
Moreau Envelopes-based Personalized Asynchronous
Federated Learning: Improving Practicality in

Distributed Machine Learning
by

Anwar Munther As’ad

A thesis
presented to Lakehead University

in fulfillment of the
thesis requirement for the degree of

Master of Science

Thunder Bay, Ontario, Canada, 2023

© Anwar 2023

Examination Committee

Dr. Zubair Fadlullah
Supervisor
(Associate Professor, Department of Computer Science, Western University, London, ON, Canada.)
(Adujnct Professor, Department of Computer Science, Lakehead University, Thunder Bay, ON,
Canada)

Dr. Muhammad Asaduzzaman
Internal Examiner
(Assistant Professor, Department of Computer Science, Lakehead University, Thunder Bay,
Ontario, Canada.)

Dr. Al-Sakib Khan Pathan
External Examiner
(Professor, Department of Computer Science and Engineering, United International University,
Dhaka, Bangladesh)

ii

Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Acknowledgment

In the name of Allah, the Most Gracious, the Most Merciful.

Firstly, I would like to express my deepest gratitude to Allah, the Almighty, for His continuous
guidance, blessings, and strength throughout the journey of my Master’s program in Computer
Science, specializing in Artificial Intelligence, at Lakehead University.

I am immensely grateful to my thesis supervisor, Dr. Zubair Fadlullah, for their invaluable guid-
ance, encouragement, and mentorship. Their expertise, patience, and support have been instrumen-
tal in the completion of this research. I would also like to extend my appreciation to my committee
members, Dr. Muhammad Asaduzzaman and Dr. Al-Sakib Khan Pathan, for their insightful feed-
back and constructive criticism.

I am grateful to the faculty and staff at the Department of Computer Science, Lakehead University,
for providing a stimulating and supportive academic environment.

I would like to express my heartfelt appreciation to my parents, for their unwavering support,
prayers, and encouragement throughout my academic journey despite their sickness. Their love,
sacrifices, and dedication have been my source of inspiration and motivation. My parents have
constantly inspired me and pushed me to pursue my dreams, instilling in me the importance of
hard work, perseverance, and faith. Their belief in my abilities has given me the courage and re-
silience to continue, even in the face of challenges.

Special thanks go to my dear friend, Anas Al-Ghabra, for their constant support, understanding,
and companionship. They have made the experience of pursuing this degree enjoyable and mem-
orable.

Finally, I dedicate this thesis to all those who have inspired me and believed in my abilities.

iv

Abstract

Federated learning is a promising approach for training models on distributed data, driven by in-
creasing demand in various industries. However, it faces several challenges, including commu-
nication bottlenecks and client data heterogeneity. Personalized asynchronous federated learn-
ing addresses these challenges by customizing the model for individual users based on their lo-
cal data while trading model updates asynchronously. In this paper, we propose Personalized
Moreau Envelopes-based Asynchronous Federated Learning (APFedMe) that combines personal-
ized learning with asynchronous communication and Moreau Envelopes as clients’ regularized loss
functions. Our approach uses the Moreau Envelopes to handle non-convex optimization problems
and employs asynchronous updates to improve communication efficiency while mitigating hetero-
geneity data challenges through a personalized learning environment. We evaluate our approach
on several datasets and compare it with PFedMe, FedAvg, and PFedAvg federated learning meth-
ods. Our experiments show that APFedMe outperforms other methods in terms of convergence
speed and communication efficiency. Then, we mention some well-performing implementations
to handle missing data in distributed learning. Overall, our work contributes to the development of
more effective and efficient federated learning methods that can be applied in various real-world
scenarios.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research objectives and significance . 2
1.3 Contributions . 2
1.4 Thesis Structure . 3

2 Federated Learning Use Cases 4
2.1 Privacy . 4
2.2 Healthcare . 4
2.3 Finance . 5
2.4 Smart Vehicles . 6
2.5 Mobile Applications . 6
2.6 Remarks About the Use Cases . 7

3 Related Work 8
3.1 Federated Learning . 8
3.2 Personalized Federated Learning . 8
3.3 Asynchronous Federated Learning . 11

4 Methodology 12
4.1 PFedMe Problem Formulation . 12
4.2 PFedMe Algorithm Implementation . 14
4.3 Asynchronous Learning into PFedMe . 15
4.4 APFedMe Algorithm Implementation . 16

