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ABSTRACT 

 

Maloney, A.S. (2022). Genetic variation of functional traits related to drought tolerance 

in yellow birch seedlings. Master of Science in Forestry, Lakehead University. Advisor, 

Dr. A.M. Thomson.  

 

Key Words: yellow birch, Betula alleghaniensis, common garden, provenance, adaptive 

variation, leaf morphology, drought tolerance 

 

Understanding patterns of variation in drought-related traits of hardwood trees is crucial 

for conserving and managing North American temperate forests under climate change. 

In this study, I examined provenance variation of yellow birch (Betula alleghaniensis 

Britton) in traits related to drought resistance. Yellow birch is a widespread and 

economically important eastern North American hardwood species. A common garden 

approach was used to compare height, diameter, biomass, leaf morphology, and stable 

carbon isotopes among ten seed sources originating from across Canada and Northern 

US states. Analysis of variance (ANOVA) of seedling height and diameter did not reveal 

significant variation in either trait, while ANOVA of a subsample (n=40) revealed 

significant variation in height and leaf characters (average horizontal width, horizontal 

width, maximum perpendicular width, perpendicular width 1, and perpendicular width 

2). Simple linear regressions revealed significant correlations between variation in leaf 

morphological traits and climate at seed origin. Temperature-related climate variables 

were more strongly correlated with leaf traits than precipitation-related climate 

variables. Height was slightly correlated with the climate variable summer precipitation 

(PPT_SM) (R2=0.344, p<0.1). The multiple linear regression model including degree 

days above 5ºC (DD5), mean annual temperature (MAT), and annual heat moisture 

index (AHM), explained a total of 71% of the variation among provenances in leaf 

perpendicular width 2. Principal component analysis (PCA) and canonical correlation 

analysis (CANCOR) were used to describe relationships among and between tree and 

climate variables. PC1 strongly correlated with all leaf characters, whereas PC2 strongly 

correlated with height. Cumulatively, PC1 and PC2 explained 90.7% of the variation 

among measured tree variables. For the CANCOR, canonical variable 1 (CV1) 

explained 67.23% of the variance among the two data sets. All leaf characters had a 

strong correlation with CV1, whereas height had a weak positive correlation with CV1. 

Climate variable DD5 had the strongest positive correlation with CV1, followed by 

MAT and AHM. Climate variable PPT_SM had a strong negative correlation with CV1. 

The results indicate that variation in leaf traits among yellow birch populations is 

associated with adaption to local climate. Conversely, variation in height growth was 

uncorrelated with climate at seed origin. Temperature and heat-moisture indices were 

strong predictors of leaf width in both univariate and multivariate analyses, as leaf width 

decreased with warmer and drier climates. High levels of within-provenance variation 

were present, which appears to be a common characteristic of this species. In addition, 

other site variables not included in this study, such as soil pH, soil moisture, and light 

availability, may have contributed to unexplained variation among populations.   
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INTRODUCTION 

 

Understanding patterns of variation in drought-related traits of prominent species 

such as yellow birch (Betula alleghaniensis Britton) is crucial for conserving and 

managing North American hardwood forests under climate change. Increases in 

frequency and severity of extreme climatic events are expected to negatively affect 

forest health and productivity (Allen et al., 2010). Stressors such as drought are directly 

involved in trends of overall forest decline and loss of ecosystem function, with 

increased tree mortality over recent decades having been linked to elevated drought 

stress (Bréda & Badeau, 2008; Dale et al., 2001; Jones et al., 1993; O’Brien et al., 2017; 

Zierl, 2004). Drought and temperature-stressed trees have been shown to be more 

susceptible to mortality due to insect attacks and wildfires (Allen et al., 2010) and 

temperate forests with slow growing and smaller trees tend to have higher mortality rates 

due to drought (O’Brien et al., 2017). Environmental conditions such topography and 

site water content are strong indicators of drought-induced mortality in temperate forest 

regions. Trees are at an increased risk to mortality caused by drought when exposed to 

long periods of warmer temperatures (McDowell et al., 2008). Eventual mortality of 

stressed trees may either be physiological (carbon starvation or hydraulic failure) or 

indirect (takeover by pests or pathogens).  

Trees have mechanisms to either avoid or resist drought through a variety of 

responses. Isohydry (drought avoidance) causes the stomata to close, reducing 

transpiration after a certain water potential threshold is reached (McDowell et al., 2008). 

This mechanism prevents xylem cavitation by avoiding extremely low water potential 
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levels but may eventually lead to carbon starvation due to the lack of photosynthesis 

occurring while respiration continues or severe heat stress. Anisohydry (drought 

tolerance) keeps stomata slightly open, allowing transpiration to continue at relatively 

high rates. This response allows the plant to continually uptake carbon with open 

stomata, but may lead to higher risk of cavitation, ultimately causing tree mortality or 

increased chance of a lack of carbon in future events (Allen et al., 2010; McDowell et 

al., 2008).  

Changes in leaf morphology allow plants to efficiently acclimate to changes in 

environmental conditions by either increasing or decreasing the rates of photosynthesis 

and transpiration (Xu et al., 2009). Therefore, variation in leaf morphology can be a 

good indicator of a plant's uptake, efficiency, and resource usage (Xu et al., 2009). In 

paper birch (Betula papyrifera Marshall), significant variation in leaf morphology has 

been shown to correlate strongly with climate at seed origin (Pyakurel & Wang, 2013). 

Variation of leaf morphology among yellow birch populations has been significantly 

correlated to site conditions such as latitude, longitude, elevation, and soil characteristics 

(Dancik & Barnes, 1975). Plants in dry environments tend to have lower specific leaf 

area (SLA, the ratio of leaf area to leaf dry mass, cm2 g-1), and relative growth rates 

(Wright & Westoby, 1999) as thicker leaves with low SLA have been shown to be more 

resilient to wilting in dry and hot climates (Warren et al., 2005). Therefore, in drought 

conditions it would be expected that SLA would decrease. However, a recent study on 

paper birch seedlings found a positive correlation between SLA and warm, dry climates 

at seed origin (Pyakurel & Wang, 2013). In contrast, significant variation in leaf traits of 

red ironbark (Eucalyptus sideroxylon Wools) populations was independent of mean 

annual rainfall at seed origin (Warren et al., 2005).   
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Stable carbon isotope analyses are commonly used to provide understanding of  

WUE within individual trees (Farquhar et al., 1989). In the process of photosynthesis, 

discrimination occurs against the two isotopes (12C and 13C) and can be measured using 

a ratio of mass per isotope (O’Leary, 1988). The discrimination ratio (∆) of carbon 

isotopes can then be used to compare WUE, as those with more positive d13C values 

tend to be more water-efficient (Dawson et al., 2002). Furthermore, individuals with 

thicker leaves (lower SLA) tend to have higher ∆ values (Zhang et al., 1993), indicating 

higher water-use efficiency (Lamont et al., 2002). Carbon isotope analysis has been used 

to investigate genetic variation of WUE in tree species such as Douglas-fir (Pseudotsuga 

menziesii (Mirbel) Franco) (Zhang et al., 1993), cluster pine (Pinus pinaster Aiton) and 

sessile oak (Quercus petraea (Mattuschka) Lieblein) (Picon et al., 1996). Significant 

variation in ∆ values among Douglas-fir populations was strongly correlated with 

altitude at seed origin (Zhang et al., 1993). In both cluster pine and sessile oak, increased 

drought intensity was associated with an increase in leaf d13C values (Picon et al., 1996). 

Within-site variation of d13C in leaf and wood tissue has been investigated in Juniperus 

and Pinus (Leavitt & Long, 1986), revealing variation of these values within-

populations, individuals, and tissue types sampled from the same site or individual. The 

effects of soil nitrogen and nitrogen dioxide (NO2) on WUE among Populus seedlings 

were investigated using carbon isotope analysis, revealing that exposure to NO2 was 

non-toxic and it caused an increase in d13C values, ultimately increasing long-term WUE 

(Siegwolf et al., 2001). Populations of American sea rocket (Cakile edentula (Bigelow) 

Hooker), growing in dry environments exhibited higher fitness associated with low 
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WUE in plants with smaller leaves, or conversely, high WUE in plants with larger 

leaves (Dudley, 1996).   

Common garden studies are crucial for predicting the potential response of tree 

populations to climate change (Matyas, 1996). An individual plant’s phenotype is the 

result of its genotype plus the environment it is growing in (Frankham et al., 2013). 

Therefore, when different genotypes of the same species are grown in a controlled, 

uniform environment, phenotypic variation that is observed can be attributed to be the 

result of underlying genetic differences. While provenance studies have provided 

significant insight into patterns of local adaptation for widespread boreal conifers (e.g. 

(Joyce & Rehfeldt, 2013; Lu et al., 2016; Prunier et al., 2013; Rehfeldt et al., 1999; 

Thomson et al., 2010), such studies are currently lacking for many important eastern 

North American temperate trees (but see (Clausen & Garrett, 1968; Gaucher et al., 2005; 

Gunderson et al., 2012; Leites et al., 2019; Pyakurel & Wang, 2013)).   

Yellow birch is a widespread and ecologically important temperate hardwood 

tree that ranges from the Canadian Atlantic Coast to southeastern Manitoba, across the 

Midwest states and south to the Appalachian Mountains (Erdmann, 1990). The species is 

an important component of several major temperate forest types (e.g. Hemlock-Yellow 

Birch, Sugar Maple-Beech-Yellow Birch, and Red Spruce-Yellow Birch) and is an 

important source of food and shelter for many small mammals, birds, and insects. 

Economically, yellow birch is used for hardwood flooring, cabinets, doors, and furniture 

(Juncus, 1998).  As a widespread, wind-pollinated tree species, yellow birch is expected 

to harbour significant levels of genetic variation (Thomson et al. 2015). Indeed, 

provenance studies of yellow birch conducted in the 1960s and 1970s have revealed 

significant intraspecific variation in a variety of traits such as catkin characteristics 
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(Clausen, 1968), height growth and cessation (Clausen, 1967), leaf morphology (Dancik 

& Barnes, 1975; Sharik & Barnes, 1979), and flowering times (Clausen, 1980). A study 

of the response of yellow birch to varying soil moisture revealed significant differences 

in the architecture of branches among water-stressed and well-watered trees (Rasheed & 

Delagrange, 2016). Using LIDAR technology, it was shown that individuals under water 

stress significantly decreased the long axis branches and increased short axis branches. 

Furthermore, the seedlings under water stress decreased total biomass by 40% compared 

to those in well-watered conditions. Yellow birch is a moderately shade-tolerant species, 

so the ability to increase height growth and root biomass while growing under the 

canopy is a crucial trait for competing against other tree species (Beaudet & Messier, 

1998). A study involving yellow birch found that root biomass and morphology were 

significantly correlated with tree size but weakly correlated with light availability 

(Cheng et al., 2005). While these studies provide valuable information about how yellow 

birch trees can respond to varying degrees of light and soil moisture, they do not reveal 

genetic variation that may be present across the species, as the seedlings originated from 

a single population or seed source.  

Dancik and Barnes (1974) and Sharik and Barnes (1979) found significant 

intraspecific variation in yellow birch leaf traits but did not test populations in common 

garden so it is unclear whether the observed variation is due to genetic or environmental 

effects. Wearstler and Barnes (1977) tested yellow birch populations in common garden 

and found significant variation between provenances in height, seed weight, initial 

germination, and germination percentage. While significant correlations between trait 

values and geographic variables (i.e. latitude) were observed, correlations with climate 

at seed origin were not explicitly examined.  
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To the best of my knowledge, only one previous study has specifically 

investigated patterns of adaptive variation in relation to climate of functional traits in 

yellow birch. Clausen (1967) observed significant variation in height and growth 

cessation among yellow birch populations tested in common garden. The date of growth 

cessation was found to correlate significantly with growing season length, annual 

precipitation, and average July temperature, while height did not correlate significantly 

with any of the three climate variables tested. No common garden studies examining 

patterns of adaptive variation in leaf morphology and water-use efficiency currently 

exist for yellow birch. Therefore, whether yellow birch demonstrates local adaptation to 

climate in traits related to drought tolerance is currently not well-understood. Thus, the 

objective of my research was to investigate intraspecific variation in morphological and 

physiological traits in relation to climate of yellow birch seedlings originating from 

Canadian and northern United States populations. I focused on functional traits such as 

height, diameter, biomass, leaf morphology, and stable carbon isotopes, which have 

been shown to be indicators of drought tolerance in other plant species and are therefore 

of importance in understanding potential response of yellow birch populations to climate 

change. Understanding patterns of adaptive variation is crucial for understanding and 

predicting climate change effects on forest tree species and the conservation of genetic 

diversity (Leites et al., 2019). The results of this research will provide important 

information on the potential adaptive genetic variation that exists in yellow birch 

populations that have yet to be studied as well as insight for conserving this prominent 

species under climate change conditions. 

The purpose of this thesis was twofold. The first objective (Chapter 2) was to 

investigate patterns of variation in functional traits of yellow birch provenances. Traits 
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which showed significant variation among provenances were then related to climate 

variables at the seed origin using simple and multiple linear regression analyses. The 

second objective (Chapter 3) was to summarize the variation among traits and climate 

variables as well as the relationships between the two data sets, using principal 

component analysis and canonical correlation. Project goals were accomplished through 

the establishment of a greenhouse common-garden study at Lakehead University, 

involving 10 Canadian and Northern Great Lake States yellow birch provenances. Two-

year-old seedlings were measured for functional traits such as height, diameter, leaf 

morphology, biomass, and stable carbon isotopes. Data describing climate at seed origin 

was obtained to investigate patterns of local adaptation among the yellow birch 

provenances. Due to the wide-spread distribution of yellow birch and its polyploid 

genome, I hypothesize that (i) high levels of genetic variation among provenances will 

be present, and (ii) significant variation in functional traits will strongly correlate with 

climate at seed origin, providing evidence for adaptive variation among yellow birch 

populations. 
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LITERATURE REVIEW 

 

ENVIRONMENTAL VARIATION IN PLANT FUNCTIONAL TRAITS  

Biomass Allocation 

Functional traits specifically linked to drought stress (such as biomass allocation) 

have been shown to vary in response to differing soil moisture conditions (Aspelmeier & 

Leuschner, 2006; Rasheed & Delagrange, 2016; Zhang et al., 2004), nutrient conditions 

(Wang et al., 1998), and light conditions (Beaudet & Messier, 1998; Delagrange et al., 

2004; Logan, 1965; Messier & Nikinmaa, 2000). To cope with dry conditions, trees can 

increase root biomass to increase water uptake, usually caused by a shift in hormones 

(i.e. abscisic acid) (Wilkonsin & Davies, 2010). Depending on the abundance of 

nutrients, water, or sunlight, individuals will change the concentration of nutrients to the 

roots, stem, branches, or leaves (Beaudet & Messier, 1998; Delagrange et al., 2004; 

Messier & Nikinmaa, 2000). Studies have found intraspecific variation in biomass 

allocation under varying environmental gradients for hardwood trees (Logan, 1965), 

including yellow birch (Rasheed & Delagrange, 2016), silver birch (Betula pendula 

Roth) (Aspelmeier & Leuschner, 2006) and paper birch (Wang et al., 1998).  

Wang et al. (1998) investigated variation in biomass and relative growth rate 

among four geographically distinct paper birch populations when exposed to varying 

water and nitrogen treatments. They found less variation in measured traits among 

seedlings grown in the high water, high nitrogen treatment, or when resources were not 

limited. Among all populations, relative growth rate was positively correlated with 
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foliage biomass. Furthermore, there were no significant differences in total biomass 

among populations when grown in the low water, high nitrogen treatment. Greater 

root:shoot ratios were found in low nitrogen treatments, but water availability did not 

significantly affect root:shoot ratios. Overall, nitrogen availability had a greater effect on 

seedling biomass than water availability, suggesting these populations were better 

adapted for drought conditions than for low soil nutrient composition.  

In another study, leaf and root morphological responses to drought treatments 

were compared between four genotypes of silver birch originating from climates with 

varying amounts of annual rainfall (Aspelmeier & Leuschner, 2006). Well-watered 

plants were significantly different in total leaf area (LA) and specific leaf area (SLA), 

but root characteristics did not vary significantly among genotypes. Drought treatments 

resulted in an increase in SLA and decrease in LA among all genotypes, as well as a 

decrease in specific fine root surface area (SRA). Interestingly, the ratio of total root to 

leaf surfaces remained constant under drought stress in all genotypes, despite the 

increase of fine root:leaf mass ratio (FR:LM). This was caused by a decrease in diameter 

and number of fine root hairs under drought conditions. The results from this study 

revealed that morphological responses of silver birch to drought are under strong genetic 

control.   

Significant variation of plant morphology under drought conditions has also been 

shown in populations of Populus davidiana (Dode) (Zhang et al., 2004). Seedlings 

originating from dry, wet, and in-between climates were subjected to varying soil 

moisture treatments, resulting in significantly different plant responses. For example, 

seedlings originating from the wet climate resulted in greatest height, total biomass, total 
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leaf area, and SLA when grown in the drought treatment. Furthermore, populations 

originating from the dry climate were the most negatively affected by drought, with the 

lowest height, total biomass, total leaf area, and SLA measurements. The authors 

concluded these differences are caused by adaptations to the environment; the dry 

climate populations responded to drought by slow growth in order to maintain 

physiological functions under long periods of drought, whereas the wet climate 

populations take advantage of water availability and grow relatively quickly to increase 

their potential in the face of competition.  

