% 

 

Precision 

  Towards the light  Against the light  

Pothole 55% 90% 

Washboarding 14% 40% 

The “Rutting” class was not considered in this analysis, because it produced too many false 

positives, as exemplified in Figure 34. It was found that the light deflection may alter the 

accuracy and precision rates for both pothole and washboarding but not proportionally. While 

the accuracy for the pothole is greater when the UAV is flown towards the light, for 

washboarding a better accuracy can be achieved when flying the UAV against the light. On the 

other hand, better precision rates were achieved when the UAV was flown against the light in 

both classes. A main reason could be due the contrasting appearance of the defects with the 

intact road when they exhibit light reflections. 

4.4 Defect distribution  

Another set of experiments in this research evaluated the possibility of using the developed 

method to estimate the defect distribution over the road surface. As mentioned in the Chapter 

3, it is possible to use the distribution of defects on the road surface in the PASER rating system 

(Walker 1991), to assess the road surface condition. This was implemented by creating a binary 
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mask  of  the  road  surface  and  the  defect  of  interest. As described  in  section 3.6 Defect 

distribution, case study of potholes, it is possible to determine the percentage of potholes on a 

specific segment of road surface. 

In this set of experiment, the Mobilenetv2 model trained with 1000 coupled with morphological 

operations  was  used  to  estimate  the  percentage  of  potholes  on  the  test  images  and  were 

compared  against  the  percentage  obtained  from  manual  labelling.  For  example,  the  pothole 

percentage  on  the  road  surface  for  the  example  presented  on Figure 30, was  calculated  as 

follows:  

Total pixels: 640 x 480 = 307200 

Other (Surrounding) Pixels: 93905 

Road pixels: 213295 

Pothole pixels: 28795 

 

Pothole distribution on the road surface: 
	#	#$%&$'(	)*+(',

#	-$./	)*+(',
=
01234

056034
=13,5% 

This  assessment  was  carried  out  on  the  test  dataset  with  122  images  and  the  results  of 

segmentations were compared against the manual labelling. The average of the differences was 

2.24% and the standard deviation of the differences was 2.14%. The PASER systems indicates 

10% and 25% as thresholds for below Fair and below Poor levels (Table 2), and the differences 

are in the automated assessment and manual labelling are rather small which highlights the 

potential of this system for this type of qualitative rating of the road sections.  

Figure 37 shows four synthetized samples of the process proposed on Figure 30. It shows the 

raw image, its DCNN segmentation, and an overlayed image of the binary masks to differ the 

classes, including “Other (Surrounding)”, “road”, and “Potholes”. Table 8 provides the pothole 

distribution on the road surface calculated for each test image presented in Figure 37. 
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Figure 37: Pothole distribution on four distinct samples from the test dataset 
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Table 8: Pothole distribution on four distinct samples from the test dataset 

Figure 37: image# 1 2 3 4 
Defect distribution 

over the road surface 9% 13% 6% 10% 
 

 

4.5 Discussion  

These test setups were carried out to evaluate the performance of the proposed method and also 

presented application of the proposed method to an existing unpaved road rating system. The 

Intersection Over Union (iou) and the object level detection approaches were employed in this 

research to evaluate the developed classifiers.  

The iou approach only measures the overlapping levels between manually labelled images and 

the DCNN segmentations. This way, it is possible to determine the regions where the detections 

and actual defects coincide. All the trained DCNN classifiers showed satisfactory performance 

in segmentation of the road surfaces and surrounding areas with ious ranging from 83% to 90% 

(Table 5). It is also notable that the increasing of the number of training images increased the 

iou rates for the surrounding areas and road surface classes.  

On the other hand, the results did not present considerable ranges for the iou rates of the road 

surface defects, as they varied from 27% to 37% for washboarding, 30% to 37% for potholes, 

and 8% to 21% for rutting (Table 5). Also, increasing of training images did not show a 

significant increase of iou rates in defect classes. 