5 Experiments & Results 21
5.1 Experiment Setup . 21
5.2 Data Distribution . 22
5.3 Running the Experiment . 25

5.3.1 Final Remarks . 30

6 Practicality Showcase of Asynchrony in Federated Learning 31
6.1 Dataset . 31
6.2 Experiment Setup . 32
6.3 Experiment Results . 33

vi

7 Combating Missing Data in Local Models in the Federated Learning Framework 35
7.1 Causes of Missing Data . 35

7.1.1 Causes of Missing Data in Federated Learning 36
7.2 Dealing with Missing Data . 36

7.2.1 Dealing with Missing Data in Federated Learning 39
7.3 Evaluating Imputation Methods for Distributed Learning 42

7.3.1 Experiment Design . 42
7.3.2 Test Results . 42
7.3.3 Final Remarks . 43

8 Conclusion 45

vii

List of Figures

1.1 Schematic Diagram of Federated Learning . 2

3.1 Comparison between synchronous and asynchronous updates 10

4.1 Visualization of APFedMe Algorithm Flow . 20

5.1 MNIST Distribution: 10 Users with 2 Labels Each. 23
5.2 MNIST Distribution: 20 Users with 4 Labels Each. 24
5.3 Synthetic Distribution: 10 Users, α = 0.5, β = 0.5. 24
5.4 Synthetic Distribution: 20 Users, α = 0.5, β = 0.5. 25
5.5 APFedMe - MNIST - Global Accuracy - 10 Users (Blue/Green), 20 Users (Or-

ange/Red) . 28
5.6 APFedMe - Synthetic - Global Accuracy - 10 Users (Blue/Green), 20 Users (Or-

ange/Red) . 28
5.7 PFedMe - MNIST - Global Accuracy - 10 Users (Blue/Green), 20 Users (Or-

ange/Red) . 29
5.8 PFedMe - Synthetic - Global Accuracy - 10 Users (Blue/Green), 20 Users (Or-

ange/Red) . 29

6.1 DoS Attack Mitigation Through Federated Learning 32
6.2 Decentralized Setup: Showcase of Users’ Performance in IDS Dataset using APFedMe

in 400 Global Rounds . 34
6.3 Centralized Setup: Centralized Model Performance in 40 Epochs 34

7.1 MICE Visual Outline for a Dataset with 3 Variables Containing Missing Data . . . 40
7.2 KNN - Nearest Neighbors (Mode Emputation) Example (k=3) 42
7.3 Comparison of KNN and MICE Imputation Methods 44

viii

List of Tables

5.1 APFedMe - MNIST Dataset . 26
5.2 PFedMe - MNIST Dataset . 27
5.3 APFedMe - Synthetic Dataset . 27
5.4 PFedMe - Synthetic Dataset . 27

6.1 Centralized & Decentralized Setups: Model Performance 33

7.1 Artificial Dataset - Recovery Through Data Imputation 38
7.2 Dataset - Recovery Through LOCF and WOCF 38
7.3 KNN Imputation Results . 43
7.4 MICE Imputation Results . 44

ix

Mathematical Notations

Chapter 3 — FedAvg
Notation Meaning
K Number of clients
k Local client
B Local minibatch size
b Local minibatch
E Number of local epochs
η Learning rate
t Current round
S Random set of clients
nk Number of samples in client k’s dataset
mt Total number of samples in round t
Pk Client k’s dataset
f Loss function

Chapter 3 — PFedAvg
Notation Meaning
K Number of clients
k Local client
α Step size
η Learning rate
T Number of global rounds
t Current round index
S Random set of clients
w Model weights
τ Number inner rounds
D Mini-batch of data
nk Number of samples in client k’s dataset
mt Total number of samples in round t
f Loss function

x

Chapter 3 — ASOFed
K Number of clients
k Local client
η Learning rate
T Number of global rounds
t Current round index
f Loss function

Chapter 4 — (PFedMe & APFedMe)
Notation Meaning
T Number of global rounds
R Number of local update rounds
S Size of the sampled client subset
λ Regularization parameter
η Learning rate
β Global model controller coefficient
N Total number of clients
D Mini-batch of data
h̃ Local objective function
θ Personalized Model
S subset of clients
ϵ Threshhold for stale updates
F Definition of Moreau Envelopes
f Loss function
ν Accuracy level

xi

Chapter 1

Introduction

1.1 Motivation

In recent years, machine learning has revolutionized the way we solve complex problems [1],
leading to groundbreaking solutions that were once unimaginable. However, traditional machine
learning models rely on centralized data storage, which can be problematic when handling sensitive
or decentralized data. To address this issue, federated learning was introduced. Federated learning
is a paradigm that enables multiple devices or nodes to collaboratively train a shared model without
exchanging raw data or compromising privacy.