 

Leaf and Branch Morphology 

Changes in leaf morphology are an efficient way for trees to acclimate to current 

environmental conditions, allowing for a change in rates of photosynthesis and 

transpiration (Xu et al., 2009). Tree survival and fitness may also be influenced by 

changes in leaf morphology (Westoby et al., 2004). Therefore, variation in leaf 

morphology is a good indicator of a plant’s uptake, efficiency, and resource usage (Xu et 

al., 2009). Significant variation in leaf shape, size, and thickness has been shown to 

occur globally across numerous tree species (Beaudet & Messier, 1998; Pyakurel & 

Wang, 2013; Westoby et al., 2013; Wright et al., 2005, 2018). One important leaf 

character is specific leaf area (SLA), which is the ratio of leaf area to leaf dry mass (cm2 

g-1). It is a critical factor in growth rate as a higher SLA in shaded environments 

increases the area for capturing light per unit of leaf biomass (Beaudet & Messier, 1998; 

Xu et al., 2009). Thicker leaves tend to have a lower SLA, whereas thinner leaves have a 

higher SLA. Trees with high SLA are generally adapted to cool and wet environments, 
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whereas trees with a lower SLA tend to perform best in hot and dry environments (Xu et 

al., 2009). Significant variation of SLA among coastal and interior populations of 

Douglas fir has been negatively correlated with altitude at seed origin (Zhang et al., 

1993).  

Variation in leaf morphology of Southern beech (Nothofagus cunninghammi 

Hooker) was compared among seedlings grown at different sites with varying elevation 

to seedlings grown in a uniform glasshouse environment (Hovenden & Vander Schoor, 

2004). Increasing altitude had a strong negative correlation with SLA among seedlings 

grown in the glasshouse, but conversely, a positive correlation among field-grown sites. 

Field grown leaves had an increase in stomatal density with increasing altitude of sites, 

but within the glasshouse, seedlings originating from higher elevations had decreased 

stomatal density. This study provided important insight to the differences of 

environment on leaf characteristics among Southern beech populations, with 

environmental conditions explaining a greater proportion of variation among populations 

compared to altitude of seed origin.  

Coastal and inland species of the flowering plant Mimulus have been shown to 

vary significantly in response to drought treatments (Wu et al., 2010). In that study, 

coastal species which typically inhabit areas with high soil moisture had the lowest SLA 

values, but also thicker and wider leaf venation, whereas species originating from drier 

areas had relatively high SLA values. However, the contrasting SLA trends may be due 

to perennial plants reportedly having lower SLA compared to annual plants.  

Rasheed & Delagrange (2016) used LIDAR technology to examine variation in 

branch architecture among yellow birch seedlings grown water-stressed and well-

watered conditions. Individuals in the water-stressed treatment had significantly 
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decreased long axis branches and increased short axis branches compared to individuals 

grown in the well-watered treatment. Low water treatments also significantly decreased 

the number of leaves, total leaf area, and average leaf length. This decrease in leaf 

biomass may be an adaptation for drought conditions, allowing the seedling to decrease 

water consumption without drastically changing larger structures or functions. However, 

there was no significant variation in root-to-shoot ratios among the seedlings. While the 

findings of this study are insightful, the data is limited due to the small sample size 

(n=30) and the seedlings originated from a single population. Past research on yellow 

birch has shown significant variation in leaf shape among populations, with site 

characteristics such as elevation and soil characteristics to be correlated with reported 

variation (Dancik & Barnes, 1975; Sharik & Barnes, 1979). 

 

Water-use Efficiency 

Water use efficiency (WUE) is an important measurement of carbon and water 

ratios occurring within and around a plant’s tissue and ecosystem (Donovan & 

Ehleringer, 1994; Farquhar et al., 1989; Kondo et al., 2004; O’Leary, 1988). WUE can 

be broken into three types: instantaneous, intrinsic, and integrated (Farquhar et al., 

1989). Instantaneous WUE, Wt (= A/E), refers to the ratio of photosynthetic carbon gain 

(assimilation) to water loss by transpiration, which occurs at the leaf level and is 

appropriate for short time scales (Farquhar et al., 1989). Integrated WUE is a more long-

term measurement as it refers to the total carbon gain to the total water loss of a leaf, 

plant, or ecosystem and can be written as (Farquhar et al., 1989): 
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!"	=
	A	(1−ø*)

,	(1+ø.)
 

In this equation, øc refers to the fraction of assimilated carbon lost due to respiration and 

øw refers to the fraction of total “unproductive” water loss due to non-photosynthetic 

tissues or opened stomata at night. Lastly, intrinsic WUE, Wg (= A/gs), is the ratio of net 

assimilation to stomatal conductance, occurring at the leaf and plant level (Osmond et 

al., 1980). Although each of these measurements of WUE are insightful, we are mostly 

concerned with integrated WUE, as it reflects the overall water use throughout the plant 

over long periods of time (Seibt et al., 2008). Plants with thicker leaves (low SLA) tend 

to have higher levels of carbon isotope discrimination (∆) (Zhang et al., 1993). 

Furthermore, high leaf-level WUE is considered an important adaptive trait that may 

assist in minimizing water loss in drought conditions (Diefendorf et al., 2010; Ferguson 

et al., 2018; Seibt et al., 2008). For example, in Arabidopsis, significant variation within 

the species has been shown in functional traits when subjected to well-watered and low-

water treatments (Ferguson et al., 2018). Traits such as stomatal conductance and carbon 

assimilation were positively correlated with one another, whereas traits such as WUE, 

transpiration, and stomatal conductance were negatively correlated with one another. 

However, no correlations occurred between measured physiological traits and plant 

growth traits.   

A common way to measure WUE is through stable carbon isotope analysis, which 

has provided critical understanding of plants and their response to the environment 

(Dawson et al., 2002; Farquhar et al., 1989; Leavitt & Long, 1986). Carbon exists in two 

stable forms, 12C and 13C. During photosynthesis, plants discriminate against 13C, which 

is the heavier isotope and forms slightly stronger bonds (Dawson et al., 2002; Farquhar 
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et al., 1989; O’Leary, 1988). This discrimination (∆) of carbon isotopes provides the 

foundation of isotope analysis in plant tissues (Dawson et al., 2002). Plants contain less 

13C than the atmosphere, due to the processes involved in CO2 uptake and the 

discrimination against 13C (Dawson et al., 2002). The diffusion of 13CO2 is slower than 

12CO2 because of this difference in mass. The equation, R= 13C/ 12C is the ratio these 

two isotopes exist in plant tissue, the atmosphere, wood, or other materials (Leavitt & 

Long, 1986). For isotope analysis, R values are converted to d13C values using the 

following equation:  

/131	=	2
3(456789)

3(456789)
−1:;	1,000	

(referred to as the PeeDee (PDP) limestone standard) and presented in “per mil” units 

(‰) (Dawson et al., 2002). During the process of photosynthesis, C3 plants fix CO2 

using the enzyme ribulose biphosphate carboxylase. This fixation leads to a difference in 

isotope abundance (O’Leary, 1988). A majority of plants (C3, C4, and CAM) have d13C 

values in the range of -25‰ to -35‰ (Craig, 1953, 1954). However, studies have shown 

a clear distinction of d13C values between C3 and C4 plants, with a mean of -28‰ for 

C3 plants and a mean of -14‰ for C4 plants (O’Leary, 1988).   

Due to the strong relationship between plant photosynthesis and carbon isotopes, 

many studies have been performed globally and across plant species. Stable carbon 

isotope values were measured in a variety of plants (C3 trees and C4 grasses) across 

habitat gradients in South Africa (Codron et al. 2013). Unexpectedly, this study found 

no climate effects correlated with d13C values, but there were significant differences 

between plants in riverine habitats (low d13C values) compared to those in arid, dry, and 

open woodland habitats (high d13C values). Conversely, a meta-analysis found strong 
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positive correlations between mean annual rainfall (MAP) and ∆leaf  values of woody 

plants (Diefendorf et al., 2010). Significant differences in fractionation existed between 

major biomes included in the meta-analysis, with highest ∆leaf values found in tropical 

rainforests and lowest ∆leaf values in xeric woodlands. Furthermore, ∆leaf values were 

greater among cool-cold deciduous forests than ∆leaf values in cool-cold evergreen 

forests.  

Intraspecific variation of d13C has been reported among Douglas fir (Pseudotsuga 

menziesii (Mirbel) Franco), with significant differences occurring among populations 

originating from the Rocky Mountains when grown in a common garden. This study 

found significant correlations between geographic location of seed origin and d13C 

values, with populations from the Southern Rockies having the highest d13C and 

therefore, lowest WUE, compared to the Northern Rockies populations. These results 

are opposite of in situ trends previously reported for Douglas fir, which the authors 

concluded in situ trends of d13C may be more strongly affected by the environment than 

genetic variation.  

Genetic variation of d13C has also been reported among ponderosa pine (Pinus 

ponderosa Douglas ex. Lawson) seedlings, with limited water availability significantly 

decreasing these values (Olivas-Garcia et al., 2000). Two-year-old seedlings grown from 

seed originating from Nebraska, Wyoming, New Mexico, and South Dakota were 

compared in a variety of physiological traits, including carbon isotope discrimination 

(∆). This study found drought treatment, seed source, and family within seed source to 

strongly affect ∆, with lowest values occurring in seedlings from New Mexico and 

Nebraska.  
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Among hardwoods, genetic variation of d13C has been shown in species such as 

black poplar (Populus nigra Linnaeus) (Guet et al., 2015), Poplar hybrids (Dillen et al., 

2008), and European beech (Fagus sylvatica Linnaeus) (Robson et al., 2012) when 

grown in a common garden. The results from these studies are similar in that 

intraspecific variation is strongly correlated to the geographic location of seed source. 

Furthermore, variation in d13C values tend to be more prominent when plants are 

exposed to drought stress compared to well-watered treatments.  

 

COMMON GARDEN RESEARCH 

Common garden studies with sampling from multiple populations across a 

species range are crucial to understand the adaptive nature of functional traits that may 

vary among tree populations (Rehfeldt et al., 2018). Traditionally, common garden 

studies were used to identify optimal seed sources for reforestation projects (Matyas, 

1996) but more recently, common garden research has largely been used to predict 

population responses to climate change (Lu et al., 2016). An individual plant’s 

phenotype is the result of its genotype plus the environment it is growing in (Frankham 

et al., 2013). Therefore, when different genotypes of the same species are grown in a 

controlled, uniform environment, phenotypic variation that is observed can be attributed 

to be the result of underlying genetic differences. 

Functional traits such as height, diameter, biomass, and leaf morphology have 

been shown to vary significantly among provenances in hardwood species such as 

yellow birch (Clausen, 1967; Wearstler et al, 1977), paper birch (Pyakurel & Wang, 

2013), trembling aspen (Thompson, 2014), and white birch (Oke, 2009) when grown in 
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a uniform environment. Provenance data has also been used to detect local adaptation 

for conifers including white spruce (Lesser, 2005; Lu et al., 2016), black spruce (Parker, 

Riddell, & Lesser, 2004), jack pine (Thomson & Parker, 2008), and white pine (Joyce & 

Rehfeldt, 2013). Understanding the variation in functional traits within a species can 

provide insight as to how specific populations may respond to future climate change 

conditions. 

Data from common garden studies can also be used to investigate variation in 

patterns of local adaptation among species. For example, provenance data for five North 

American hardwood species including yellow birch, red maple, black walnut, black 

cherry (Prunus serotine Ehrhart), and northern red oak, revealed contrasting pattens 

suggesting that evolutionary trade-offs favouring either cold tolerance or increased 

growth had occurred (Leites et al., 2019). Different climatic variables were associated 

with varying strength of growth responses in each species. For height, mean temperature 

of the coldest month (MTCM) had the strongest effect with red maple, mean annual 

temperature (MAT) had the strongest effect with black walnut, and both mean 

temperature of the warmest month (MTWM) and mean maximum temperature of the 

warmest month (MMTWM) had the strongest effect with northern red oak. All climate 

variables had strong correlations with height of black cherry, whereas no climate 

variables were significantly correlated with height of yellow birch.  

 

ADAPTIVE VARIATION TO CLIMATE IN NORTHERN HARDWOOD TREES 

Temperate hardwood and boreal forest trees typically have growth traits strongly 

shaped by environmental gradients (Aitken & Bemmels, 2016; Aitken, Yeaman, 

Holliday, Wang, & Curtis-McLane, 2008; Clausen, 1975, 1980; Leites et al., 2019; 
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Matyas, 1996; Vitasse et al., 2009). These traits may include height, leaf phenology and 

morphology, flowering times, and growth cessation. Among conifers, photoperiod has 

been shown to correlate with bud burst and bud set in Norway spruce (Picea abies 

(Linnaeus) Karsten) (Matyas, 1996), Douglas fir (Campbell and Sugano 1975) and cold-

tolerance of lodgepole pine (Rehfeldt et al., 1999). In both conifers and hardwoods, trees 

originating from warmer climates tend to have higher growth rates in mild environments 

and lower growth rates in colder environments, leading to a strong correlation between 

length of growing season and phenological traits such as bud burst, bud set, and period 

of leaf and shoot development (Howe et al., 2003; Leites et al., 2019).   

Northern hardwood and boreal forest tree species have shown strong to moderate 

response of growth and phenology in relation to environmental gradients (Aitken et al., 

2008). For widespread tree species, it has been suggested that temperature is the driving 

force behind genetic differentiation among a species, whereas both temperature and 

precipitation are the drivers of the spatial distribution of the species (Moles et al., 2014; 

Rehfeldt et al., 2018). Several studies have compared yellow birch to other temperate 

hardwood species such as sugar maple, American beech, or northern red oak (Beaudet & 

Messier, 1998; Delagrange, 2011; Delagrange et al., 2004; Gaucher et al., 2005; Leites 

et al., 2019; Logan, 1965; Messier & Nikinmaa, 2000). For example, one study tested 

latitudinal gradients and frost tolerance of three temperate hardwood species (Calmé et 

al., 1994). Yellow birch, sugar maple, and northern red oak seedlings were subjected to 

freezing trials by being overwintered outdoors. After observing primary root tissue, total 

percent root damage of each individual was calculated. Bud measurements, such as bud 

set and bud burst, and mitotic frequency were recorded. Northern red oak was least 

tolerant of freezing damage in terms of stem and root health and function, with only 7% 
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survival, followed by 50% survival of sugar maple. Overall, yellow birch was found to 

be the most frost-tolerant species, with 100% of the seedlings surviving the winter. 

Northern red oak root tissue had a freezing tolerance of -23ºC, whereas the roots of 

sugar maple could withstand -33ºC. In contrast, yellow birch roots remained alive in -

33ºC, which was the lowest recorded temperature of the test. All three species have 

similar distributions in the northern range, but northern red oak extends farther south 

than the other two species. A study comparing yellow birch and sugar maple seedlings 

revealed significant variation of traits such as leaf mass area, leaf nitrogen content, 

photosynthesis rates, and leaf nitrogen partitioning in differing light environments and 

during three growing season stages (Delagrange, 2011). Both species showed high 

plasticity of leaf morphology in varying light conditions, which appeared to be the most 

efficient way for both species to respond to low light conditions while maintaining 

physiological functions.  

 

BETULA ALLEGHANIENSIS (BRITTON) 

Species Range and Importance 

Yellow birch is an ecologically important tree ranging from the Atlantic Coast to 

southeastern Manitoba, across the Midwest states and south to the Appalachian 

Mountains (Clausen, 1973) (Figure 1). The species optimally grows in mesic forest 

types with 50% full sun exposure and moist, well-drained soils, such as these major 

Eastern North American forest types: Hemlock-Yellow Birch, Sugar Maple-Beech-

Yellow Birch, and Red Spruce-Yellow Birch (Erdmann, 1990). The average annual 

temperature across its range is reported at 7°C, with extremes from -40° C to 38° C, 

while the growing season ranges from 60 to 150 days (Clausen, 1973). Annual 
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precipitation ranges from 1270 mm on the eastern coastal range to around 640 mm in the 

western limits (Erdmann, 1990).  

Economically, yellow birch is extremely valuable and is predominantly used for 

hardwood flooring, furniture, cabinets, doors, and other wood products (Juncus, 1998). 

The common name, yellow birch, comes from the distinct caramel-yellow bark, which 

peels in thin, short strips and gives off a wintergreen scent when crushed (Erdmann, 

1990). The species is monoecious, with male and female catkins that mature in 

September through October, and disperse by wind throughout the winter months 

(Clausen, 1973). Yellow birch is considered an early to mid-successional species with 

intermediate shade tolerance, commonly outcompeted by paper birch and sugar maple 

during the seedling stage, as the species is relatively light and soil sensitive. Yellow 

birch require openings in the canopy and disturbances to soil beds for successful 

establishment (Erdmann, 1990).  

Individual yellow birch trees can live up to 300 years and provide many benefits 

to the forest ecosystems they inhabit (Erdmann, 1990). A variety of birds, squirrels, and 

chipmunks eat the wind-dispersed seeds throughout the winter, while white-tailed deer, 

snowshoe hare, and moose graze on seedlings for nutrients. Yellow bellied sapsuckers 

rely on food supplies of birch sap in the spring and feed on insects and larvae that are 

burrowed in the trees (Erdmann, 1990). Recent research discovered a significant number 

of unique lichen species that are supported by yellow birch trees on the Avalon 

Peninsula of Newfoundland (Wigle et al., 2021). A variety of beetles, bugs, caterpillars, 

and larvae burrow in yellow birch trees, lay eggs, and feed on the leaves throughout the 

summer (Erdmann, 1990). Many fungi are detrimental to yellow birch, causing disease 

and dieback within entire stands.  
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Figure 1. Native range of yellow birch (Erdmann 1990). 

 

 

Intraspecific Genetic Variation 

Most provenance research of yellow birch took place during the late 1900’s 

(Beaudet & Messier, 1998; Calmé et al., 1994; Clausen, 1967, 1968, 1972, 1974, 1975, 

1980; Dancik & Barnes, 1975; Wearstler et al., 1977). Those studies revealed variation 

among and within populations in seedling height growth and cessation (Clausen, 1967), 

early growth and survival (Clausen, 1974), flowering times (Clausen, 1980), and catkin 

characteristics (Clausen, 1968). Clausen (1967) investigated phenotypic variation 

amongst yellow birch seedlings collected from 55 localities across the range when 

grown in a common garden. The greenhouse design was randomized in blocks, with 5-

10 individuals representing each seed source. After the first and second growing 
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seasons, the height of 20 seedlings from each block was measured and recorded. 

Significant variation of height growth was present among seedlings from different 

provenances. However, height growth of 2-year-old seedlings was not significantly 

correlated to any of the tested geographic or climate variables. In contrast, the timing of 

growth cessation differed significantly among provenances, with the eastern 

Newfoundland population ceasing growth one week earlier than the average, and the 

southern Kentucky population remaining active over one week later than the average. 