However, the iou metric might not be the most appropriate measure to objectively assess the 

performance of the DCNN classifiers, that is because it evaluates on a subject level, accounting 

for the total area of the defects. For example, it is possible to notice the successful recognition 

of all the six potholes on the road surface in Figure 38; however, the DCNN recognition 
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accounts for a greater area than the manually labelled area, resulting in the intersection over 

union rate of 48%. The outcome of such a subjective analysis highlights the necessity of 

investigating the proposed method in an objective manner. By applying the object level 

analysis for the sample presented in Figure 38, the accuracy of 100% and the precision rate of 

75% are calculated for the potholes class. Application of this evaluation to the images test set 

made it possible to have better assessment of the method as presented in Table 6. With this 

objective analysis, the accuracy rates were between 67% and 82% and precision rates were 

between 13% and 67%, when morphological operations were applied. The object level 

approach also presents an issue when observing the performance of the DCNN, it requires a 

valid threshold to verify the performance of the classifiers. It brings the necessity of validating 

this method for this research.  
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Figure 38: Intersection over union: a) Manually labelled image; b) DCNN-based (mobilenetv2, 
trained with 1000 images) defect segmentation; c) overlapped areas 

Postprocessing the segmentations with morphological operation has shown potential to reduce 

noises around the road surface area, reduce false positives, and merge the adjacent patches. In 

particular, the improvements in precision metric are noticeable in Table 6. 

Application of morphological operations decreased the accuracy from 85% to 75% in the 

pothole class. That is because the morphological operations were set up to delete small 

surrounding noises; therefore, defects smaller than a certain threshold (e.g., 400 pixels) were 
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deleted from the outcome, as marked with red circles in Figure 39. However, missing the small 

potholes is not a major problem, because the small-sized scattered potholes are not considered 

as a serious issue in the unpaved roads rating systems (Walker 1991; Eaton et al. 1989). Since 

the morphological opening rely on certain size thresholds to remove noises, the future research 

can look into the dynamic calibration of the thresholds according to the minimum pothole size 

important in the rating of the roads.  

 

Figure 39: DCNN defect detection using mobilenetv2 trained with 1000 images: a) without 
morphological operations; b) with morphological operations 

 

4.5.1 Reasons for failures 

The obtained results in this research are lower than those achieved using DCNN methods for 

detection of defects on asphalt roads, including cracks and potholes, which mostly reported 

accuracy and precision rates over 75% (Mandal et al. 2019; Mei and Gül 2020). The main 

reason is the difference between the nature of defects on unpaved roads and asphalt roads 

because cracks and potholes on asphalt roads have distinct visual appearance and texture in 

images (due to disintegration to the structure of the pavement layer), whereas potholes on 

unpaved road do not always have a different texture from surrounding areas. For example, 
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Figure 40 a. shows potholes on a road with distinct visual features which are successfully 

detected by the classifier; however, Figure 40 c. and Figure 40 e. show potholes (depressions 

on the road marked by a red circle) on the road surface with minimal visual difference from the 

surrounding areas and the classifier failed to detect them. 

 

Figure 40: a, c, and e.: three sample UAV-captured frames; b, d, and f.: corresponding 
segmented frames with morphological operations 

There were also noticeable issues with detection of rutting defects. Especially due to their 

nature, tire tracks or markings on the road surface can be easily misidentified as rutting, that is 
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because the 2D nature of the images does not allow estimation of the defects’ depth, which was 

the main reason for misidentification of the road markings as rutting samples.  Figure 41 a., c., 

and e., show raw UAV-captured frames where it is possible to spot tire tracks or other marks 

on the road surface, which were recognized by the mobilenetv2 DCNN, trained with 1000 

images, as rutting. However, such recognition could only be verified upon additional analysis 

of the original video, in which it was possible to verify whether the detected defect was deep 

enough to be considered as rutting. 

 

Figure 41: a, c, and e.: three sample UAV-captured frames; b, d, and f.: corresponding 
segmented frames processed with mobilenetv2_1000 
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It is possible to spot some flaws as previously mentioned, namely regarding the performance 

of DCNN defect segmentations. The observed failures were primarily due to the detection of 

false positives. In order to reach a solid assessment of the performance of this system, there are 

some points that should be considered.  

The first point is the direction in which the UAV is flown: towards or against the light. The 

frames which were captured when the UAV flew towards the light provided better accuracy 

rates for the pothole class, and a better precision was achieved when the UAV flew against the 

light.  Washboarding class had greater accuracy and precision rates when the UAV was flown 

against the light.  