The main concept of federated learning is illustrated in Figure 1.1. Each device participating in
the training process downloads a global model from a central server, and then uses its local data to
train the model further. Once local training is complete, the device uploads gradient information to
the central server, which aggregates updates from all or a subset of devices, computes an updated
model, and sends it back to each device as a renewed global model. This process is repeated until
the model meets the desired criteria [2].

Although federated learning has demonstrated significant potential, it faces several challenges
that limit its practicality. One critical challenge is data heterogeneity across clients [3]. Each de-
vice may have different data distributions, causing variations in data quality and quantity. In other
words, data across clients are likely to be Non-Independent and Identically Distributed (Non-IID).
Additionally, some clients may have missing or undocumented data, further complicating the prob-
lem. These limitations can result in a biased model [4] and negatively impact its performance and
convergence. Simply put, if some clients have more diverse or representative data than others, their
influence on the model will be more significant, potentially leading to overfitting or underfitting.

Therefore, this research is motivated by the powerful applications of machine and deep learning
in various sectors. However, many sectors deal with massive sensitive datasets, creating signifi-
cant challenges when training a model [5, 6]. Federated learning can alleviate these constraints,
potentially eliminating the aforementioned challenges and facilitating the development of robust
solutions.

1

Data Data Data Data

Step 2: Nodes – Perform Local Training

w1 w2 w3 wn

Step 4: Server – Perform Weight Aggregation --> (w1, w2, w3 … wn)

Step 1: Send Global
Model to Nodes

Step 3: Send
Local Weights

…

Figure 1.1: Schematic Diagram of Federated Learning

1.2 Research objectives and significance

The primary objective of this research is to enhance the scalability, data confidentiality for clients,
and robustness of federated learning by integrating asynchronous communication into an existing
state-of-the-art federated learning framework [3]. Additionally, this study addresses the challenges
previously mentioned in distributed machine and deep learning. Finally, it also tackles the problem
of missing labels in distributed learning, a well-known challenge in machine learning environments
[7].

Applying impactful research findings on federated learning will not only help develop more
efficient and effective distributed learning systems but also contribute to overcoming the difficul-
ties faced when handling large sensitive data. In fact, federated learning has attracted significant
interest from businesses, healthcare sectors, and the Internet of Things (IoT) [8], demonstrating its
promising potential. Our objectives are to provide better-performing and more reliable federated
learning systems, making them more practical for real-world scenarios.

1.3 Contributions

Through this research, we aim to provide a comprehensive overview of federated learning, its ad-
vantages, as well as the challenges faced when dealing with distributed learning environments.
Furthermore, we highlight some of the advancements made in federated learning and offer an en-
hanced implementation to address some of the setbacks of distributed learning. More specifically:

1. We address the benefits and the use cases of federated learning.

2

2. We introduce a recent study in which a state-of-the-art federated learning environment was
proposed, called Personalized Federated Learning with Moreau Envelopes (PFedMe) [3].
Additionally, we provide an explanation of FedAvg and personalized FedAvg, and illustrate
the key differences between each of them.

3. We present Moreau Envelopes-based Personalized Asynchronous Federated Learning by uti-
lizing PFedMe [3] as a basis for our solutions, and attempt to further improve the study by
integrating asynchronous communication between the server and clients.

4. We explain in detail what personalized learning and asynchronous communication environ-
ments are. Using this information, we then demonstrate how both can provide benefits to
client-server communications and Non-IID data in a distributed learning environment.

5. We present and discuss the findings and results of our enhanced implementation of PFedMe,
and compare the results with PFedMe to provide a better understanding and comparison of
our proposed method. Tests are performed on synthetic and real datasets to understand the
overall performance better.

6. We showcase a simulated use-case of our enhanced solution on a dataset illustrates the prac-
ticality of asynchronous federated learning implementations.

7. We investigate how to better address missing labels in a distributed learning environment
and present our findings to help mitigate client-side errors.