These results described an inverse correlation with growth cessation and the latitudinal 

gradient, most likely due to photoperiod cues (Clausen, 1967).  

Clausen (1968) investigated fruit and catkin characteristics using the same seed 

sources from the previous study. Catkins were collected from 17-25 trees in each 

population, and five catkins from each tree were randomly measured. Characteristics 

measured were lengths of rachises, dimensions of bracts and nutlets, as well as length 

and width ratios. Significant variation of all characteristics was demonstrated, although 

there was no apparent clinal pattern of variation among populations. Clausen (1974) 

reported on the survival and height growth among these seed sources after five years 

growing in the field at 11 sites across the U.S. and Canada. Seed origin was strongly 

correlated to seedling survival, as more northern provenances had higher survival rates 

than southern provenances when grown in the most extreme climates (i.e. Wisconsin and 

northern Michigan plantations). However, variation among provenances was not as 

prevalent at the other plantation sites with milder climates. Despite significant variation 

in height growth among provenances, it was independent from seed origin in all 

plantations. This study revealed differences in performance across provenances when 
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seedlings were grown in varying climates, indicating the importance of seed source 

selection depending on the location.  

To better-understand the possible causes of phenotypic variation in yellow birch 

that had been shown by Clausen’s studies, Dancik and Barnes (1975) investigated the 

potential correlation between site characteristics and variation in leaf morphology. 

Populations in Michigan, Wisconsin, and Minnesota were divided into 18 districts 

within six major regions categorized by their physiographic characteristics. Leaves from 

each individual tree were collected, pressed, and measured for a variety of phenotypic 

characters. Soil characteristics (such as acidity and drainage), elevation, and coordinates 

were also recorded for each collection location. Significant variation in leaf characters 

was observed, and multiple regression analyses revealed that variation was explained by 

site factors such as drainage and pH. Moreover, significant variation in leaf characters 

occurred between populations located near Lake Superior and those that were more 

inland or continental. The authors concluded that the variation in morphological traits 

were not due to genetic variation, but to variations in phenotypic responses to site 

variables. However, a study of yellow birch populations in Michigan found that 

variation in seedling height was significantly correlated to latitude of seed origin, 

suggesting the impacts of temperature and photoperiod on seedling development 

(Wearstler et al., 1977).  

Sharik and Barnes (1979) found significant variation among yellow birch 

populations growing in the Appalachian Mountains. Of the 47 tree characteristics 

observed, 42 were significantly different among the 30 populations of yellow birch. 

Measured traits included leaf characters (i.e. blade length, blade width, tooth serration, 

venation, and bract length), fruit (i.e. samara length and width), bark, and pollen. 
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Phenotypic variation between populations was shown to be related to provenance 

latitude and elevation. For example, increasing latitude was associated with increased 

blade length and width, as well as wider leaf venation, coarser leaf serration, and 

narrower samara bodies. Conversely, increasing elevation was associated with opposite 

trends, which may have leveled out significant variation among provenances. While 

significant differences in traits occurred among populations, high within-population 

variation was observed. The lack of consistency in clinal patterns and weak correlations 

with site variables (r values <= 0.72) led the authors to conclude their study was 

unsuccessful in revealing strong trends in adaptive variation among yellow birch 

populations. As such, further studies including a greater range of populations and sample 

size were recommended.  
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CHAPTER II 
 

VARIATION IN DROUGHT RELATED TRAITS AMONG YELLOW BIRCH 

POPULATIONS AND EFFECT OF CLIMATE AT SEED ORIGIN 
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INTRODUCTION 

 

Increases in frequency and severity of extreme climatic events is expected to 

negatively affect forest health and productivity due to climate change (Allen et al., 2010) 

and increased tree mortality over recent decades has been linked to elevated drought 

stress (O’Brien et al., 2017). Eventual mortality of stressed trees may either be 

physiological (carbon starvation or hydraulic failure) or indirect (takeover by pests or 

pathogens). Understanding of variation in functional traits within tree species can 

provide insight as to how specific populations may respond to stress due to climate 

change.  

Common garden (aka ‘provenance’) studies are effective ways to reveal genetic 

variation within a species (Matyas, 1996). When grown under a controlled, uniform 

environment, observed phenotypic variation can be inferred due to underlying genetic 

differences, rather than plastic responses to the environment. Functional traits such as 

height, diameter, biomass, and leaf morphology have been shown to vary significantly 

among provenances in hardwood species such as yellow birch (Clausen, 1967; Wearstler 

et al., 1977), paper birch (Pyakurel & Wang, 2013), trembling aspen (Thompson, 2014), 

and white birch (Oke, 2009) when grown in a uniform environment.  

Yellow birch is an ecologically important North American hardwood tree that 

ranges from the Atlantic Coast to southeastern Manitoba, across the Midwest states and 

south to the Appalachian Mountains (Clausen, 1973). Although common garden studies 

have been conducted for yellow birch (Clausen, 1967; Clausen & Garrett, 1968; Dancik 

& Barnes, 1975; Sharik & Barnes, 1979) no studies to date have tested specifically 

whether phenotypic variation in leaf traits and water use efficiency is due to local 
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adaptation to climate. Therefore, the objectives of this study were to (i) investigate the 

variation in functional traits such as height, diameter, leaf morphology, biomass, and 

stable carbon isotopes that may be present among Canadian and Great Lakes States 

yellow birch populations and (ii) examine whether trait variation is significantly 

correlated to variations in climate at seed origin.   
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MATERIALS & METHODS 

 

 
SEED SOURCES AND EXPERIMENTAL DESIGN 

Yellow birch seed was obtained from 10 provenances across Canada and 

Northern US states, including northwestern and eastern Ontario, New Brunswick, 

Newfoundland, Michigan, and Minnesota. Each location had at least five trees collected, 

while some locations’ seeds were collected from up to 10 trees. Seed sources ranged 

from 45.94713º to 48.67692º latitude and -58.19208º to -93.89938º longitude (Figure 2). 

Northwestern Ontario seed sources (Squaretop and Greenwood) were collected on 

October 6 and October 10, 2019, respectively. Dominant trees were selected at least 50 

meters apart to minimize the chance of sampling full or half-sibs (Thomson et al., 2015). 

The collected seeds were sent to the National Tree Seed Centre for further cleaning and 

processing. The remainder of the seed sources were provided by the National Tree Seed 

Centre in Fredericton, New Brunswick (Provenance 1-4) and J.W. Toumey Nursery in 

Watersmeet, Michigan (Provenance 7-10).  

 



	 30	

Table 1. Provenance number, location, and geographic coordinates. 

 

 

 

Figure 2. Provenance locations. Green dots indicate the location of seed origin while 

numbers indicate the number used to track each seed source in the greenhouse 

experiment. The green shading indicates the natural range of yellow birch. 

 

Provenance # Location Province/State Lat Long
9 Chippewa NF MN 47.58378 -93.89938
8 Superior NF MN 47.89521 -91.01247
5 Greenwood ON 48.39344 -90.75198
10 Ottawa NF MI 46.3587 -89.81761
6 Squaretop Mt. ON 48.28006 -89.39645
7 Hiawatha NF MI 46.23304 -86.50807
4 Petawawa ON 46.0000 -77.43333
1 Black Brook NB 47.4500 -67.4500
3 Big Pond NL 45.94713 -60.4426
2 Gallants NL 48.67692 -58.19208
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Prior to sowing, the seeds underwent a week-long stratification process, where 

they were transferred back and forth from the freezer to the fridge at 24-hour intervals. 

Seeds were sown on May 15 and 16, 2020. The growing medium was a 60:40 peat and 

vermiculite mixture and at least two seeds were sown per cell in a 28/340 ml Styrofoam 

SuperBlock (Beaver Plastics Ltd.). The seedlings were grown in ambient conditions 

(min temp =17.91ºC, max temp = 24.67ºC, ave temp = 19.2ºC) for the duration of the 

experiment. After germination, the seedlings were thinned so that only one seedling 

remained per cell. The seedlings were fertilized with 15-15-18 Fertilizer (Plant Products, 

Soilless Feed) and were kept in the greenhouse throughout the winter. Once seedlings 

were dormant, the watering schedule was reduced to twice a week. On May 21, 2021, 

200 seedlings were randomly chosen to be transplanted into 6.5x7 inch pots in a study 

design with four blocks each containing five replicates of each of the ten provenances. 

Once transplanted, the seedlings were fertilized with a slow release 16-14-18 granular 

fertilizer (Scott’s Fertilizer, 2% added iron). The seedlings continued to be well-watered 

throughout the summer and were treated with a Neem oil solution for aphid control for 

the months of September and October 2021. 

 

GROWTH AND BIOMASS MEASUREMENTS 

Total seedling heights were measured for all 200 seedlings (20 seedlings per 

provenance) to the nearest half centimeter on September 15, 2021. Diameter of the 200 

seedlings was also measured to the nearest millimeter at the base of the root collar using 

digital calipers. On October 9, 2021, 40 trees (four seedlings per provenance) were 

randomly selected for biomass, leaf morphology, and stable isotope measurements. A 

subsample of one seedling per provenance per block was used due to the destructive 
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nature of these data collection methods. The top 3rd, 4th, and 5th mature leaves were 

collected, placed in plastic bags, and stored in the fridge prior to scanning for leaf 

morphology measurements. The remaining parts of the trees were prepared for biomass 

measurements by being separated into aboveground (leaves, branches, and stem) and 

belowground (roots) biomass (Gao et al., 2017). The seedlings were gently rinsed off to 

remove excess soil and debris prior to being dried in an oven at 60 degrees Celsius for 

72 hours. Dry weights were taken of each component and recorded to the nearest gram 

using a precision balance.  

 

LEAF MORPHOLOGY 

 Three scanned leaves from each seedling were analyzed using WinFOLIA 

software 2004a (Regent Instruments Inc. 2004). Advanced and basic morphology were 

chosen for the analysis, which included measurements of individual leaf area, horizontal 

width, perpendicular width, vertical length, perimeter, form coefficient, and aspect ratio. 

Other parameters included in the analysis were two lobe angles measured at two 

different heights of blade length (10% and 25% of height) and two blade width 

measurements taken at two different heights of blade length (50% and 90% of height). 

The blade length was measured from the blade/petiole junction to the topmost point of 

the leaf. These measurements were included as they provide a more complete picture of 

leaf shape, rather than overall size that could be measured by area or perimeter. 

Perpendicular width 1 was measured at the middle of the leaf (50% of height), whereas 

perpendicular width 2 was measured at the topmost portion of the leaf (90% of height). 

Maximum perpendicular width was measured as the maximum width perpendicular to 

blade length. An image including a visual representation of these parameters is included 
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in Appendix VII. Total leaf area was calculated using the data output from WinFOLIA. 

Specific leaf area (SLA) was calculated as the ratio of total leaf area to leaf dry mass 

(Beaudet and Messier, 1998). Images of scanned leaves by provenance are included in 

Appendix VI.  

 

 

CARBON AND NITROGEN STABLE ISOTOPE ANALYSIS 

The same leaves that were scanned were also dried in the oven and weighed, then 

added to the total leaf weight data. The dried leaves were homogenized using mortar and 

pestle, weighed to approximately 30 milligrams, and shipped in glass vials to the 

Environment Isotope Lab at the University of Waterloo for d13C and d15N isotope 

analysis. The δ13C data (δ13C IRMEA / VPDB column) is the corrected delta value, 

reported in per mil (‰) units, against the primary reference scale of Vienna Pee Dee 

Belemnite (VPDB) (EIL, University of Waterloo). Further details of the methods used to 

conduct the stable-isotope analysis can be found in Appendix II.  

 

CLIMATE DATA 

Climate N.A. Software was used to generate climate variables for all seed 

sources (Wang et al., 2016). The coordinates for each provenance were entered into the 

software and 29 climate variables were selected based on annual and seasonal data. In 

the case of bulk seed provided for a provenance (Provenance 7, 8, & 9), a single 

centralized coordinate was used to obtain climate information. Climate data for years 

1980-2010 was chosen for this analysis. Climate variables were chosen based on a 
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review of the strength of their effect on tree species’ growth and function (Aitken & 

Bemmels, 2016; Leites et al., 2019; Moles et al., 2014) and are further listed with their 

definitions and units in Appendix III (Table 13). Climate variables expected to play key 

roles in driving variations of tree characteristics are listed in Table 2, along with the 

ranges by provenance. MAT differed from 3ºC in Provenances 1 and 6, 4.5ºC in 

Provenance 10, and 5.7ºC in Provenance 7 (Table 2). DD5 differed from 1438 in 

Provenance 6, 1485 in Provenance 1, 1766 in Provenance 10, and 1850 in Provenance 7. 

AHM ranged from 12.2 in Provenance 1 to 18.6 in Provenance 7. PPT_SM varied the 

most between Provenance 1 and 7, with an average of 321 mm and 239 mm of rainfall, 

respectfully.  
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Table 2. Key climate variable values represented by each provenance. See Appendix III for a complete list of climate variables with 
their associated definitions and units. 

 

Provenance MAT MWMT MAP AHM SHM DD_0 DD5 DD18 EREF TAVE_SP TAVE_SM PPT_SP PPT_SM
1 3 17.6 1069 12.2 35 1348 1485 71 601 2.1 16.2 221 321
2 4.3 16.4 1295 11.1 30.8 817 1361 49 515 1.6 14.9 242 322
3 5.7 17.7 1510 10.4 33.1 632 1606 84 537 2.6 16 349 307
4 5.1 19.7 842 17.9 47.6 1105 1906 173 706 4.6 18.4 192 247
5 2.4 17.8 701 17.7 40.4 1574 1510 81 626 2.2 16.5 136 282
6 3 16.9 728 17.8 41.5 1325 1438 60 583 2.3 15.7 158 255
7 5.7 19 845 18.6 47.4 857 1850 145 696 4.4 17.8 184 239
8 2.8 18 731 17.5 39.5 1479 1548 89 633 2.6 16.7 150 291
9 4 19.4 684 20.5 43.2 1352 1806 157 650 4.1 18.2 153 288
10 4.5 18.8 833 17.4 40.5 1144 1766 131 671 4.1 17.7 189 282
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STATISTICAL ANALYSIS 

 Data analysis was performed using SPSS statistics software (IBM SPSS, version 

28). First, the data was checked for outliers and errors. Normal distribution of the data 

was checked by reviewing values of skewness and kurtosis using the Kolmogorov-

Smirnov and Shapiro-Wilk tests, respectively. Factors such as SLA, horizontal width, 

maximum perpendicular width, perpendicular width 1, petiole length, petiole area, and 

root:shoot ratio were Log base 10 transformed to reach near-normal distribution. 

Horizontal width, maximum perpendicular width, and perpendicular width 1 values were 

reflected prior to transformation to obtain positive values. A two-way analysis of 

variance (ANOVA) was performed to determine whether significant variation occurred 

in height and diameter between provenances. All effects were considered random. The 

linear model used for the 200 seedlings was 

 Yijk = µ + Ai + Bj + ABij + eijk  

where i = 1 to 10 seed source, j = 1 to 4 blocks per test, k = 1 to 5 replicates per seed 

source per block, Yijk is the measured variable value of replication k of seed source i in 

block j, µ is the population mean, Ai is the random effect of seed source i, Bj is the 

random effect of block j, ABij is the random interaction effect of the ith seed source with 

the jth block, and eijk is the random error effect of replication k of provenance i in block j 

(Thomson & Parker, 2008).  

One-way ANOVAs were performed to examine whether significant differences 

in measured variables (i.e. height, diameter, leaf morphology, biomass, and stable 

carbon isotopes) occurred between provenances for the subsample of 40 seedlings. The 

linear model was modified due to the absence of within-block repetitions:  
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 Yij = µ + Ai + eij  

where i = 1 to total no. of seed sources, j = 1 to total no. of replicates for each seed 

source, Yij is the measured variable value of replication j of seed source i, µ is the 

population mean, Ai is the random effect of seed source i, and eij is the random effect of 

replication j of provenance i (Thomson & Parker, 2008). Post-hoc Tukey HSD tests were 

performed to identify where the significant variation in measured traits occurred 

between provenances.  

Simple linear regressions were performed to examine the relationship between 

provenance trait means and climate at seed origin. Highly correlated climate variables 

(r>0.7) were eliminated prior to the multiple regression analysis, resulting in four 

unrelated climate variables: MAT, DD5, AHM, and PPT_SM. Multiple stepwise 

univariate linear regressions were performed to identify the strongest groups of climate 

predictors and their correlations with provenance means. The criterion for entry and 

removal was based on the F-statistic set at 0.1 in order to produce significant models in 

SPSS.  
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RESULTS 

 

ANALYSIS OF VARIANCE 

The ANOVA for the full set of 200 seedlings did not result in significant 

variation among provenance mean height (p=0.182) or diameter (p=0.215) and can be 

found in Appendix V, Table A. 12. Block effects were significant for seedling diameter 

(p=0.002) but not height (p=0.852) (Appendix V, Table A. 12). The ANOVA for the 

subset of 40 randomly selected seedlings revealed significant differences among 

provenance means for six measured variables including height (p=0.049), average 

horizontal leaf width (p=0.048), horizontal leaf width (p=0.028), maximum 

perpendicular width (p=0.048), perpendicular width 1 (p<0.001), and perpendicular 

width 2 (p=0.016) (Table 3). Provenance 1 (Black Brook, NB) had the lowest height, 

measuring 38.5 cm, whereas Provenance 5 (Greenwood, ON) was the tallest at 73.9 cm 

(Table 3). A post-hoc Tukey HSD test showed significant variation in height between 

Provenances 1 and 5 (Appendix V, Table A. 9) which are geographically located in New 

Brunswick and Northern Ontario, respectively. These two provenances are near the far 

east and west extremes of the species range.  