The flying parameters of UAV, such as the flight height and the angle set up for capturing 

images, can interfere and affect the performance of the classifiers, which should be investigated 

in future. 

There is also a question regarding the number of images and instances of each class to be used 

to train the DCNN classifiers. The results ranged disproportionately to the increase of training 

images in some cases in this research, which highlighted a question about the optimum number 

of images and distribution of classes to train the DCNN classifiers to achieve their best 

performance. Such question opens room for pursuing an optimization problem which will be 

further investigated.  

The last observed point in this research was about the limitations of working with a single 2D 

image for assessment of a section of the road. During the research process, there were images 

with defects difficult to recognize, even for human sight, leading to the conclusion that colours, 

textures, and shades can affect the performance of the system. These items support the idea of 

capturing images in different heights and angles for training purposes and pursuing methods 

for 3D analysis of the detected defects.  
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Chapter 5: Conclusion 

5.1 Summary 

A computer vision-based system was developed to automatically detect defects and evaluate 

their extent on the unpaved roads surfaces. The proposed system is part of a larger study, which 

aims to automate the assessment of defects on unpaved roads networks.  

The presented research effort consists of two main parts. First part studied the use of an UAV 

to collect videos from the distressed roads surface. Second part investigated the use of a cutting-

edge machine learning approach, known as deep learning, to detect and assess the defects in 

the collected video frames.  

Although this research project primarily relied on two main steps, the breakdown for the 

development of the proposed system goes further into more details. It included training of 

different pre-trained DCNN classifiers. Then the trained DCNN models were tested using a 

distinct set of images. An investigation of the obtained results led to development of a post-

processing algorithm, which consists of morphological operations to mitigate the presence of 

noises, such as small false positives, and merging adjacent segmented particles.  

The trained DCNN classifiers and addition of postprocessing method were tested using two 

approaches: (1) The first testing approach assessed the overlapping of the segmented test 

images with the manually labelled defects, creating an area of intersection when the 

segmentations matched. (2) The second method evaluated the accuracy and precision of the 

results on the object level. The comparison between these methods allowed to find a practical 

analysis suited for the purposes of unpaved road condition assessment. Moreover, the effect of 

light deflection on the road images was assessed. The aim of this evaluation was to find the 

UAV flight direction with respect to the sunlight to obtain better results. Finally, the proposed 
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defect segmentation method was applied to an already exiting unpaved road assessment and 

evaluation systems.  

5.2 Conclusions  

Detailed observation of the results showed promising performance of the developed system in 

detection of potholes and washboarding defects. However, it did not provide suitable outcome 

for the rutting defects, as the method produced too many false positives, which is believed to 

be due to their appearance in the images which could be similar to other longitudinal markings 

on the road, namely tire tracks. The optimal outcome of this study was obtained in potholes 

and washboarding classes due to their distinct appearance in 2D images. Moreover, addition of 

the postprocessing method has shown considerable potential in reducing false positives and 

thereby improving the precision of the results; however, it negatively affected the accuracy of 

the pothole detection results due to possible removal of small potholes. 

The proposed system has shown potential to integrate into an already existing system, such as 

PASER rating system and treatment measurements (Walker 1991).  

Although the system did not present great accuracy for rutting, in neither Intersection Over 

Union (iou) nor Object Level, there are opportunities for future investigations which will be 

discussed later in this chapter. 

5.3 Limitations  

The main limitations of the proposed system are provided below: 

• Due to weather conditions in Canada, there is a limited time window (Spring/Summer) 

that it is possible to collect data. 

• Since training DCNN classifiers require massive computation power for training (e.g., 

multicore GPUs), the training images should be resized to reduce required 
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computational power, which can make some defect instances harder to identify even at 

human sight.  

• Colour of the road surface had some effect on the performance of the classifiers. for 

example, road surfaces with a gray background were more problematic compared to the 

roads with red/brown (clay) background.  

• The proposed method was developed to process 2D images; however, this does not 

allow estimation of the defects’ depth, which is an important factor in assessment of 

defects in unpaved roads.    

5.4 Recommendation for future work  

There are some recommendations for future research projects to advance this study:  

• Investigate how the UAV flight and imaging parameters (such as height and camera 

angle) can affect the DCNN detection results. 