1.4 Thesis Structure
In Chapter 2, we will discuss the powerful use cases of federated learning to provide a better
insight of where it can be applied. Chapter 3 explains the related work in the field of federated
learning, specifically: the original form of federated learning, penalization, and asynchrony as
well. Chapter 4 however discusses our methodology, where we thoroughly explain PFedMe, then
propose asynchrony into the algorithm. Chapter 5 discusses our experiment results on datasets
using our proposed methodology. Chapter 6 showcases a potential powerful application of our
implementation, as well as test how the algorithm behaves as more users are added. Chapter 7
explains the problem of missing data in federated learning, provides potential solutions, and tests
some of the proposed algorithms to impute missing data. Lastly, Chapter 8 provides a conclusion
to our thesis, and provides insights of future work.

3

Chapter 2

Federated Learning Use Cases

Before we delve into our research topics, we will detail why federated learning is a ground-
breaking methodology. Therefore, this chapter will focus on the use cases of federated learning,
its benefits, and its enhanced advantages to machine and deep learning implementations.

2.1 Privacy
First of all, federated learning addresses one of the global concerns in the era of big data, which is
user data privacy. As mentioned earlier, the nature of federated learning does not require the data
to be centralized in order to train a model. This means that no user data is required to be gathered.
Therefore, this concept mitigates the risk of data breaches. These days, we have been relying
on artificial intelligence models to help enhance our solutions for real-world problems. However,
if data privacy is not preserved, these solutions might not be feasible due to the dangers behind
holding sensitive data. Therefore, distributed learning is a powerful model learning solution for
data privacy concerns.

2.2 Healthcare
In a recent study, researchers performed a distributed learning task based on a deep convolutional
neural network to train a global model for glioma brain tumor segmentation, aiming to identify
tumor boundaries in medical imaging data [9]. Gliomas are tumors found in the central nervous
system with various properties. Such a solution can help provide information to study tumor prop-
erties and treatment responses [9]. However, acquiring data to train such a model can be difficult
due to data availability, legal, and privacy challenges [9]. Therefore, to showcase a solution, they
designed federated learning and centralized deep learning models to compare their performance on
the same validation datasets [9]. As a result, they were able to develop a global model generated
from their federated learning setup that had comparable performance to the centralized setup. In
fact, the centralized model only performed slightly better, with only around a 1% difference. Fur-
thermore, to help provide a better idea of how federated learning can be used in healthcare, they
split their dataset among different institutions to perform the distributed learning task. In other
words, federated learning is able to allow institutions to take part in training a model without shar-
ing their patients’ data. In healthcare, some patients allow their data to be collected by the hospital

4

in which they are receiving treatment but do not permit their data to be shared with other parties.
Therefore, federated learning has demonstrated its ability to eliminate privacy concerns regarding
patients’ data by illustrating that it can generate powerful models without a centralized setup.

In another study related to the recent pandemic, researchers implemented a federated learning
model called ”EXAM (Electronic Medical Record (EMR) Chest X-ray AI Model)” to help predict
the clinical outcomes of patients with Covid-19 using vital signs and chest X-rays [10]. In their
study, they developed a federated learning model trained on data from 16,148 patients across 20
different institutions around the globe. Specifically, they trained their model to collect data from
patients suffering from Covid-19 to help predict their future oxygen requirements. This recent
study is exceptional because it showcases the strengths of federated learning in critical real-life
problems. In fact, utilizing only their distributed learning, they achieved nearly a 92% prediction
score for the patients. Additionally, they developed their implementation without gathering user
data from institutions. Furthermore, since the institutions were spread around the globe, their
federated learning model had up to 38% better generalizability when compared to models trained
with data from a single institute. The reason behind this is that it was trained on heterogeneous
data, where patients had different kinds of symptoms and Covid-19 variants from different parts
of the world. This illustrates another advantage of implementing a federated learning solution in
healthcare.

These days, IoT devices are becoming more prevalent [11]. In fact, some smart devices, can
read medical data, like heart rates, Oxygen levels, and generate an electrocardiogram through their
built-in sensors [11, 12], which can be used to implement a federated learning model to predict
future health risks and heart attacks. Therefore, federated learning undoubtedly provides robust
solutions in the field of medicine without invading patients’ privacy.