 Average horizontal width varied between 0.89 cm for Provenance 7 (Hiawatha, 

MI) and 1.12 cm for Provenance 1 (mean = 1.039 cm +/- 0.018). Horizontal width 

varied between 0.06 cm from Provenance 1 and 0.16 cm from Provenance 7 (mean = 

0.111 cm +/-0.009). Furthermore, maximum perpendicular width ranged from 0.06 cm 

(Provenance 1) to 0.16 (Provenance 7) (mean = 0.110 cm +/- 0.009). Perpendicular 

width 1 ranged from 0.05 cm (Provenance 1) to 0.17 (Provenance 7) (mean = 0.107 cm 
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+/- 0.029). Provenance 7 (Hiawatha, MI) had the narrowest perpendicular width 2 

measurement, 0.17 cm, whereas Provenance 6 (Squaretop Mt., ON) had the widest, 0.34 

cm (Table 3). Therefore, Provenance 1 and Provenance 7 had consistent significant 

differences in leaf morphology.   

 

Table 3. One-way ANOVA results with mean, min and max values, significance, and 
standard error values. Mean values are all measured in units of cm. Horizontal width, 
maximum perpendicular width, and perpendicular width 1 were reflected and log-based 
10 transformed. 

 

 

Post Hoc Tukey HSD tests determined significant variation in leaf morphology 

between specific populations. Provenance 1 differed significantly from Provenances 7 

and 10 in mean perpendicular width 1 (p=0.004 and p=0.022, respectively) (Appendix 

V, Table A. 10). Furthermore, Provenance 6 differed significantly from Provenance 7 

and 10 in mean perpendicular width 1 (p=0.007 and p=0.041, respectively). 

Perpendicular width 2 significantly differed between Provenance 1 and Provenance 7 

(p=0.049) (Appendix V, Table A. 11). Provenance 1 originated from New Brunswick, 

Provenance 6 originated from Northwestern Ontario, and both Provenance 7 and 10 

originated from Michigan (Table 1, Figure 2). Each of these provenances are close to the 

geographic extremes of the yellow birch range (Figure 2).  

Measured Variable Mean Min Max Sig Std Error
Height 57.80 38.50 73.90 0.049 2.232

Ave Horizontal Width 1.04 0.90 1.12 0.028 0.018
Horizontal Width 0.11 0.07 0.17 0.048 0.009
Max Perp Width 0.11 0.07 0.17 0.048 0.009

Perp Width 1 0.11 0.05 0.18 <0.001 0.029
Perp Width 2 0.26 0.17 0.35 0.016 0.012
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SIMPLE LINEAR REGRESSIONS 

 Mean provenance trait values were significantly correlated (p<0.1) with 12 

climate variables including: mean summer precipitation (PPT_sm), mean warmest 

month temperature (MWMT), mean annual temperature (MAT), annual heat moisture 

index (AHM), summer heat moisture index (SHM), degree-days above 5ºC (DD5), 

degree-days above 18ºC (DD18), precipitation as snow (PAS), Hargreaves reference 

evaporation (EREF), Hargreaves climatic moisture deficit (CMD), spring mean 

temperature (TAVE_SP), and summer mean temperature (TAVE_SM), as well as the 

geographic variable longitude (LONG) (Table 4). Regression plots with p values ranging 

between 0.05 and 0.1 are presented in Appendix IV.  

Six significant climate variables (MWMT, MAT, DD5, DD18, TAVE_SP, and 

TAVE_SM) were temperature-related, while two variables (PPT_SM and PAS) were 

precipitation-related and four variables (AHM, SHM, CMD, and EREF) were climate-

moisture related (Table 4). The climate variable TAVE_SP significantly correlated 

(p<0.05) with every measured trait except height (Table 4). Although there were many 

correlations that were significant at both the 90% and 95% confidence levels, the 

correlations were relatively weak (Table 4). The highest R2 value (0.676) was obtained 

for the regression between perpendicular width 2 and DD5 (p=0.004) (Table 4). The 

majority of the R2 values ranged from 0.315 (perpendicular width 2 and MAT) to 0.497 

(perpendicular width 2 and EREF) (Table 4). 
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Table 4. Simple linear regression results including measured variables and the 
corresponding R2 values, significance, and climate variables. Significance levels 
indicated as p<0.1* and p<0.05**. See Appendix III, Table A. 2 for climate variable 
definitions.  

 

Measured Variable R2 Sig. Correlated Climate Variable
Height 0.344 0.075* PPT_SM

Ave Horizontal Width 0.395 0.051* AHM
0.325 0.086* SHM
0.397 0.051* DD5
0.385 0.055* DD18
0.406 0.047** PAS
0.444 0.035** EREF
0.407 0.047** CMD
0.455 0.032** TAVE_SP
0.426 0.041** TAVE_SM
0.354 0.069* LONG

Horizontal Width 0.376 0.059* AHM
0.371 0.062* DD5
0.353 0.07* DD18
0.418 0.043** PAS
0.391 0.053* EREF
0.352 0.071* CMD
0.44 0.037** TAVE_SP
0.397 0.051* TAVE_SM

Max Perp Width 0.327 0.084* MWMT
0.359 0.067* AHM
0.359 0.067* DD5
0.34 0.077* DD18
0.402 0.049** PAS
0.375 0.06* EREF
0.332 0.081* CMD
0.426 0.041** TAVE_SP
0.384 0.056* TAVE_SM
0.363 0.065* LONG
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Table 4 Ctd.	Simple linear regression results continued.  

 

No climate variables were significantly correlated with tree height at the 0.05 

level. However, PPT_SM was significantly correlated with provenance height at p<0.1 

(R2=0.344; p=0.075) (Appendix IV, Figure A. 1). Average horizontal width had 

significant negative correlations with TAVE_SM (R2=0.426, p=0.041), EREF 

(R2=0.444, p=0.035), CMD (R2=0.407, p=0.047), and TAVE_SP (R2=0.455, p=0.032) 

as well as a positive correlation with PAS (R2=0.406, p=0.047), (Figure 3). Other 

climate variables correlated at a 90% confidence level with average horizontal width 

such as MWMT, AHM, degree-days above 5ºC (DD5), and the geographic variable of 

longitude (Table 4; Appendix IV, Figure A. 2). Horizontal leaf width had a significant 

negative correlation with PAS (R2=0.418, p=0.043) and a positive correlation with 

TAVE_SP (R2= 0.44, p=0.037) at p < 0.05 (Figure 4). Climate variables AHM, DD5, 

Measured Variable R2 Sig. Correlated Climate Variable
Perp Width 1 0.37 0.062* MWMT

0.441 0.036** DD5
0.401 0.049** DD18
0.307 0.097* PAS
0.341 0.076* EREF
0.486 0.025** TAVE_SP
0.402 0.049** TAVE_SM

Perp Width 2 0.315 0.091* MAT
0.608 0.008** MWMT
0.351 0.071* SHM
0.676 0.004** DD5
0.663 0.004** DD18
0.497 0.023** EREF
0.418 0.043** CMD
0.665 0.004** TAVE_SP
0.601 0.008** TAVE_SM
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CMD, and TAVE_SM were significantly correlated at p< 0.1 (Table 4; Appendix IV, 

Figures A. 3 & A. 4).  

Provenance mean values of maximum perpendicular width had a significant 

negative correlation with PAS (R2=0.402, p=0.049) and a positive correlation with 

TAVE_SP (R2=0.426, p=0.041) (Figure 5). Other climate and geographic variables that 

correlated with maximum perpendicular width (p<0.1) included DD18, EREF, 

TAVE_SM, and LONG (Table 4; Appendix IV, Figures A. 5 & A. 6).  
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Figure 3. Simple linear regression analysis of average horizontal width and (a) summer mean temperature; (b) precipitation as snow; (c) 
Hargreaves reference evaporation; (d) climate moisture deficit; and (e) spring mean temperature. 
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Figure 4. Simple linear regression analysis of horizontal width and (a) precipitation as snow and (b) spring mean temperature. 
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Provenance mean values of perpendicular width 1 resulted in significant positive 

correlations with climate variables DD5 (R2=0.441, p=0.036), DD18 (R2=0.401, 

p=0.049), TAVE_SP (R2=0.486, p=0.025), and TAVE_SM (R2=0.402, p=0.049) (Figure 

6). Climate variables that correlated with perpendicular width 1 (p<0.1) included 

MWMT, EREF, and PAS (Table 4; Appendix IV, Figure A. 7).  

Perpendicular width 2 had the strongest correlations with selected climate 

variables, resulting in seven climate variables negatively correlating at the 95% 

confidence level (Table 4). The significant climate variables include MWMT (R2=0.608, 

p=0.008), DD5 (R2=0.676, p=0.004), DD18 (R2=0.663, p=0.004), EREF (R2=0.497, 

p=0.023) (Figure 7), (CMD) (R2=0.418, p=0.043), TAVE_SP (R2=0.665, p=0.004), and 

TAVE_SM (R2=0.601, p=0.008) (Figure 8). Furthermore, MAT and SHM correlated 

with perpendicular width 2 at p<0.1 (Table 4; Appendix IV, Figure A. 8). 
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Figure 5. Simple linear regression analysis of maximum perpendicular width and (a) precipitation as snow and (b) spring mean 
temperature.  
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Figure 6. Simple linear regression analysis of perpendicular width 1 and (a) degree-days above 5ºC; (b) degree-days above 18ºC; (c) 
spring mean temperature; and (d) summer mean temperature.
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Figure 7. Simple linear regression analysis of perpendicular width 2 and (a) mean warmest month temperature; (b) degree-days above 
5ºC; (c) degree-days above 18ºC; and (d) Hargreaves reference evaporation.
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Figure 8. Simple linear regression analysis of perpendicular width 2 and (a) Hargreaves climate moisture deficit; (b) spring mean 
temperature; and (c) summer mean temperature.
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MULTIPLE LINEAR REGRESSION 

 None of the multiple regression models were significant in explaining variations 

in provenance height, average horizontal width, horizontal width, or maximum 

perpendicular width. Climate variable DD5 was the strongest predictor for perpendicular 

width 1 (R2=0.441, p=0.036) (Table 5), while the combination of climate variables of 

DD5, MAT, and AHM explained 71% of the variation in perpendicular width 2 

(R2=0.712, p=0.046) (Table 6). DD5 was a strong predictor for both models, showing a 

strong relationship between leaf shape and the number of growing degree days.  
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Table 5. Stepwise multiple regression analysis of perpendicular width 1 and climate variables with R square values and significance. 

 

Model Predictors Sum of Squares df Mean Square F Sig. R Square
1 DD5 Regression 0.007 1 0.007 6.303 0.036 0.441

Residual 0.009 8 0.001
Total 0.016 9

2 DD5, AHM Regression 0.008 2 0.004 3.14 0.106 0.473
Residual 0.008 7 0.001
Total 0.016 9

3 DD5, AHM, Regression 0.009 3 0.003 2.605 0.147 0.566
Residual MAT 0.007 6 0.001
Total 0.016 9

4 DD5, AHM, Regression 0.012 4 0.003 3.16 0.119 0.717
Residual MAT, PPT_SM 0.005 5 0.001
Total 0.016 9
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Table 6. Stepwise multiple regression analysis of perpendicular width 2 and climate variables with R square values and significance. 

Model Predictors Sum of Squares df Mean Square F Sig. R Square
1 DD5 Regression 0.018 1 0.018 16.662 0.004 0.676

Residual 0.009 8 0.001
Total 0.027 9

2 DD5, MAT Regression 0.018 2 0.009 7.527 0.018 0.683
Residual 0.009 7 0.001
Total 0.027 9

3 DD5, MAT, Regression 0.019 3 0.006 4.943 0.046 0.712
Residual AHM 0.008 6 0.001
Total 0.027 9

4 DD5, MAT, Regression 0.021 4 0.005 4.294 0.071 0.775
Residual AHM, PPT_SM 0.006 5 0.001
Total 0.027 9
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DISCUSSION 

 

The results of this study support my first hypothesis that yellow birch would 

demonstrate significant intraspecific variation in measured variables. The finding of 

significant variation in height is consistent with other provenance studies of yellow birch 

(Clausen, 1967, 1980; Clausen & Garrett, 1968). Clausen and Garrett (1968) found 

significant variation among three-year-old seedlings originating from 55 provenances, 

with the best performing provenances measuring at least double the height as those from 

the poorest performing provenances. However, variation in height did not follow a 

specific clinal gradient or correlation with climate at seed origin, which remained 

consistent with the results of seedling height growth the year prior (Clausen, 1967). My 

study did find slight significant correlation (p<0.1) between height growth and the 

climate variable PPT_SM. While Clausen’s study included a greater number and wider 

range of provenances, the climate and geographic data was limited to variables such as 

length of growing season, average July temperature, annual precipitation, latitude and 

longitude. Conversely, my study included 29 climate variables, providing a wider range 

of possible drivers of the genetic variation present within yellow birch. However, no 

other climate variables were significantly correlated with height growth in my study.  

A recent review of provenance studies found that in some species, height was not 

significantly correlated with temperature-related climate variables (such as MAT) or 

precipitation-related variables (such as MSP) (Aitken & Bemmels, 2016). Therefore, 

variation in height growth may be driven by other factors not included in our analysis 

but remains an important trait for trees in terms of competition and survival. Height 
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growth is a strong indicator for juvenile tree fitness. Typically, seedlings with faster 

growth rates are more efficient when competing for important resources such as light, 

gaps in the canopy, and moisture. For example, a recent review identified smaller and 

slower growing trees to be more vulnerable to drought-induced mortality in temperate 

forest regions (O’Brien et al., 2017).  

The finding of significant differences in leaf measurements also supports my first 

hypothesis that significant variation would be present among functional traits. This was 

expected, as adjustments in leaf morphology are an efficient way for trees to adapt and 

acclimate to their environment (Xu et al., 2009). Moreover, intraspecific variation in leaf 

morphology has been documented in previous studies of yellow birch (Dancik & Barnes, 

1975). Wider leaves are considered an adaptation to cool and wet environments as 

narrow leaves are typically found in more hot and dry climates, allowing rates of 

transpiration to decrease (Warren et al., 2005; Westoby et al., 2004; Wright et al., 2005). 

Narrow and low SLA leaves are better adapted to environments where resources may be 

limited and the ability to control water balance and resource retention is crucial 

(Westoby et al., 2004; Wright & Westoby, 1999). In my study, average horizontal width 

and perpendicular width 2 decreased with warmer and drier climate at seed origin. 

Conversely, log-transformed values of maximum perpendicular width, horizontal width, 

and perpendicular width 1 increased with warmer temperatures and heat moisture 

indices at seed origin. Therefore, the results of my study follow typical trends of leaf 

shape and climate (Westoby et al., 2004; Wright et al., 2005; Wright & Westoby, 1999).   

Interestingly, characters such as total area, blade length, or SLA did not differ 

significantly among provenances, which have been previously shown to vary in yellow 

birch (Dancik & Barnes, 1975; Sharik & Barnes, 1979) as well as paper birch (Pyakurel 
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& Wang, 2013) populations. For example, Dancik and Barnes (1975) compared 13 leaf 

characteristics among 112 yellow birch populations from Michigan, Wisconsin, and 

Minnesota and found that blade length, blade width, and petiole length differed the most 

among populations. However, that study also reported high among-population and 

among-individual tree variation in leaf characters, which the authors suggested may 

have obscured between-population variance. They also found that populations 

originating from the Great Lakes area had larger leaves than those from the Appalachian 

Mountains. However, they found that site characteristics, such as drainage and acidity, 

influenced leaf morphology more than mean annual precipitation or geographic distance 

between populations. Another study of yellow birch populations in the Appalachian 

Mountains found a positive correlation between latitude and leaf blade length and width, 

as well as coarseness of leaf serration (Sharik & Barnes, 1979). The authors also found 

that as leaves grew larger, leaf venation grew farther apart. Pyakurel and Wang (2013) 

found significant variation in paper birch leaf morphology and most significant leaf 

characters had negative correlations with climate variables at seed origin. Unexpectedly, 

leaf characters such as SLA, maximum horizontal width, aspect ratio, and petiole size 

increased with warmer and drier conditions at seed origin, which is inconsistent with 

global trends and the results of the present study. The authors concluded that many 

factors (i.e. WUE, leaf life span, nutrient availability) are involved in determining traits 

such as SLA and the increase in petiole length and leaf width may be an adaptation to 

increase leaf cooling in drier climates. 

No significant differences between carbon isotope values existed among the 

provenances in my study. It has been shown in ponderosa pine seedlings that greater 

differences in d13C occur under water-stressed conditions compared to those in well-
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watered conditions (Olivas-Garcia et al., 2000). My seedlings were grown in a uniform, 

well-watered environment, therefore significant variation may not be revealed in these 

conditions. Carbon isotopes, to my knowledge, have not been investigated in yellow 

birch trees, so whether our mean values are typical of this species remains unclear. 

 

RELATIONSHIPS BETWEEN TREE TRAITS AND CLIMATE VARIABLES 

Perpendicular width 2 had the greatest number of significant correlations with 

climate variables, suggesting that variation in overall leaf shape is associated with 

adaptation to local climate. These results are consistent with the literature that climate is 

a strong predictor of morphological variation within tree species (Leites et al., 2019; 

Moles et al., 2014; Warren et al., 2005; Wright et al., 2005). While most significant 

climatic predictor variables were temperature-related (i.e. MWMT, DD5, and DD18), 

two climate variables related to both precipitation and moisture were also significantly 

correlated with leaf traits. For example, AHM correlated with horizontal width and 

maximum perpendicular width (p<0.1) and SHM correlated with perpendicular width 1 

(p<0.1). Provenances with higher AHM and SHM values tended to have greater leaf 

widths (i.e. Provenance 1 vs. Provenance 7). Seedlings from Provenance 7 originated 

from Hiawatha National Forest in Michigan, which tends to be much warmer and drier 

than Provenance 1, located in Black Brook, New Brunswick. These results are consistent 

with studies using global plant data that suggest temperature is a stronger predictor of 

functional trait values than precipitation, but climate variables which combine 

temperature and precipitation values (such as heat-moisture indices or evaporation) tend 

to significantly correlate as well (Aitken & Bemmels, 2016; Leites et al., 2019; Moles et 

al., 2014). Furthermore, these results suggest that the seedlings originating from drier 
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and warmer climates expressed functional traits (i.e narrower leaves) that have been 

shown to assist trees in resisting drought (Westoby et al., 2004; Wright et al., 2005; 

Wright & Westoby, 1999).  