• Apply optimization algorithms to determine the optimum number of images and 

frequency of class samples required to train a DCNN classifier with satisfactory results.  

• Investigate automated UAV flight control based on the real-time segmentation of the 

road path in the captured video frames. 

• Investigate method for 3D depth estimation of the detected defects on the unpaved 
roads. 
 

• Investigate acceptable accuracy and precision levels for the object detection analysis. 
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Appendix 

 

Data preparation process – MATLAB Code  

 

clear all, close all, clc;  

 

vid=VideoReader('/Users/llopesa/Desktop/Videos/DJI_0001.MP4'); 

  

numFrames = vid.NumberOfFrames; 

n=numFrames; 

  

for i = 1:n 

  if mod(i,120) == 0 

     frame = read(vid,i); 

     image = imcrop(frame, [460, 330, 999, 749]); 

     im2=imresize(image, [300 400]); 

     imwrite(im2 ,['/Users/llopesa/Desktop/Videos/Frames/' int2str(1), '.jpg']); 

  end 

end  

 

Training process using the pre-trained neural networks – MATLAB Code  

clear all; close all; clc;  

  

load("C:\Users\ehsan\Desktop\Luana\gTruth.mat") 

imds = imageDatastore('C:\Users\ehsan\Desktop\Luana\Defect Images'); 

pxds = pixelLabelDatastore(gTruth); 

classes = pxds.ClassNames; 
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cmap1 = [ 

                120 120 50    % 1 

                100 250 240     % 2 

                192 150 122   % 3 

                80 70 180       % 4 

                55 90  190      % 5 

]; 

cmap1 = cmap1 ./ 255; 

  

I = readimage(imds, 20); 

C = readimage(pxds,20); 

B = labeloverlay(I,C,'ColorMap',cmap1); 

imshow(B); 

pixelLabelColorbar(cmap1,classes); 

  

%% training preparation 

imageSize = [300 400 3]; 

  

% Specify the number of classes. 

numClasses = numel(classes); 

  

% Create Segnet Layers 

lgraph = segnetLayers(imageSize, numClasses, 'vgg16'); 

%% lgraph = deeplabv3plusLayers(imageSize, numClasses, "mobilenetv2"); 

  

options = trainingOptions('sgdm', ... 

    'Momentum', 0.9, ... 

    'InitialLearnRate', 1e-2, ... 
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    'L2Regularization', 0.0005, ... 

    'MaxEpochs', 120, ...   

    'MiniBatchSize', 4, ... 

    'Shuffle','every-epoch', ... 

    'CheckpointPath', tempdir,... 

    'Verbose', false,... 

    'Plots','training-progress'); 

  

augmenter = imageDataAugmenter('RandXReflection',true,... 

    'RandXTranslation',[-10 10], 'RandYTranslation' ,[-10 10]); 

datasource = pixelLabelImageDatastore(imds, pxds, ... 

    'DataAugmentation',augmenter); 

 

%%%% start training 

tic 

[net, info] = trainNetwork(datasource, lgraph, options); 

toc 

save('C:\Users\Ehsan\Desktop\Tanzim\PreTrainedCNN.mat', 'net', 'info', 'options'); 

disp('NN trained'); 

%%%% end training 

 

Defect Recognition with DCNN -MATLAB Code 

clear all; close all; clc; 

  

load ("/Users/llopesa/Desktop/Research/Test/Labeled Images/gTruth_1"); 

imdsTest = imageDatastore('/Users/llopesa/Desktop/Research/Test/Images'); 

pxdsTest = pixelLabelDatastore(gTruth); 

classes = pxdsTest.ClassNames; 
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cmap1 = [ 

                210 120 50    % 1 

                100 230 220     % 2 

                192 150 192   % 3 

                80 210 50       % 4 

                115 118 150       % 5 

]; 

cmap1 = cmap1 ./ 255; 

  

I = readimage(imdsTest, 1); 

  

data = load('/Users/llopesa/Desktop/Research/Test/700_images_classifiers/resnet50'); 

net = data.net; 

C = semanticseg(I, net); 

B = labeloverlay(I,C,'Colormap',cmap1,'Transparency',0.4); 

pixelLabelColorbar(cmap1,classes); 

  

expectedResult = readimage(pxdsTest, 1); 

actual = uint8(C); 

expected = uint8(expectedResult); 

imshowpair(actual, expected) 

  

iou = jaccard(C,expectedResult); 

table(classes,iou) 

 

for j = 1:100 

   I = readimage(imdsTest, j); 

   C = semanticseg(I, net); 

   expectedResult = readimage(pxdsTest, j); 
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   iou = jaccard(C,expectedResult); 

   j 

   table(classes,iou) 

end 

  

pxdsResults = semanticseg(imdsTest,net, ... 