The overall weak correlations between climate variables and phenotypic traits 

may be due to lack of statistical power associated with the small sample size of this 

study (n=4 per provenance). However, a recent study also found very weak geographic 

clines related to variation in traits of yellow birch and the authors concluded it was due 

to lack of statistical power and high within-population variation (Leites et al., 2019). 

This trend is in contrast to provenance studies on conifers such as white spruce (Lesser, 

2005; Thomson, 2008), eastern white pine (Pinus strobus Linneaus) (Joyce & Rehfeldt, 

2013; Lu et al., 2003), and lodgepole pine (Pinus contorta Engelmann) (Rehfeldt et al., 

1999) that generally report strong clinal patterns of variation. The results of my study do 

not necessarily mean local adaptation is not present in traits such as height, diameter, 

biomass allocation, and stable carbon isotopes, but rather, the climate variables analyzed 

may not be the most important factor influencing variation in these traits. Other factors 

involved may include soil pH, site drainage, elevation, and other site characteristics 

(Dancik & Barnes, 1975; Moles et al., 2014).  

 

MULTIPLE LINEAR REGRESSION 

The results of the multiple linear regressions were not as expected, as only 

perpendicular width 1 and perpendicular width 2 resulted in significant models with the 

chosen climate variables DD5, AHM, MAT, and PPT_SM. The simple linear 

regressions resulted in significant correlations between each leaf character and a set of 

climate variables, therefore, it was unexpected that the multiple linear regressions did 
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not result in a greater number of significant models. In the models that were significant, 

leaf width strongly correlated with DD5, indicating local adaptation to climate, 

especially temperature-related variables. MAT and AHM were also strongly correlated 

with perpendicular width 2 when combined with DD5 and explained 71% of variation in 

this trait. DD5 is a measure of the length of growing season and is strongly correlated 

with other temperature variables included in this study. Variables such as length of 

growing season as well as annual and seasonal temperature have been shown to 

significantly correlate with leaf phenology, flowering times, and growth cessation in 

yellow birch (Clausen, 1967, 1975, 1980; Clausen & Garrett, 1968). For example, 

growth cessation has been negatively correlated with latitude, positively correlated with 

average July temperature, and weakly correlated with length of growing season and 

annual temperature (Clausen, 1967). Similar to the results of my study, Clausen (1967) 

found second year height growth to have no (or very weak) correlations with geographic 

or climatic variables. In a later study, Clausen (1975) observed provenances from more 

northern locations produced seed earlier than the more southern provenances when 

grown in a uniform environment.  

Temperature-related climate variables have been shown to be strong drivers of 

local adaptation in trees, generally more-so than precipitation-related variables (Aitken 

& Bemmels, 2016; Leites et al., 2019; Moles et al., 2014). Although extreme drought is 

caused by lack of rainfall, it appears that temperature is the strongest driving factor for 

local adaptation in drought-related traits (Aitken & Bemmels, 2016; Leites et al., 2019; 

Moles et al., 2014). Tree physiology relies on more variables than the amount of rainfall, 

causing measurements of precipitation to lack important characteristics of water 

availability such as soil depth, soil type, seasonal distribution of rainfall, and other 
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hydrological factors (Moles et al., 2014). Therefore, precipitation-based climate 

variables such as MAP fall short in describing water availability, which may be why 

climate variables involving both temperature and precipitation tend to have stronger 

correlations to variation in tree variables. A recent review described global trends of 

forest decline and tree mortality due to the combination of drought and warmer 

temperatures (hotter drought) which is considered a more common reality of climate 

change (Allen et al., 2015).  

Limitations of the stepwise regression model may explain why only two tree 

variables resulted in significant models with climate variables. Although multiple 

stepwise regression is widespread and commonly used in ecology and biology (Mac 

Nally, 2000), limitations are present and critiqued strongly across disciplines (Hurvich & 

Tsai, 1990; Whittingham et al., 2006; Wilkinson, 1979). Multiple regressions are 

typically used to test the impact a set of independent variables (X) upon a dependent 

variable (Y) and to find the strongest combinations of predictors for a model. One 

limitation is multicollinearity (or intercorrelation) among independent variables, which 

must be avoided in order to decrease excess “noise” in the model (Mac Nally, 2000). In 

the present study, significantly correlated climate variables were eliminated prior to the 

multiple regression analysis, resulting in four uncorrelated independent variables (DD5, 

MAT, AHM, and PPT_SM) tested as model predictors. However, these specific climate 

variables may not be strong predictors of variation within the dependent variables 

provided for the model. This is one possible explanation as to why seedling traits of 

height, average horizontal width, average horizontal width, and maximum perpendicular 

width did not result in significant multiple regression models. Further limitations include 

bias of parameter estimation (choosing a model based on parameter significance) and the 
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effect of using different algorithms, order of data entry, and independent variables on the 

final model (Whittingham et al., 2006). In the present study, however, stepwise 

regression (vs. other algorithms such as enter, deletion, etc.)  resulted in the strongest 

and most significant model for the dataset provided. This can be considered an inference 

of a “best-fit” model, which likely can be biased and insufficient for explaining all 

biological factors (Whittingham et al., 2006). Therefore, the use of multiple stepwise 

regressions for the analysis of the effect of climate at seed origin on yellow birch 

seedling traits may have resulted in “best” models for two traits, but I acknowledge 

alternative model selection methods may be more sufficient.  

 

RESEARCH LIMITATIONS AND IMPROVEMENTS 

Due to the widespread geographic range of tested populations, it was 

hypothesized that large variations would be present in growth characters such as 

diameter, biomass, and other leaf characteristics such as SLA or total leaf area. 

Furthermore, significant variation of growth characters has been reported in yellow birch 

by a variety of studies including height (Wearstler et al., 1977), diameter (Clausen & 

Garrett, 1968), and biomass (Rasheed & Delagrange, 2016). Interestingly, provenance 

height means (n=40) were the only growth trait that varied significantly (p=0.048) 

among populations in this study. Large sample sizes are generally required to detect 

among-population variations, especially in species with large within-population 

variations (Aitken & Bemmels, 2016; Lu et al., 2016; Matyas, 1996). However, in my 

study, the ANOVA comparing height and diameter of the 200 seedlings did not result in 

significant variation among provenances. This contradicts the expectation that a larger 

sample size would result in higher expressed levels of variation.  
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Yellow birch has been shown to exhibit high within-population variation 

(Clausen & Garrett, 1968; Dancik & Barnes, 1975; Leites et al., 2019), which may be a 

main factor for the weak statistical significance in my study. Species with large effective 

population sizes and long-distance pollen dispersal tend to have higher rates of within-

population variation (Frankham et al., 2013). Furthermore, yellow birch is an 

allopolyploid (Clausen, 1973), which has been inferred to increase levels of variability 

within individuals and populations (Thomson, 2013). Yellow birch tends to grow in 

mesic site conditions (Erdmann, 1990), causing the species to have a relatively narrow 

ecological niche. In contrast to other birches that are generalists (i.e. paper birch), yellow 

birch typically do not inhabit dry environments (Erdmann, 1990). It has been shown that 

yellow x paper birch hybrids have the ability to grow and survive in drier sites than what 

is favorable of yellow birch (Clausen, 1972a). Paper birch has a much wider ecological 

niche than yellow birch, inhabiting a wide range of soil types and climates (Hutnik & 

Cunningham, 1961), therefore increasing the potential to express higher levels of genetic 

variation within the species. For example, a recent study on paper birch found significant 

variation in over 10 leaf morphological characters, including leaf size, SLA, blade 

length, maximum width, form coefficient, and petiole length (Pyakurel & Wang, 2013). 

In comparison, although my study included the same leaf characters in the original 

analysis, only leaf width measurements were significantly different among the yellow 

birch provenances. Therefore, the lack of statistical significance of morphological traits 

found in this study may be due to the low tolerance of unfavorable site conditions that is 

characteristic of yellow birch as a species. Further possible explanation for the lack of 

statistical significance could be due stress caused by aphids in the second growing 

season, as different provenances may have varying degrees of pest resistance, ultimately 



	 63	

masking genetic differences in growth potential among provenances (Aitken & 

Bemmels, 2016).  

Further research on genetic variation in yellow birch should measure multiple 

growing seasons to compare growth between seedling ages. Past research has shown that 

younger seedlings may express higher levels of plasticity than older seedlings of the 

same species (Clausen, 1980; Gaucher et al., 2005; Logan, 1965). Therefore, collecting 

multiple growing seasons of measurements in growth, biomass, leaf characteristics, and 

carbon isotope values may provide insight to plasticity of yellow birch seedlings at 

varying ages grown under greenhouse conditions. Including measurements of leaf 

phenology and growth cessation may also uncover patterns of local adaptation within 

yellow birch, as past research has shown significant differences among provenances 

within the species (Clausen, 1967) and other temperate hardwoods (Aitken & Bemmels, 

2016; Aitken et al., 2008; Aspelmeier & Leuschner, 2006; Joyce & Rehfeldt, 2013). 

Furthermore, including more provenances would be beneficial for increasing statistical 

power and capturing a more robust view of the genetic variability among populations. 

Lastly, a soil moisture deficit study using seed from the same 10 provenances would 

provide greater knowledge regarding the responses that yellow birch seedlings have 

towards changes in their environment. Including measurements of photosynthesis, 

transpiration, and carbon assimilation would also add significant value to a study 

involving water use efficiency and resource usage. This study design would be time 

consuming and labor intensive. However, it is crucial for further understanding how 

yellow birch may respond to varying degrees of drought conditions.  
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CHAPTER III 

MULTIVARIATE ANALYSIS OF PHENOTYPIC VARIATION IN RELATION TO 

CLIMATE 
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INTRODUCTION 

 

Multivariate analyses such as principal component analysis (PCA) and canonical 

correlation analysis (CANCOR) are effective ways to summarize and describe one or 

more data sets (Tausz et al., 2002). They differ with univariate analyses in that they 

combine multiple steps into one complete analysis, providing a more robust biological 

view of relationships among variables. PCA is typically used to summarize many 

variables into groupings that can be described by one or more factor (Abdi & Williams, 

2010). This analysis can be used to identify main patterns of variation within the data 

set. Furthermore, relationships between variables can be highlighted and visualized. 

Similar to PCA, CANCOR summarizes the data into main groupings, but also 

maximizes relationships between two data sets and the variation within them (Gittins, 

1986; B. Thompson, 1987).  

Past research has used both PCA and CANCORR to successfully describe and 

group multiple data sets in species such as white spruce (Lesser & Parker, 2006), paper 

birch (Pyakurel & Wang, 2013), white birch (Oke & Wang, 2013), trembling aspen 

(Thompson, 2014), and yellow birch (Dancik & Barnes, 1975; Sharik & Ford, 1984). 

The two data sets for used for this study included provenance trait means and climate 

measurements at seed origin. In Chapter 2, I used simple and multiple linear regression 

to relate climate variables to tree variables. However, PCA and CANCOR may provide a 

more thorough biological description of variation, as multivariate analyses includes all 

significant tree and climate variables, creates groups, and describes relationships among 

and between the two data sets (Tausz et al., 2002).  
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The objectives of this chapter were to use multivariate analyses to (i) identify the 

main components of variance within yellow birch populations and (ii) examine patterns 

of variation in tree variables in relation to climate variables and relationships between 

tree characteristics and climate at seed origin.  
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MATERIALS & METHODS 

 

Significant measured tree variables identified in Chapter 2 were used for the 

principal component and canonical correlation analyses (Table 3). Both analyses were 

performed using SPSS statistics software (IBM SPSS, version 28). Leaf variables 

including horizontal width, maximum perpendicular width, and perpendicular width 1 

were reflected and log-based 10 transformed for normal distribution. Highly correlated 

climate variables were not used for the analyses, resulting in MAT, DD5, AHM, and 

PPT_SM being retained for canonical correlation with tree variables. A detailed 

description of climate variables can be found in Appendix III, Table A. 2.  

Kaieser-Meyer-Olkin (KMO) and Bartlett’s tests were used to determine whether the 

results of the principal component analysis were sufficient for further interpretation 

(KMO >0.6; Bartlett’s p<0.001). Principal components with Eigenvalues greater than 

one were extracted for further analysis, while those with Eigenvalues less than one were 

discarded. A visual review of the resulting scree plot was also used to determine which 

principal components were appropriate for analysis. A syntax MANOVA was used to 

carry out the canonical correlation analysis in SPSS. The Wilk’s multivariate test of 

significance determined whether there was significant correlation within the two data 

sets of measured tree variables and climate variables (p<0.05).  
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RESULTS 

 

PRINCIPAL COMPONENT ANALYSIS 

The principal component analysis was determined to be appropriate to further 

analyze due to the KMO sampling adequacy (=0.740) and Bartlett’s Test of Sphericity 

(p<0.001). The correlation matrix resulted in a determinant = 2.502E-6. Therefore, 

interpretation of results continued (KMO >0.6; Bartlett’s p<0.001). The first two 

principal components explained a cumulative total of 90.7% of variance among the 

measured phenotypic variables (Table 5). Eigenvalues for PC1 and PC2 were 4.408 and 

1.035, respectively (Table 7). The following principal components 3-6 had Eigenvalues 

less than one and accounted for less than 10% of the remaining variance among tree 

variables (Table 7). The resulting scree plot allowed for confirmation to retain the first 

two principal components, due to the shape of the curve and the associated Eigenvalues 

(<1) (Figure 9).  
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Table 7. Total variance explained by principal component analysis. Two principal 
components were extracted resulting in 90.718% variance described among provenance 
means. 

 
 

 
Figure 9. Principal component analysis scree plot with principal components one 
through six and their associated Eigenvalues. 

 
 

Total
% of 

Variance
Cumulative 

% Total
% of 

Variance
Cumulative 

%
1 4.408 73.468 73.468 4.408 73.468 73.468
2 1.035 17.251 90.718 1.035 17.251 90.718
3 0.451 7.520 98.238
4 0.077 1.288 99.526
5 0.028 0.465 99.991
6 0.001 0.009 100.000

Total Variance Explained

Component

Initial Eigenvalues Extraction Sums of Squared Loadings
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The component matrix of the extracted principal components 1 and 2 resulted in 

values of loadings between the tree variables and principal components. Principal 

component 1 was strongly associated with all significant leaf characters whereas 

principal component 2 was strongly associated with height and slightly with 

perpendicular width 2 (Table 8). The component plot shows the strong relationship 

between the leaf characters horizontal width, maximum perpendicular width, and 

perpendicular width 1 as well as between average horizontal width and perpendicular 

width 2 (Figure 10).  

 
Table 8. Component matrix of the two extracted principal components, measured 
variables, and their associated component loadings. 

 

1 2
Height 0.048 0.985
Log10ReflectHorizontalWidth 0.974 -0.074

Log10ReflectMaxPerpWidth 0.972 -0.088

Log10ReflectPerpWidth1 0.972 -0.039

AvgHorizontalWidth -0.979 0.026
PerpWidth2 -0.781 -0.223

Extraction Method: Principal Component Analysis.
a. 2 components extracted.

Component Matrixa

Component
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Figure 10. Principal component plot of component 1 (x axis) and component 2 (y axis) 
with the positive or negative loading values of measured tree variables. 

 

 

CANONICAL CORRELATION ANALYSIS 

The canonical correlation analysis resulted in a significant Wilks test (p=0.02) 

which determined significant relationships between the tree variable and climate 

variable data sets, allowing for further interpretation of the results. A total of four 

canonical variates (CV) were extracted from the data sets. CV1 accounted for 67.23% of 

total variance between the two data sets with an Eigenvalue of 1.09 and Pearson’s 

correlation value of 0.72 (Table 9). CV2 explained 23.93% more variance between the 

two data sets with an Eigenvalue of 0.388 and Pearson’s correlation value of 0.53 (Table 



	 72	

9). The first two canonical variates explained a cumulative 91.16% of variance between 

the two data sets (Table 9). CV3 and CV4 explained the remaining <10% of variance 

between tree variables and climate variables with Eigenvalues <0.1 (Table 9). CV1 is the 

only canonical variate with an Eigenvalue >1.  

Table 9. Four canonical variates extracted with the associated Eigenvalues, percent of 
total variance explained (Pct.), cumulative percent of variance explained (Cum. Pct.), 
Pearson’s correlation in data sets (Canon Cor.) and squared canonical correlation values 
(Sq. Cor). 

 
 

The dimension reduction analysis resulted in a significant Wilks test when 

comparing CV1 through CV4 (p=0.02) (Table 10). However, when CV1 is not involved 

in the comparison of canonical variates, the Wilks test is no longer significant (p=0.408). 

Therefore, further interpretation of CV2, CV3, and CV4 was not completed as the 

relationships with these variates and data sets are insignificant (Table 10).  

 

Table 10. Dimension reduction analysis of canonical variates 1-4 and the Wilks Levene 
values, F statistic, hypothesis degrees freedom, error degrees freedom, and significance 
of F. 

 
 

Root No. Eigenvalue    % Cum % Canon Cor. Sq. Cor
1 1.09232 67.22781 67.22781 0.72254 0.52206
2 0.38884 23.93142 91.15922 0.52913 0.27997
3 0.08408 5.17491 96.33414 0.2785 0.07756
4 0.05956 3.66586 100 0.2371 0.05621

Roots Wilks L. F Hypoth. DF Error DF Sig. of F
1 TO 4 0.29959 1.82051 24 105.87 0.02
2 TO 4 0.62684 1.05665 15 85.98 0.408
3 TO 4 0.87058 0.57402 8 64 0.795
4 TO 4 0.94379 0.65519 3 33 0.585
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 Leaf variables that were strongly positively correlated with CV1 include 

perpendicular width 1 (0.87), horizontal width (0.67), and maximum perpendicular 

width (0.66) (Table 11). Conversely, leaf variables perpendicular width 2 and average 

horizontal width had strong negative correlations with CV1, with values of -0.8 and -

0.69, respectively. Height had the weakest correlation with CV1 (0.16).  

Table 11. Structure matrix with resulting correlations between dependent and canonical 
variables 1-4. Dependent variables are significant tree variables. See Appendix for full 
names and definitions of measured tree variables.  

 
 

 Climate variables DD5 (0.82), MAT (0.66), and AHM (0.552) had strong 

positive correlations with CV1 (Table 12). Conversely, PPT_SM was moderately 

negatively correlated with CV1 (-0.51). DD5, MAT and AHM are all temperature 

related climate variables whereas PPT_SM is solely a precipitation-based variable. CV1 

explained a total of 46.3% of the variance among tree variables and 24.2% of the 

variance among climate variables (Table 13).  

 
 
 
 

Function No.
Variable 1 2 3 4
Height 0.15969 0.72078 -0.19788 -0.33232
AvgHoriz -0.69079 -0.17592 -0.00421 -0.68063
HorizWidth 0.66972 0.13925 0.11003 0.70967
MaxPerpWidth 0.66452 0.1221 0.13754 0.71249
PerpWidth1 0.87031 0.01577 0.13939 0.46593
PerpWidth2 -0.79538 0.09962 0.49174 -0.2344
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Table 12. Structure matrix with resulting correlations between covariates (climate 
variables) and canonical variables 1-4. 

 
 

 

Table 13. Variance in dependent variables and covariates explained by canonical 
variables. Dependent variables are significant tree variables. Covariates are climate 
variables. CanVar = canonical variate; %VarDep = % variance of dependent variables; 
Cum%Dep = cumulative % variance of dependent variables; %VarCov = % variance of 
covariates; Cum%Cov = cumulative % variance of covariates. 

 
 

 

 

 

 

 

  

Canonical Variables
Covariate 1 2 3 4
MAT 0.6565 -0.39105 -0.1251 -0.63279
DD5 0.82415 -0.05829 -0.56102 0.05134
AHM 0.552 0.64244 -0.22458 0.48181
PPT_SM -0.51451 -0.70877 0.43034 0.21847

CanVar %VarDep Cum%Dep %VarCov Cum%Cov
1 46.3814 46.3814 24.21392 24.21392
2 9.91581 56.29721 2.77616 26.99009
3 5.52404 61.82125 0.42845 27.41854
4 30.95009 92.77134 1.73985 29.15838
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DISCUSSION 

 

PRINCIPAL COMPONENT ANALYSIS 

The Principal Component 1 (PC1) which explained 73.4% of the variance could 

be interpreted as a leaf morphology component, as all leaf characters had strong positive 

or negative loadings with this component. Principal Component 2 (PC2) which 

explained an additional 17.3% of the variance could be interpreted as a fitness-related 

component since height had a strong, positive loading with this component. Height 

growth is a strong indicator for juvenile tree fitness. Typically, seedlings with faster 

growth rates are more efficient when competing for important resources such as light, 

gaps in the canopy, and moisture (O’Brien et al., 2017). The results of the PCA indicate 

that leaf morphology and height growth are independent functional traits and have the 

potential to respond to changes in climate simultaneously without causing an effect on 

the other. This is beneficial for yellow birch as a species, as it has been shown that 

correlated traits may work against one another in terms of selection (termed 

“antagonistic”), resulting in a constraint to adaptive evolution (Etterson & Shaw, 2001). 

Strong correlations between leaf morphological characters and geographic or 

climate clines have been shown (Aitken et al., 2008; Clausen & Garrett, 1968; Dancik & 

Barnes, 1975; Sharik & Barnes, 1979). Wider leaves are considered an adaptation to 

cool and wet environments as narrow leaves are typically found in more hot and dry 

climates, allowing rates of transpiration to decrease (Warren et al., 2005; Westoby et al., 
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2004; Wright et al., 2005). Therefore, under drought conditions, it would be expected 

that leaf shape, especially width, would decrease. In Chapter 2, my study found that all 

leaf width characters decreased with warmer and drier climate at seed origin. The 

principal component plot shows this relationship between leaf characters as well. 

Therefore, the results from both chapters of my study follow typical trends of leaf shape 

and climate. Furthermore, these results suggest that the seedlings originating from drier 

and warmer climates expressed functional traits (i.e narrower leaves) that have been 

shown to assist trees in drought resistance or tolerance (Aubin et al., 2016; Westoby et 

al., 2004; Wright et al., 2005; Wright & Westoby, 1999). In a recent review, changes in 

leaf morphology and the ability to control water loss in warmer and drier conditions was 

determined as an important functional trait for temperate and boreal forest tree species in 

order to persist under climate change (Aubin et al., 2016). Other functional traits that 

may assist in individual tree persistence include stomatal sensitivity, rooting depth, leaf 

or branch shedding, and leaf mass area, to name a few. The authors conclude population 

persistence under climate change conditions is crucial for the short-term survival of tree 

species, whereas shifts in species distribution will play a role for long-term survival. The 

results from my study show that local adaptation is present among leaf morphology in 

yellow birch populations, and therefore has the potential to adapt to a variety of 

climates. Further studies investigating more functional traits (i.e. physiological or 

phenological) that have been shown to assist trees under environmental stress would be 

beneficial for the future conservation of this species.   
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CANONICAL CORRELATION ANALYSIS 

 The canonical correlation analysis resulted in a single significant canonical 

variable, explaining 67.2% of the variance within both data sets of tree variables and 

climate variables. Similar to the PCA results, strong positive correlations occurred 

between horizontal width, maximum perpendicular width, perpendicular width 1 and 

CV1. These variables were all reflected and log-transformed prior to analysis, which 

describes their inverse relationship with the other leaf variables (average horizontal 

width and perpendicular width 2). Furthermore, height had a slight positive correlation 

with CV1, supporting the conclusion that height is independent of leaf width, as shown 

with the PCA.  

 The climate variable DD5 had the strongest positive correlation with CV1 

followed by MAT and AHM. PPT_SM had a neutral yet negative correlation with CV1. 

These results are consistent with the multiple regression analysis in Chapter 2, as the 

strongest model included DD5, MAT, and AHM, but not PPT_SM. Similar to the 

univariate analyses, DD5 was the strongest predictor of multiple leaf width characters. 

This climate variable is a measurement of degree-days above 5 ºC and influences key 

phenological events such as the timing of bud burst and bud set (Aitken et al., 2008). 

Previous studies on yellow birch have shown strong to moderate correlations between 

leaf phenology, flowering times, and growth cessation with geographic (i.e. latitude) and 

climatic variables (i.e. average July temperature, length of growing season and annual 

temperature) (Clausen, 1967, 1975, 1980; Clausen & Garrett, 1968). The present study 

did not measure phenological variables, but it does provide evidence that the number of 

degree-days above 5ºC may have an impact on overall leaf shape for this species. 
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Precipitation variables were stronger predictors of variation in provenance 

height, although the correlations were only slightly significant or not significant at all. 

Previous studies on yellow birch have also found height to be independent of geographic 

and climatic variables (Clausen, 1967, 1974; Clausen & Garrett, 1968; Leites et al., 

2019). A recent review of provenance studies found that in some species, height was not 

significantly correlated with temperature-related climate variables (MAT) or 

precipitation-related variables (MSP) (Aitken & Bemmels, 2016). The authors conclude 

that this does not mean local adaptation is not present at all in these species (as they are 

widely distributed) but rather, MAT or MSP may not the driving force for variation in a 

specific species, population, or measured trait. Therefore, it may be possible that local 

adaptation in yellow birch is more strongly expressed in traits such as leaf morphology, 

rather than height, diameter, or biomass allocation. The present study did not include 

certain yellow birch traits that have been shown to correlate with geographic or climatic 

variables such as such as leaf venation, tooth serration, fruit characteristics, and bract 

size (Sharik & Barnes, 1979), as well as growth cessation, flowering times, and survival 

(Clausen, 1968, 1975, 1980). Other site variables may have strong effects on yellow 

birch traits such as soil pH and drainage (Dancik & Barnes, 1975), soil moisture 

(Rasheed & Delagrange, 2016), and light availability (Beaudet & Messier, 1998; 

Gaucher et al., 2005; Messier & Nikinmaa, 2000).  

Much within-provenance variation has been consistently reported in yellow birch 

research (Clausen, 1967, 1972b, 1980; Clausen & Garrett, 1968; Dancik & Barnes, 

1975; Sharik & Barnes, 1979). Therefore, collecting data from larger numbers of 

provenances and individuals may be essential in order to fully show trends in local 
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adaptation of functional traits within the species (Leites et al., 2019; Sharik & Barnes, 

1979). Furthermore, including provenances from the extremes of the species range has 

been argued to be crucial for true expression of clinal variation as excluding the 

extremes can underestimate the steepness of regression clines (linear) or curves 

(nonlinear) (Leites et al., 2019). Further research including both of these improvements 

is necessary in order to fully describe intraspecific genetic variation within yellow birch, 

ultimately aiding in the conservation and protection of this prominent North American 

hardwood species. 

 

MULTIVARIATE VERSUS UNIVARIATE ANALYSES 

Based on the combined results from Chapter 2 and Chapter 3, I would 

recommend the use of both multivariate and univariate analyses. I believe that the 

simple linear regression resulted in the strongest univariate analysis. The simple linear 

regressions showed distinct correlations between seedling characteristics and climate 

variables. Although the majority of significant seedling characteristics were related to 

leaf width, they were all strongly correlated with different climate variables. Therefore, I 

believe this analysis provides the strongest view regarding the relationships between 

climate at seed origin and variation among yellow birch leaf traits. However, simple 

linear regression cannot explain the relationships among seedling characteristics as well 

as climate variables. I would recommend the use of multivariate analyses in order to 

further describe these relationships. The PCA showed that height and leaf characters are 

independent of one another and have the potential to respond to climate independently 
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and simultaneously. This is an important factor for yellow birch as a species and the 

multivariate analyses revealed this relationship.  

Other than this finding, PCA and CANCOR did not explain new information 

regarding the data sets, but they further supported and summarized the results from the 

univariate analyses. One benefit of using multivariate analyses would be the reduction of 

steps in the statistical process with the ability to attain very similar results. However, 

PCA only explained the relationships among seedling characteristics. Although this is 

valuable information, whether local adaptation is present remains unknown. In order to 

relate this variation to climate, further regressions of climate variables would need to be 

performed.  

On the other hand, CANCOR has the ability to summarize variation among 

seedling traits and climate variables simultaneously. Only one canonical variable was 

significant for this study (CV1), which strongly correlated to leaf characteristics and 

temperature-related climate variables. Further studies involving phenological or 

physiological functional traits of yellow birch may reveal more significant canonical 

variables. The CANCOR results also showed which combination of climate variables 

were strongly correlated with variation in tree variables. This is unique to the 

multivariate approach, as simple linear regressions only analyse one climate variable at a 

time. Therefore, I would recommend the combination of univariate and multivariate 

analyses in the form of simple linear regression and CANCOR for the strongest and 

most concise analysis of this study.  

 

 



	 81	

 

CONCLUSIONS 

 

 Significant variation was shown among 10 yellow birch provenances in 

functional traits including: height, leaf horizontal width, average horizontal width, 

maximum perpendicular width, perpendicular width 1, and perpendicular width 2. 

Simple linear regressions resulted in the strongest correlations, with 12 out of 29 climate 

variables significantly correlating with variation in seedling traits. Multiple linear 

regressions did not necessarily result in stronger analyses, as only perpendicular width 1 

and 2 had significant stepwise regression models with climate variables such as DD5, 

MAT, and AHM. Variation in height was independent of climate and geographic 

variables in both simple and multiple regression analyses. Multivariate analyses (PCA 

and CANCOR) further suggested strong relationships between significant leaf characters 

and temperature-related climate variables (DD5, MAT, and AHM). Height had a 

negative correlation with climate variable PPT_SM and was independent of leaf 

characters.  

The results of this study indicate significant variation is present in height growth 

among yellow birch populations, but the driving factor for this trait remains unknown. 

Past research on this species has also resulted in weak or insignificant correlations of 

height growth to climate or geographic clines (Clausen, 1967, 1974, 1980; Leites et al., 

2019; Sharik & Barnes, 1979). The lack of significant correlation may be due to high 

within-population variation or lack of statistical power to detect such trends. 

Furthermore, due to the relatively narrow ecological niche of yellow birch, there may be 
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an overall lack of genetic variation differentiating provenances, due to the low tolerance 

of non-mesic site conditions. However, adaptive variation of leaf shape was expressed, 

strongly driven by temperature-related variables (i.e. DD5, MAT, MWMT, DD18, 

TAVE_SP, TAVE_SM) and heat-moisture indices (i.e. AHM, SHM, EREF, and CMD). 

Precipitation-related variables resulted in the weakest or least amount of correlations to 

variation among leaf traits. Temperature-related variables have been shown to be a 

strong driver of genetic variation in leaf morphology and phenology in species such as 

yellow birch (Dancik & Barnes, 1975; Sharik & Barnes, 1979), paper birch (Pyakurel & 

Wang, 2013), and trembling aspen (Thompson, 2014).  

Global and regional reviews have also determined temperature to be a stronger 

predictor of variation among tree species (Aitken & Bemmels, 2016; Aitken et al., 2008; 

Leites et al., 2019; Moles et al., 2014). This is especially intriguing in light of climate 

change, as more consistent and extreme droughts have been predicted to increase tree 

mortality and global forest decline (Allen et al., 2015, 2010; McDowell et al., 2008). 

However, periods of drought following above-average temperatures have been shown to 

be more detrimental to forest health and productivity, and may be a stronger driver of 

drought-induced mortality (Allen et al., 2015). Therefore, understanding patterns of 

adaptive variation among yellow birch populations is crucial for the conservation and 

health of this species in future climate change conditions.  

This study has shown temperature to be a strong driver of genetic variation 

among yellow birch provenances, despite high within-population variation. In order to 

acquire a stronger understanding of the variation within this species, further common 

garden studies should include (i) larger numbers of provenances and individuals sampled 
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from, (ii) provenances from the extremes of the species range, and (iii) multiple-year 

data collections of other functional traits including germination, survival, leaf 

phenology, and flowering times.  

As this and previous studies have shown, height growth of yellow birch is 

seemingly independent of climate or geographic variables (Clausen, 1967, 1980; Leites 

et al., 2019; Sharik & Barnes, 1979). Thus, the inclusion of a greater variety of measured 

functional traits (i.e. growth cessation, leaf phenology, and rooting depth) as well as 

physiological traits (i.e. photosynthesis rates, stomatal conductance, and WUE) may 

reveal stronger trends of local adaptation in relation to climate at seed origin. Ultimately, 

describing these patterns of intraspecific variation is crucial for understanding the effects 

of climate change on North American hardwood forests, improving future species range 

shifts, and conserving genetic diversity among yellow birch populations.   
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APPENDIX I   

Table A.  1. Provenance number, seedlot number, name, geographic location, elevation, 
collection type and date (if applicable), and germination rate. 

 

 

 

 

Provenance Seedlot # Location State/Province Country Coll. Type Latitude Longitude Elev. (m) Germ % Test Year

P1.1 20041112.0 Black Brook NB CAN S 47.45000 -67.45000 300 72.5 2015
P1.2 20041113.0 Black Brook NB CAN S 47.45000 -67.45000 300 51.0 2015
P1.3 20041114.0 Black Brook NB CAN S 47.45000 -67.45000 300 63.0 2015
P1.4 20041115.0 Black Brook NB CAN S 47.45000 -67.45000 300 59.5 2015
P1.5 20041116.0 Black Brook NB CAN S 47.45000 -67.45000 300 70.5 2015
P1.6 20041117.0 Black Brook NB CAN S 47.45000 -67.45000 300 72.0 2015
P1.7 20041118.0 Black Brook NB CAN S 47.45000 -67.45000 300 58.0 2015
P1.8 20041121.0 Black Brook NB CAN S 47.45000 -67.45000 300 50.0 2015
P1.9 20041122.0 Black Brook NB CAN S 47.45000 -67.45000 300 58.5 2015
P1.10 20041124.0 Black Brook NB CAN S 47.45000 -67.45000 300 56.5 2015
P2.1 20070115.0 Gallants NL CAN S 48.67692 -58.19208 145 82.0 2018
P2.2 20070116.0 Gallants NL CAN S 48.67657 -58.18987 161 84.0 2018
P2.3 20070117.0 Gallants NL CAN S 48.67660 -58.19062 160 56.0 2018
P2.4 20070118.0 Gallants NL CAN S 48.67568 -58.20485 146 64.5 2018
P2.5 20070119.0 Gallants NL CAN S 48.67844 -58.18196 123 67.5 2018
P3.1 20091134.0 Big Pond NL CAN S 45.95879 -60.42612 169 81.5 2010
P3.2 20091135.0 Big Pond NL CAN S 45.93525 -60.46489 196 63.5 2010
P3.3 20091136.0 Big Pond NL CAN S 45.91672 -60.50623 40 82.0 2010
P3.4 20091137.0 Big Pond NL CAN S 45.93173 -60.47038 189 68.5 2010
P3.5 20091138.0 Big Pond NL CAN S 45.94134 -60.45244 184 54.0 2010
P3.6 20091139.0 Big Pond NL CAN S 45.93961 -60.45601 193 78.0 2010
P3.7 20091141.0 Big Pond NL CAN S 45.93830 -60.45858 211 86.0 2010
P3.8 20091142.0 Big Pond NL CAN S 45.94161 -60.45198 185 97.0 2010
P3.9 20091143.0 Big Pond NL CAN S 45.93813 -60.46236 178 60.5 2010
P3.10 20091146.0 Big Pond NL CAN S 45.94713 -60.44260 201 83.5 2010
P4.1 7434400.0 Petawawa R.F ON CAN S 46.00000 -77.43333 150 75.0 2009
P4.2 8930038.0 Petawawa R.F ON CAN S 46.00000 -77.43333 150 54.0 2009
P4.3 8930040.0 Petawawa R.F ON CAN S 46.00000 -77.43333 150 58.5 2009
P4.4 9130055.0 Petawawa R.F ON CAN S 46.00000 -77.41666 n/a 45.0 2009
P4.5 9130056.0 Petawawa R.F ON CAN S 46.00000 -77.40000 n/a 49.5 2012
P5.1 201930338.0 Greenwood ON CAN S 48.39344 -90.75198 497 n/a Coll. 10/10/19
P5.2 201930340.0 Greenwood ON CAN S 48.39224 -90.71440 495 n/a Coll. 10/10/19
P5.3 201930342.0 Greenwood ON CAN S 48.28065 -90.75352 501 n/a Coll. 10/10/19
P5.4 201930344.0 Greenwood ON CAN S 48.39579 -90.75356 502 n/a Coll. 10/10/19
P5.5 201930345.0 Greenwood ON CAN S 48.39383 -90.75204 497 n/a Coll. 10/10/19
P6.1 201930339.0 Squaretop Mt ON CAN S 48.28006 -89.39645 402 n/a Coll. 10/10/19
P6.2 201930341.0 Squaretop Mt ON CAN S 48.39546 -89.39546 398 n/a Coll. 10/10/19
P6.3 201930343.0 Squaretop Mt ON CAN S 48.39422 -89.39674 401 n/a Coll. 10/10/19
P6.4 201930346.0 Squaretop Mt ON CAN S 48.28037 -89.39666 404 n/a Coll. 10/10/19
P6.5 201930350.0 Squaretop Mt ON CAN S 48.28034 -89.34616 398 n/a Coll. 10/10/19
7.1 T17113 Hiawatha NF MI USA B 46.233036 -86.50807 247 n/a 2019
8.2 T17129 Superior NF MN USA B 47.895205 -91.01247 555 n/a 2017
9.1 T1133 (1137B) Chippewa NF MN USA B 47.583782 -93.89938 435 n/a 2017
10.1 201980727.0 Ottawa NF MI USA S 46.3587 -89.81761 503 n/a Coll. 10/27/19
10.2 201980728.0 Ottawa NF MI USA S 46.36995 -89.78534 490 n/a Coll. 10/27/19
10.3 201980729.0 Ottawa NF MI USA S 46.37221 -89.82616 484 n/a Coll. 10/27/19
10.4 201980730.0 Ottawa NF MI USA S 46.37706 -89.82825 480 n/a Coll. 10/27/19
10.5 201980731.0 Ottawa NF MI USA S 46.38989 -89.83968 490 n/a Coll. 10/27/19
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APPENDIX II 