    'MiniBatchSize',1, ... 

    'WriteLocation',tempdir, ... 

    'Verbose',false); 

metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTest,'Verbose',false); 

metrics.DataSetMetrics 

metrics.ClassMetrics 

 

 

Road Segmentation with DCNN – MATLAB Code  

clear all; close all; clc;  

  

imdsTest = imageDatastore('C:\Users\Luana-PC\Desktop\Research\Test_videos\Images\A2'); 

data = load('C:\Users\Luana-PC\Desktop\Research\Test_videos\CNN_mobilenetv2_2.mat'); 

net = data.net; 

  

for j = 1:32 

    ILarge = readimage(imdsTest, j); 

    I = imresize(ILarge, 0.5); 

  

    C = semanticseg(I, net); 

    [rows, columns, Channels] = size(I); 

    TempIm = zeros(rows, columns, 1, 'uint8'); 
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    BW = zeros(rows, columns, 1, 'logical'); 

    BW(C=='UnpavedRoad') = 1; 

    BW2 = bwareaopen(BW,25); 

  

    se = strel('disk',20); 

    closeBW = imclose(BW2,se); 

  

    CC = bwconncomp(closeBW); 

    numPixels = cellfun(@numel,CC.PixelIdxList); 

    [biggest,idx] = max(numPixels); 

    BW2 = zeros(rows, columns, 1, 'logical'); 

    BW2(CC.PixelIdxList{idx}) = 1; 

  

    TempIm(BW2==1) = 255; 

  

    info = regionprops(BW2,'Boundingbox') ; 

    BB = info(1).BoundingBox; 

  

    image2 = imcrop(ILarge, [BB(1)*2, rows, BB(3)*2, rows-1]); 

    imwrite(image2, ['C:\Users\Luana-PC\Desktop\Research\Test_videos\Images\A2\Segmented\A2_' 

num2str(j) '.jpg']); 

end 

 

Defect Recognition without morphological operation – MATLAB Code  

clear all; close all; clc; 

  

imdsTest = imageDatastore('/Users/llopesa/Desktop/Research/Test_videos/Images/A2/Segmented'); 

cmap1 = [ 
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                210 120 50    % 1 

                100 230 220     % 2 

                192 150 192   % 3 

                80 210 50       % 4 

                115 118 150       % 5 

]; 

cmap1 = cmap1 ./ 255; 

  

data = load('/Users/llopesa/Desktop/Research/Test/resnet50'); 

net = data.net; 

  

for j=1:32 

   ILarge = readimage(imdsTest, j); 

   I = imresize(ILarge, 0.7); 

   C = semanticseg(I, net); 

   B = labeloverlay(I,C,'Colormap',cmap1,'Transparency',0.5); 

   imwrite(B, ['/Users/llopesa/Desktop/Research/Test_videos/Images/A2/Distress_A2/A2_' num2str(j) '.jpg']); 

end 

 

Defect Recognition with morphological operation – MATLAB Code 

clear all; close all; clc; 

  

imdsTest = imageDatastore('…\Images\A2\Segmented'); 

cmap1 = [ 

                210 120 50    % 1 

                100 230 220     % 2 

                192 150 192   % 3 

                80 210 50       % 4 

                115 118 150       % 5 
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]; 

cmap1 = cmap1 ./ 255; 

  

data = load('…\Test\resnet50'); 

net = data.net; 

  

for j=1:32 

   ILarge = readimage(imdsTest, j); 

   I = imresize(ILarge, 0.7); 

   C = semanticseg(I, net); 

   [rows, columns, Channels] = size(I); 

   C2 = C; 