CARBON AND NITROGEN ISOTOPE ANALYSIS PROTOCOL AND 

DESCRIPTION  

(Provided by Environmental Isotope Laboratory, University of Waterloo) 

 

13C and 15N Isotope Analysis: 
Equipment, data report guide and precision details  
 
The analysis of solid materials for 13C and 15N isotope measurements was determined 
through combustion conversion of sample material to gas through a 4010 Elemental 
Analyzer (Costech Instruments, Italy) coupled to a Delta Plus XL (Thermo-Finnigan, 
Germany) continuous flow isotope ratio mass spectrometer (CFIRMS). 
 
Results report and column guide; 
All samples that arrive at EIL (Sample column) are assigned unique Lab numbers (Lab # 
column) the total of which (# column) is grouped within a unique EIL ISO file number 
(2018XXX). 
 
The sample weight (Weight column) used in analysis along with the measured N2 and 
CO2 signal (Major Peak Area column) may or may not be included in the final report. 
This is usually of interest to researchers and clients weighing out their own samples and 
who may require the information to adjust the sample target weight for sample repeat 
submission; these details are available upon request. The ‘range’ details for the run are 
found at the bottom of the Major Peak Area column. 
 
The %N and %C element content (Total % columns) is a bulk measurement based on the 
sample weight against known certified elemental standard materials.  
The δ13C data (δ13C IRMEA / VPDB column) is the corrected delta value, reported in 
per mil (‰) units, against the primary reference scale of Vienna Pee Dee Belemnite 
(VPDB). 
The δ15N data (δ15N IRMEA / AIR column) is the corrected delta value, reported in per 
mil (‰) units, against the primary reference scale of Atmospheric Air.  
 
General Precision details; 
Data quality control is monitored and corrections made using an array of international 
reference material and in-house EIL standards that are calibrated using certified 
international reference materials (i.e. IAEA-N1 + N2, IAEA-CH3 + CH6, USGS-40 + 
41) with values provided through CIAAW. A mix of EIL in-house (i.e. EIL-72, EGC-3 
and JSEC-01) and international materials are analyzed in each run. 
 
A ‘like’ material is also used when possible; usually a NIST material like NIST-1577b 
(Bovine Liver) is used when tissues or invertebrates are analyzed and NIST 2704 (River 
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sediment) is used when analyzing soils and sediments. This provides a post-correction 
check throughout the analysis run for both isotopic and elemental percent data. 
In the case of 15N analysis in ammonia, three in-house ammonium sulphate materials 
were created and calibrated using the certified international reference materials IAEA-
N1 + N2. These are incorporated within the ammonia disk sample preparation of each 
run, in duplicate to provide the information required to correct for any offset within the 
disk preparation technique.  
 
Of the total sample number dropped in an analytical run, no less than 20% are Std/Ref 
materials. These Std/Ref measurements are used in data normalization and to ensure 
daily mass spec precision and accuracy; also to assess linearity issues or mass spec drift 
throughout the duration of the run. With these QA/QC checks an error of 0.2‰ δ13C and 
0.3‰ δ15N are required for reportable data.  



	 96	

APPENDIX III CLIMATE DATA DESCRIPTIONS AND VALUES	

Table A. 2.  Climate Variables with their definitions, range maximum and minimum values, units, and abbreviations. 

 

Definition Range Min Range Max Units Abbreviation

mean annual temperature 2.4 5.7 °C MAT

mean annual precipitation 684 1510 mm MAP

mean summer precipitation 402 535 mm MSP

mean warmest month temperature 16.4 19.7 °C MWMT

mean coldest month temperature -15.4 -5.8 °C MCMT

temperature difference between MWMT and MCMT 23.5 33.3 °C TD

annual heat-moisture index 10.4 20.5 ((MAT+10)/(MAP/1000)) AHM

summer heat-moisture index 30.8 47.6 ((MWMT)/(MSP/1000)) SHM

degree-days below 0°C, chilling degree days 632 1574 degree days DD_0

degree-days above 5°C, growing degree days 1361 1906 degree days DD5

degree-days below 18°C, heating degree days 4526 5724 degree days DD_18

degree-days above 18°C, cooling degree days 49 173 degree days DD18

the number of frost free days 134 173 days NFFD

frost free period 109 136 days FFP

precipitation as snow 114 393 mm PAS

extreme minimum temperature over 30 years -42.9 -29.5 °C EMT

extreme maximum temperature over 30 years 32 37.5 °C EXT

Hogg's climate moisture index 16.2 113.36 mm CMI

Hargreaves reference evaporation 515 706 mm EREF

Hargreaves climatic moisture deficit 4 194 mm CMD

mean annual relative humidity 56 73 % RH

winter mean temperature -13.2 -4.3 °C TAVE_WT

spring mean temperature 1.6 4.6 °C TAVE_SP

summer mean temperature 14.9 18.4 °C TAVE_SM

autumn mean temperature 4.1 8.7 °C TAVE_AT

winter precipitation 56 423 mm PPT_WT

spring precipitation 136 349 mm PPT_SP

summer precipitation 239 322 mm PPT_SM

autumn precipitation 187 430 mm PPT_AT

longitude -58.19 -93.89 decimal degrees LONG

latitude 45.9 48.6 decimal degrees LAT
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APPENDIX IV 

 
SIMPLE LINEAR REGRESSION ANALYSES (p<0.1) 

 

 
 

Figure A. 1. Simple linear regression analysis of height and summer precipitation. 
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Figure A. 2. Simple linear regression analysis of average horizontal width and (a) mean warmest month temperature; (b) annual heat 
moisture index; (c), degree-days above 5ºC; and (d) longitude.	
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Figure A. 3. Simple linear regression analysis of horizontal width and (a) degree-days above 5ºC; (b) degree-days above 18ºC; (c) 
annual heat moisture index; and (d) Hargreaves reference evaporation. 
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Figure A. 4. Simple linear regression analysis of horizontal width and (a) Hargreaves climatic moisture deficit and (b) summer mean 
temperature. 
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Figure A. 5. Simple linear regression analysis of maximum perpendicular width and (a) mean warmest month temperature; (b) annual 
heat moisture index; (c) degree-days above 5ºC; and (d) degree-days above 18ºC. 
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Figure A. 6. Simple linear regression analysis of maximum perpendicular width and (a) Hargreaves reference evaporation; (b) 
Hargreaves climatic moisture deficit; (c) summer mean temperature; and (d) longitude. 
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Figure A. 7. Simple linear regression analysis of perpendicular width 1 and (a) mean warmest month temperature; (b) precipitation as 
snow; and (c) Hargreaves reference evaporation. 
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Figure A. 8. Simple linear regression analysis of perpendicular width 2 and (a) mean annual temperature and (b) seasonal heat 
moisture index. 
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APPENDIX V 

SIGNIFICANT ANOVA AND POST-HOC RESULTS  
 

 
Table A. 3. ANOVA results of measured provenance height (cm) p=0.049. 

 
 
 
 
Table A. 4. ANOVA results of leaf horizontal width (cm) p=0.048. 

 
 

 

 

Height
Provenance N Mean Std. Deviation Std. Error

1 4 38.5 20.23 10.11
2 4 57.1 12.04 6.02
3 4 53.3 2.63 1.32
4 4 66.0 8.57 4.29
5 4 73.9 7.09 3.54
6 4 61.4 21.88 10.94
7 4 60.3 12.31 6.16
8 4 56.6 5.11 2.55
9 4 51.9 10.62 5.31

10 4 59.1 10.08 5.04
Total 40 57.8 14.12 2.23

Log10ReflectHorizontalWidth
Provenance N Mean Std. Deviation Std. Error

1 4 0.067 0.038 0.019
2 4 0.089 0.014 0.007
3 4 0.082 0.035 0.018
4 4 0.091 0.038 0.019
5 4 0.100 0.018 0.009
6 4 0.078 0.052 0.026
7 4 0.168 0.089 0.045
8 4 0.131 0.034 0.017
9 4 0.141 0.061 0.030

10 4 0.163 0.061 0.031
Total 40 0.111 0.056 0.009
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Table A. 5. ANOVA results of measured leaf average horizontal width (cm) p=0.028. 

 
 
 
 
 
Table A. 6. ANOVA results of leaf maximum perpendicular width (cm) p=0.048. 

 
 

AvgHorizontalWidth
Provenance N Mean Std. Deviation Std. Error

1 4 1.121 0.056 0.028
2 4 1.087 0.056 0.028
3 4 1.112 0.100 0.050
4 4 1.071 0.058 0.029
5 4 1.069 0.062 0.031
6 4 1.115 0.096 0.048
7 4 0.897 0.164 0.082
8 4 0.984 0.093 0.046
9 4 0.974 0.133 0.066

10 4 0.961 0.110 0.055
Total 40 1.039 0.115 0.018

Log10ReflectMaxPerpWidth
Provenance N Mean Std. Deviation Std. Error

1 4 0.068 0.040 0.020
2 4 0.088 0.013 0.007
3 4 0.081 0.036 0.018
4 4 0.088 0.038 0.019
5 4 0.098 0.021 0.011
6 4 0.077 0.051 0.026
7 4 0.167 0.090 0.045
8 4 0.130 0.033 0.017
9 4 0.140 0.060 0.030

10 4 0.162 0.060 0.030
Total 40 0.110 0.056 0.009
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Table A. 7. ANOVA results of leaf perpendicular width 1 (cm) p=0.001. 

 
 
 
 
Table A. 8. ANOVA results of leaf perpendicular width 2 (cm) p=0.016. 

 
 
 
 
 
 
 

Log10ReflectPerpWidth1
Provenance N Mean Std. Deviation Std. Error

1 4 0.053 0.046 0.023
2 4 0.086 0.024 0.012
3 4 0.090 0.016 0.008
4 4 0.089 0.025 0.013
5 4 0.089 0.025 0.013
6 4 0.060 0.040 0.020
7 4 0.180 0.074 0.037
8 4 0.123 0.041 0.021
9 4 0.143 0.045 0.023

10 4 0.160 0.033 0.017
Total 40 0.107 0.054 0.009

PerpWidth2
Provenance N Mean Std. Deviation Std. Error

1 4 0.331 0.057 0.029
2 4 0.280 0.063 0.032
3 4 0.281 0.044 0.022
4 4 0.220 0.045 0.023
5 4 0.274 0.069 0.034
6 4 0.348 0.089 0.044
7 4 0.173 0.045 0.022
8 4 0.245 0.095 0.047
9 4 0.220 0.078 0.039

10 4 0.214 0.037 0.018
Total 40 0.259 0.077 0.012
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Table A. 9. Tukey HSD post-hoc test results for height (n=40), showing significant 
differences of height between provenances (p<0.05**). 

 

Prov (I) Prov (J) MeanDiff (I-J) Std. Error Sig. Lower Bound Upper Bound

1 2 -18.625 8.8187 0.534 -48.707 11.457

3 -14.75 8.8187 0.802 -44.832 15.332

4 -27.5 8.8187 0.096 -57.582 2.582

5 -35.375 8.8187 0.012** -65.457 -5.293

6 -22.875 8.8187 0.264 -52.957 7.207

7 -21.75 8.8187 0.325 -51.832 8.332

8 -18.125 8.8187 0.57 -48.207 11.957

9 -13.375 8.8187 0.875 -43.457 16.707

10 -20.625 8.8187 0.395 -50.707 9.457

2 1 18.625 8.8187 0.534 -11.457 48.707

3 3.875 8.8187 1 -26.207 33.957

4 -8.875 8.8187 0.99 -38.957 21.207

5 -16.75 8.8187 0.669 -46.832 13.332

6 -4.25 8.8187 1 -34.332 25.832

7 -3.125 8.8187 1 -33.207 26.957

8 0.5 8.8187 1 -29.582 30.582

9 5.25 8.8187 1 -24.832 35.332

10 -2 8.8187 1 -32.082 28.082

3 1 14.75 8.8187 0.802 -15.332 44.832

2 -3.875 8.8187 1 -33.957 26.207

4 -12.75 8.8187 0.902 -42.832 17.332

5 -20.625 8.8187 0.395 -50.707 9.457

6 -8.125 8.8187 0.994 -38.207 21.957

7 -7 8.8187 0.998 -37.082 23.082

8 -3.375 8.8187 1 -33.457 26.707

9 1.375 8.8187 1 -28.707 31.457

10 -5.875 8.8187 1 -35.957 24.207

4 1 27.5 8.8187 0.096 -2.582 57.582

2 8.875 8.8187 0.99 -21.207 38.957

3 12.75 8.8187 0.902 -17.332 42.832

5 -7.875 8.8187 0.996 -37.957 22.207

6 4.625 8.8187 1 -25.457 34.707

7 5.75 8.8187 1 -24.332 35.832

8 9.375 8.8187 0.985 -20.707 39.457

9 14.125 8.8187 0.837 -15.957 44.207

10 6.875 8.8187 0.998 -23.207 36.957

5 1 35.3750* 8.8187 0.012** 5.293 65.457

2 16.75 8.8187 0.669 -13.332 46.832

3 20.625 8.8187 0.395 -9.457 50.707

4 7.875 8.8187 0.996 -22.207 37.957

6 12.5 8.8187 0.912 -17.582 42.582

7 13.625 8.8187 0.863 -16.457 43.707

8 17.25 8.8187 0.634 -12.832 47.332

9 22 8.8187 0.311 -8.082 52.082

10 14.75 8.8187 0.802 -15.332 44.832

Tukey HSD 95% Confidence IntervalHeight
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Table A.  9. Ctd. Tukey HSD post-hoc test results for height (n=40).  

 

Prov (I) Prov (J) MeanDiff (I-J) Std. Error Sig. Lower Bound Upper Bound

6 1 22.875 8.8187 0.264 -7.207 52.957
2 4.25 8.8187 1 -25.832 34.332
3 8.125 8.8187 0.994 -21.957 38.207
4 -4.625 8.8187 1 -34.707 25.457
5 -12.5 8.8187 0.912 -42.582 17.582
7 1.125 8.8187 1 -28.957 31.207
8 4.75 8.8187 1 -25.332 34.832
9 9.5 8.8187 0.983 -20.582 39.582

10 2.25 8.8187 1 -27.832 32.332
7 1 21.75 8.8187 0.325 -8.332 51.832

2 3.125 8.8187 1 -26.957 33.207
3 7 8.8187 0.998 -23.082 37.082
4 -5.75 8.8187 1 -35.832 24.332
5 -13.625 8.8187 0.863 -43.707 16.457
6 -1.125 8.8187 1 -31.207 28.957
8 3.625 8.8187 1 -26.457 33.707
9 8.375 8.8187 0.993 -21.707 38.457

10 1.125 8.8187 1 -28.957 31.207
8 1 18.125 8.8187 0.57 -11.957 48.207

2 -0.5 8.8187 1 -30.582 29.582
3 3.375 8.8187 1 -26.707 33.457
4 -9.375 8.8187 0.985 -39.457 20.707
5 -17.25 8.8187 0.634 -47.332 12.832
6 -4.75 8.8187 1 -34.832 25.332
7 -3.625 8.8187 1 -33.707 26.457
9 4.75 8.8187 1 -25.332 34.832

10 -2.5 8.8187 1 -32.582 27.582
9 1 13.375 8.8187 0.875 -16.707 43.457

2 -5.25 8.8187 1 -35.332 24.832
3 -1.375 8.8187 1 -31.457 28.707
4 -14.125 8.8187 0.837 -44.207 15.957
5 -22 8.8187 0.311 -52.082 8.082
6 -9.5 8.8187 0.983 -39.582 20.582
7 -8.375 8.8187 0.993 -38.457 21.707
8 -4.75 8.8187 1 -34.832 25.332

10 -7.25 8.8187 0.998 -37.332 22.832
10 1 20.625 8.8187 0.395 -9.457 50.707

2 2 8.8187 1 -28.082 32.082
3 5.875 8.8187 1 -24.207 35.957
4 -6.875 8.8187 0.998 -36.957 23.207
5 -14.75 8.8187 0.802 -44.832 15.332
6 -2.25 8.8187 1 -32.332 27.832
7 -1.125 8.8187 1 -31.207 28.957
8 2.5 8.8187 1 -27.582 32.582
9 7.25 8.8187 0.998 -22.832 37.332

Height Tukey HSD 95% Confidence Interval
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Table A.  10. Tukey HSD post-hoc test results for perpendicular width 1 (reflected and 
log-based 10 transformed), showing significant differences of leaf morphology between 
provenances (p<0.05**). 

 

Log10ReflectPerpWidth1

Prov (I) Prov (J) Mean Diff (I-J) Std. Error Sig Lower Bound Upper Bound
1 2 -0.03333 0.02842 0.971 -0.1303 0.0636

3 -0.0374 0.02842 0.942 -0.1344 0.0595
4 -0.03587 0.02842 0.955 -0.1328 0.0611
5 -0.03628 0.02842 0.951 -0.1332 0.0607
6 -0.00749 0.02842 1 -0.1044 0.0895
7 -.12708* 0.02842 0.004** -0.224 -0.0301
8 -0.07038 0.02842 0.32 -0.1673 0.0266
9 -0.09016 0.02842 0.085 -0.1871 0.0068

10 -.10687* 0.02842 0.022** -0.2038 -0.0099
2 1 0.03333 0.02842 0.971 -0.0636 0.1303

3 -0.00407 0.02842 1 -0.101 0.0929
4 -0.00253 0.02842 1 -0.0995 0.0944
5 -0.00295 0.02842 1 -0.0999 0.094
6 0.02584 0.02842 0.995 -0.0711 0.1228
7 -0.09374 0.02842 0.065 -0.1907 0.0032
8 -0.03705 0.02842 0.945 -0.134 0.0599
9 -0.05682 0.02842 0.606 -0.1538 0.0401

10 -0.07354 0.02842 0.266 -0.1705 0.0234
3 1 0.0374 0.02842 0.942 -0.0595 0.1344

2 0.00407 0.02842 1 -0.0929 0.101
4 0.00154 0.02842 1 -0.0954 0.0985
5 0.00112 0.02842 1 -0.0958 0.0981
6 0.02991 0.02842 0.986 -0.067 0.1269
7 -0.08967 0.02842 0.088 -0.1866 0.0073
8 -0.03298 0.02842 0.973 -0.1299 0.064
9 -0.05275 0.02842 0.696 -0.1497 0.0442

10 -0.06947 0.02842 0.337 -0.1664 0.0275
4 1 0.03587 0.02842 0.955 -0.0611 0.1328

2 0.00253 0.02842 1 -0.0944 0.0995
3 -0.00154 0.02842 1 -0.0985 0.0954
5 -0.00042 0.02842 1 -0.0974 0.0965
6 0.02837 0.02842 0.99 -0.0686 0.1253
7 -0.09121 0.02842 0.079 -0.1882 0.0057
8 -0.03452 0.02842 0.964 -0.1315 0.0624
9 -0.05429 0.02842 0.663 -0.1512 0.0427

10 -0.07101 0.02842 0.309 -0.168 0.0259
5 1 0.03628 0.02842 0.951 -0.0607 0.1332

2 0.00295 0.02842 1 -0.094 0.0999
3 -0.00112 0.02842 1 -0.0981 0.0958
4 0.00042 0.02842 1 -0.0965 0.0974
6 0.02879 0.02842 0.989 -0.0682 0.1257
7 -0.0908 0.02842 0.081 -0.1877 0.0062
8 -0.0341 0.02842 0.967 -0.1311 0.0629
9 -0.05387 0.02842 0.672 -0.1508 0.0431

10 -0.07059 0.02842 0.316 -0.1675 0.0264

95% Confidence IntervalPost-Hoc Tukey
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Table A. 10. ctd. Tukey HSD post-hoc test results for perpendicular width 1. 

 

Log10ReflectPerpWidth1
Prov (I) Prov (J) Mean Diff (I-J) Std. Error Sig Lower Bound Upper Bound

6 1 0.00749 0.02842 1 -0.0895 0.1044
2 -0.02584 0.02842 0.995 -0.1228 0.0711
3 -0.02991 0.02842 0.986 -0.1269 0.067
4 -0.02837 0.02842 0.99 -0.1253 0.0686
5 -0.02879 0.02842 0.989 -0.1257 0.0682
7 -.11959* 0.02842 0.007** -0.2165 -0.0226
8 -0.06289 0.02842 0.47 -0.1598 0.0341
9 -0.08266 0.02842 0.147 -0.1796 0.0143

10 -.09938* 0.02842 0.041** -0.1963 -0.0024
7 1 .12708* 0.02842 0.004** 0.0301 0.224

2 0.09374 0.02842 0.065 -0.0032 0.1907
3 0.08967 0.02842 0.088 -0.0073 0.1866
4 0.09121 0.02842 0.079 -0.0057 0.1882
5 0.0908 0.02842 0.081 -0.0062 0.1877
6 .11959* 0.02842 0.007 0.0226 0.2165
8 0.0567 0.02842 0.609 -0.0403 0.1536
9 0.03692 0.02842 0.946 -0.06 0.1339

10 0.0202 0.02842 0.999 -0.0767 0.1172
8 1 0.07038 0.02842 0.32 -0.0266 0.1673

2 0.03705 0.02842 0.945 -0.0599 0.134
3 0.03298 0.02842 0.973 -0.064 0.1299
4 0.03452 0.02842 0.964 -0.0624 0.1315
5 0.0341 0.02842 0.967 -0.0629 0.1311
6 0.06289 0.02842 0.47 -0.0341 0.1598
7 -0.0567 0.02842 0.609 -0.1536 0.0403
9 -0.01977 0.02842 0.999 -0.1167 0.0772

10 -0.03649 0.02842 0.95 -0.1334 0.0605
9 1 0.09016 0.02842 0.085 -0.0068 0.1871

2 0.05682 0.02842 0.606 -0.0401 0.1538
3 0.05275 0.02842 0.696 -0.0442 0.1497
4 0.05429 0.02842 0.663 -0.0427 0.1512
5 0.05387 0.02842 0.672 -0.0431 0.1508
6 0.08266 0.02842 0.147 -0.0143 0.1796
7 -0.03692 0.02842 0.946 -0.1339 0.06
8 0.01977 0.02842 0.999 -0.0772 0.1167

10 -0.01672 0.02842 1 -0.1137 0.0802
10 1 .10687* 0.02842 0.022** 0.0099 0.2038

2 0.07354 0.02842 0.266 -0.0234 0.1705
3 0.06947 0.02842 0.337 -0.0275 0.1664
4 0.07101 0.02842 0.309 -0.0259 0.168
5 0.07059 0.02842 0.316 -0.0264 0.1675
6 .09938* 0.02842 0.041** 0.0024 0.1963
7 -0.0202 0.02842 0.999 -0.1172 0.0767
8 0.03649 0.02842 0.95 -0.0605 0.1334
9 0.01672 0.02842 1 -0.0802 0.1137

Post-Hoc Tukey 95% Confidence Interval
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Table A. 11. Tukey HSD post-hoc test results for perpendicular width 2, showing 
significant differences of leaf morphology between provenances (p<0.05**). 

 

Prov (I) Prov (J) Mean Diff (I-J) Std. Error Sig Lower Bound Upper Bound

1 2 0.050833 0.045975 0.98 -0.106 0.20766
3 0.0495 0.045975 0.983 -0.10733 0.20633
4 0.110183 0.045975 0.363 -0.04665 0.26701

5 0.056475 0.045975 0.961 -0.10035 0.2133
6 -0.017542 0.045975 1 -0.17437 0.13929
7 .157400* 0.045975 0.049** 0.00057 0.31423
8 0.085367 0.045975 0.696 -0.07146 0.2422
9 0.110833 0.045975 0.355 -0.046 0.26766

10 0.116467 0.045975 0.292 -0.04036 0.2733
2 1 -0.050833 0.045975 0.98 -0.20766 0.106

3 -0.001333 0.045975 1 -0.15816 0.1555
4 0.05935 0.045975 0.948 -0.09748 0.21618
5 0.005642 0.045975 1 -0.15119 0.16247
6 -0.068375 0.045975 0.887 -0.2252 0.08845
7 0.106567 0.045975 0.407 -0.05026 0.2634

8 0.034533 0.045975 0.999 -0.1223 0.19136
9 0.06 0.045975 0.945 -0.09683 0.21683

10 0.065633 0.045975 0.909 -0.0912 0.22246

3 1 -0.0495 0.045975 0.983 -0.20633 0.10733
2 0.001333 0.045975 1 -0.1555 0.15816
4 0.060683 0.045975 0.941 -0.09615 0.21751
5 0.006975 0.045975 1 -0.14985 0.1638
6 -0.067042 0.045975 0.898 -0.22387 0.08979
7 0.1079 0.045975 0.39 -0.04893 0.26473
8 0.035867 0.045975 0.998 -0.12096 0.1927
9 0.061333 0.045975 0.937 -0.0955 0.21816

10 0.066967 0.045975 0.898 -0.08986 0.2238
4 1 -0.110183 0.045975 0.363 -0.26701 0.04665

2 -0.05935 0.045975 0.948 -0.21618 0.09748
3 -0.060683 0.045975 0.941 -0.21751 0.09615
5 -0.053708 0.045975 0.972 -0.21054 0.10312
6 -0.127725 0.045975 0.189 -0.28455 0.0291
7 0.047217 0.045975 0.988 -0.10961 0.20405
8 -0.024817 0.045975 1 -0.18165 0.13201
9 0.00065 0.045975 1 -0.15618 0.15748

10 0.006283 0.045975 1 -0.15055 0.16311
5 1 -0.056475 0.045975 0.961 -0.2133 0.10035

2 -0.005642 0.045975 1 -0.16247 0.15119
3 -0.006975 0.045975 1 -0.1638 0.14985
4 0.053708 0.045975 0.972 -0.10312 0.21054
6 -0.074017 0.045975 0.833 -0.23085 0.08281
7 0.100925 0.045975 0.481 -0.0559 0.25775
8 0.028892 0.045975 1 -0.12794 0.18572
9 0.054358 0.045975 0.97 -0.10247 0.21119

10 0.059992 0.045975 0.945 -0.09684 0.21682

95% Confidence IntervalPost-Hoc TukeyPerpWidth2
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Table A. 11. Ctd. Tukey HSD post-hoc results for perpendicular width 2. 

 
 

Prov (I) Prov (J) Mean Diff (I-J) Std. Error Sig Lower Bound Upper Bound

6 1 0.017542 0.045975 1 -0.13929 0.17437
2 0.068375 0.045975 0.887 -0.08845 0.2252

3 0.067042 0.045975 0.898 -0.08979 0.22387
4 0.127725 0.045975 0.189 -0.0291 0.28455
5 0.074017 0.045975 0.833 -0.08281 0.23085
7 .174942* 0.045975 0.019** 0.01811 0.33177
8 0.102908 0.045975 0.455 -0.05392 0.25974
9 0.128375 0.045975 0.184 -0.02845 0.2852

10 0.134008 0.045975 0.145 -0.02282 0.29084
7 1 -.157400* 0.045975 0.049** -0.31423 -0.00057

2 -0.106567 0.045975 0.407 -0.2634 0.05026
3 -0.1079 0.045975 0.39 -0.26473 0.04893
4 -0.047217 0.045975 0.988 -0.20405 0.10961
5 -0.100925 0.045975 0.481 -0.25775 0.0559
6 -.174942* 0.045975 0.019** -0.33177 -0.01811

8 -0.072033 0.045975 0.853 -0.22886 0.0848
9 -0.046567 0.045975 0.989 -0.2034 0.11026

10 -0.040933 0.045975 0.996 -0.19776 0.1159
8 1 -0.085367 0.045975 0.696 -0.2422 0.07146

2 -0.034533 0.045975 0.999 -0.19136 0.1223
3 -0.035867 0.045975 0.998 -0.1927 0.12096
4 0.024817 0.045975 1 -0.13201 0.18165
5 -0.028892 0.045975 1 -0.18572 0.12794
6 -0.102908 0.045975 0.455 -0.25974 0.05392
7 0.072033 0.045975 0.853 -0.0848 0.22886
9 0.025467 0.045975 1 -0.13136 0.1823

10 0.0311 0.045975 0.999 -0.12573 0.18793
9 1 -0.110833 0.045975 0.355 -0.26766 0.046

2 -0.06 0.045975 0.945 -0.21683 0.09683
3 -0.061333 0.045975 0.937 -0.21816 0.0955
4 -0.00065 0.045975 1 -0.15748 0.15618
5 -0.054358 0.045975 0.97 -0.21119 0.10247
6 -0.128375 0.045975 0.184 -0.2852 0.02845
7 0.046567 0.045975 0.989 -0.11026 0.2034
8 -0.025467 0.045975 1 -0.1823 0.13136

10 0.005633 0.045975 1 -0.1512 0.16246
10 1 -0.116467 0.045975 0.292 -0.2733 0.04036

2 -0.065633 0.045975 0.909 -0.22246 0.0912
3 -0.066967 0.045975 0.898 -0.2238 0.08986
4 -0.006283 0.045975 1 -0.16311 0.15055
5 -0.059992 0.045975 0.945 -0.21682 0.09684
6 -0.134008 0.045975 0.145 -0.29084 0.02282
7 0.040933 0.045975 0.996 -0.1159 0.19776
8 -0.0311 0.045975 0.999 -0.18793 0.12573
9 -0.005633 0.045975 1 -0.16246 0.1512

PerpWidth2 Post-Hoc Tukey 95% Confidence Interval
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Table A.  12. Two-way ANOVA results (n=200 seedlings) of height and diameter, 
including mean, standard deviation, minimum, maximum, and significance.  

 
 
 
 
Table A.  13. Two-way ANOVA results of height by provenance (n=200 seedlings), 
including mean, standard deviation, minimum and maximum values. 

 
 
 
 
Table A.  14. Two-way ANOVA results of height by block (n=200 seedlings), including 
mean, sample size, standard deviation, minimum and maximum values. 

 
 
 

Measured Variable Mean Std. Deviation Min Max Sig.
Height*Prov 58.912 13.4764 14.5 89 0.182
Height*Block 58.912 13.4764 14.5 89 0.852
Diameter*Prov 7.1151 1.20591 3.89 9.94 0.215
Diameter*Block 7.1151 1.20591 3.89 9.94 0.002**

Provenance Mean N Std. Deviation Minimum Maximum
1 55.4 20 18.4837 14.5 85.5
2 53.05 20 13.2237 23.5 74.5
3 61.275 20 9.4569 50 76.5
4 58.2 20 12.4851 37.5 84.5
5 67.6 20 13.1565 36.5 83.5
6 60.52 20 14.268 35.5 89
7 56.1 20 13.3826 31.5 80
8 58.2 20 11.501 32.5 77.5
9 58.225 20 12.1693 38.5 76

10 60.55 20 12.4212 36.5 84.5
Total 58.912 200 13.4764 14.5 89

Block Mean N Std. Deviation Minimum Maximum
1 58.53 50 14.6505 23.5 83.5
2 58.998 50 13.4315 37.5 89
3 60.29 50 11.6379 30 85.5
4 57.83 50 14.2759 14.5 83.5

Total 58.912 200 13.4764 14.5 89
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Table A.  15. Two-way ANOVA results of diameter by provenance (n=200 seedlings), 
including mean, sample size, standard deviation, minimum and maximum values. 

 
 
 
 
Table A.  16. Two-way ANOVA results of diameter by block (n=200 seedlings), 
including mean, sample size, standard deviation, minimum and maximum values. 

  

Provenance Mean N Std. Deviation Minimum Maximum
1 6.9905 20 1.37098 3.89 8.7
2 6.966 20 1.36827 4.77 9.53
3 6.927 20 1.19231 4.29 9.09
4 6.8105 20 1.07115 4.57 8.69
5 7.451 20 1.41056 4.75 9.94
6 7.491 20 1.14125 5.23 9.7
7 7.35 20 1.0499 4.73 9.15
8 6.6935 20 1.00027 5 8.92
9 7.146 20 1.08153 4.63 9.09
10 7.325 20 1.2692 3.98 9.48

Total 7.1151 200 1.20591 3.89 9.94

Block Mean N Std. Deviation Minimum Maximum
1 6.7328 50 1.14923 4.49 9.15
2 7.2844 50 1.31613 4.29 9.67
3 7.548 50 1.20805 3.89 9.94
4 6.895 50 0.98718 3.98 8.92

Total 7.1151 200 1.20591 3.89 9.94
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APPENDIX VI 

SCANNED LEAF IMAGES BY PROVENANCE  

 

Figure A. 9. Scanned leaf images from Provenance 1 (Black Brook, NB). 

a b

c d
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Figure A. 10. Scanned leaf images from Provenance 2 (Gallants, NL). 
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Figure A. 11. Scanned leaf images from Provenance 3 (Big Pond, NL). 
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Figure A. 12. Scanned leaf images from Provenance 4 (Petawawa, ON). 
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Figure A. 13. Scanned leaf images from Provenance 5 (Greenwood, ON). 
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Figure A. 14. Scanned leaf images from Provenance 6 (Squaretop Mt., ON). 
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Figure A. 15. Scanned leaf images from Provenance 7 (Hiawatha, MI).  
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Figure A. 16. Scanned leaf images from Provenance 8 (Superior, MN). 
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Figure A. 17. Scanned leaf images from Provenance 9 (Chippewa, MN). 
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Figure A. 18. Scanned leaf images from Provenance 10 (Ottawa, MI). 
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APPENDIX VII 

WINFOLIA PARAMETERS  

 

Figure A. 19. Image of important width characters analyzed with WinFolia software. Maximum perpendicular width was measured as 

the maximum width perpendicular to blade length. Perpendicular width 1 was measured as the width at 50% of the blade length. 

Perpendicular width 2 was measured as the width at 90% of the blade length.  

 

Perp width 2 

Perp width 1 

Max perp width 