   C2(C=='Other' | C=='Road' | C=='Potholes' | C=='Rutting' | C=='Washboarding' ) = 'Road'; 

  

    BW1 = zeros(rows, columns, 1, 'logical'); 

    BW1(C=='Potholes') = 1; 

    BW1 = bwareaopen(BW1,400); 

    se = strel('disk', 15); 

    closeBW1 = imclose(BW1,se); 

    C2(closeBW1==1) = 'Potholes'; 

  

    BW1 = zeros(rows, columns, 1, 'logical'); 

    BW1(C=='Rutting') = 1; 

    BW1 = bwareaopen(BW1,400); 

    se = strel('disk', 15); 

    closeBW1 = imclose(BW1,se); 

    C2(closeBW1==1) = 'Rutting'; 

  

    BW1 = zeros(rows, columns, 1, 'logical'); 
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    BW1(C=='Washboarding') = 1; 

    BW1 = bwareaopen(BW1,400); 

    se = strel('disk', 15); 

    closeBW1 = imclose(BW1,se); 

    C2(closeBW1==1) = 'Washboarding'; 

  

    BW1 = zeros(rows, columns, 1, 'logical'); 

    BW1(C=='Other') = 1; 

    BW1 = bwareaopen(BW1,900); 

    se = strel('disk', 15); 

    closeBW1 = imclose(BW1,se); 

    C2(closeBW1==1) = 'Other'; 

  

   B = labeloverlay(I,C2,'Colormap',cmap1,'Transparency',0.6); 

   imwrite(B, ['…\Distress_morphological_A2\A2_' num2str(j) '.jpg']); 

end 

 

Pothole distribution over the road surface – MATLAB Code  

close all, clear all, clc; 
  
load("…\Test Images\gTruth_1.mat"); 
imdsTest = imageDatastore('…\Test images\Images'); 
pxdsTest = pixelLabelDatastore(gTruth); 
classes = pxdsTest.ClassNames; 
  
  
data = load('…\Classifiers\1000\mobilenetv2.mat'); 
net = data.net; 
  
Headings = {'Estimate'; 'GTruth'}; 
big_table = table(Headings); 
filename = '…\Test Images\PotholeDistribution_mobilenetv2_1000_W.xlsx'; 
  
for j=1:119 
   my_field = strcat('Image ',num2str(j)); 
   I = readimage(imdsTest, j); 
   C = semanticseg(I, net); 
  
   [rows, columns, Channels] = size(I); 
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    BW1 = zeros(rows, columns, 1, 'logical'); 
    BW1(C=='Other') = 1; 
    se = strel('disk', 20); 
    closeBW1 = imclose(BW1,se); 
    closeBW1 = bwareaopen(closeBW1, 600); 
     
    num_pix_other = sum(closeBW1(:) == 1); 
    num_pix_total = numel( closeBW1 ); 
    num_pix_road = (num_pix_total - num_pix_other); 
  
     
    BW2 = zeros(rows, columns, 1, 'logical'); 
    BW2(C=='Potholes') = 1; 
    se = strel('disk', 20); 
    closeBW2 = imclose(BW2, se); 
    closeBW2 = bwareaopen(closeBW2, 600); 
     
    num_pix_pothole = sum(closeBW2(:) == 1); 
    pothole_dist = round((num_pix_pothole/num_pix_road)*100, 2); 
  
  
    expectedResult = readimage(pxdsTest, j); 
    BW2 = zeros(rows, columns, 1, 'logical'); 
    BW2(expectedResult =='Other') = 1; 
     
    num_pix_other = sum(BW2(:) == 1); 
    num_pix_Groad = (num_pix_total - num_pix_other); 
  
    BW2 = zeros(rows, columns, 1, 'logical'); 
    BW2(expectedResult =='Potholes') = 1; 
    num_pix_Gpothole = sum(BW2(:) == 1); 
  
    Gpothole_dist = round((num_pix_Gpothole/num_pix_Groad)*100, 2); 
     
    outcome = {pothole_dist; Gpothole_dist}; 
    T = table(outcome); 
    T.Properties.VariableNames = {my_field}; 
     big_table = [big_table T]; 
     j 
end 
  
 writetable(big_table ,filename,'Sheet',1,'Range','B2'); 

 

 