2.3 Finance
Another sector where federated learning excels at is finance [13]. Financial institutions, such as
banks and insurance companies, hold sensitive customer data like social insurance numbers, credit
card numbers, etc. Consequently, they may be reluctant to share this information with other in-
stitutions for artificial intelligence implementation purposes. Thus, if a bank decides to build a
credit card fraud detection system, it will most likely have to rely solely on the data they have col-
lected. A study was conducted in which researchers explored using a federated learning system to
develop a credit card fraud detection system [14]. According to them, one of the main issues when
implementing such a system is that it is challenging to gather enough data. For instance, credit
card frauds are difficult to detect and do not occur frequently. As a result, the number of samples
representing fraudulent transactions is minuscule, not providing enough data for a model to learn.
Additionally, they mention that banks are typically not allowed to share transaction data, which
increases the overall difficulty of the task. Therefore, they implemented a distributed learning
simulation as a suggested solution, wherein they had their dataset containing a mix of fraudulent
and standard transactions split among artificial clients. Moreover, they had to preprocess the data
using the Synthetic Minority Over-sampling Technique [15] to balance out the data for the prob-
lem mentioned above. Specifically, their dataset had 284,807 instances, with only 492 instances
representing fraudulent transactions. Nevertheless, they were able to develop a well-performing
Convolutional Neural Network-based model through federated learning with an average validation

5

accuracy of 95.5%. Although it was a simulated setup, it still demonstrates the capabilities that
federated learning can provide in the finance sector.

2.4 Smart Vehicles

One of the major trends around the world these days is autonomous driving [16]. Deep learn-
ing models have become extremely powerful, and they are nearly ready to drive vehicles au-
tonomously. In fact, famous car brands, like Tesla, have shown that we are closer than ever to
achieving complete autonomy in vehicle driving. However, in order to further enhance our chances
of achieving that, we first need to address several challenges. Specifically, model generalization
for autonomous driving might be hard to achieve since (1) not many drivers consent to collect
their data due to privacy concerns [17], (2) deep learning models for autonomous driving require
a substantial amount of data to learn [18], and (3) there might be high variance in data since there
are numerous types of cars and driving conditions [19]. These challenges make federated learning
highly applicable in this area of research. Specifically, we are able to eliminate the aforementioned
challenges with distributed learning since no user data is collected, preserving drivers’ privacy.
Furthermore, cars worldwide can participate in the training process with different road and driving
conditions. In addition, achieving autonomy does not only benefit road drivers, but it will also help
in storage facilities, factories, etc. Hence, federated learning has a vast amount of use cases in the
field of intelligent vehicles.

2.5 Mobile Applications

Another powerful use case of federated learning can be found in mobile applications. Smartphones
these days have become extremely popular, with 68% of adults in the United States owning at
least one in 2015 [20]. In fact, smartphones are ranked as the third most owned devices in the
United States, and trends show that users are increasingly shifting to them [20]. Therefore, their
widespread use and strong processing power can be exploited to develop new solutions. One study
by Google researchers proposed an idea that utilizes federated learning to develop mobile keyboard
prediction [21]. Since smartphones are popular and one of their most common uses is exchanging
messages, developing solutions to enhance the reliability of the texting experience is important. As
the research name indicates, their solution attempts to develop a model through federated learning
that predicts the next most probable words that the user will type. For their implementation, they
used the original form of federated learning along with a recurrent neural network language model
to train devices that use the famous Google’s keyboard application, Gboard. Furthermore, they de-
veloped a centralized model along with the distributed one to better compare performance. How-
ever, since federated learning does not collect users’ data, the centralized and distributed models
are not trained on the same data. Specifically, the centralized model trains on 7.5 billion instances,
with an average sentence length of 4.1 words. On the other hand, the federated learning model
trains on approximately 600 million instances spread across 1.5 million clients. The centralized
model converges after 150 million steps of stochastic gradient descent, whereas the distributed
learning model converges at around 3000 global rounds. They evaluated their models based on
top-n recall metrics. Specifically, Top-1 recall evaluates the performance of the model based on

6

whether the most likely predicted word (highest probability of what the model suggests) matches
the actual word that the user typed. Top-3 recall, on the other hand, considers whether the actual
word that the user typed appears among the top 3 predicted words. The centralized model has a
Top-1 recall score of 11.13% and a Top-3 recall score of 20.36% on average. On the other hand,
the federated learning model scored 11.11% for Top-1 recall and 20.37% for Top-3 recall on av-
erage. Both models’ performance is extremely comparable, with nearly no performance loss for
utilizing federated learning. Therefore, this study showcases that federated learning is able to pro-
duce models nearly as powerful as the centralized ones on real-life applications while preserving
privacy. Furthermore, this research highlights a powerful use case of federated learning in mobile
applications — A solution that numerous users benefit from every day while exchanging messages
using Gboard keyboard application.

Another application of federated learning in mobile applications is human activity recognition
using smartphones [22]. Such human activities can include walking, running, climbing, sleeping,
etc. In fact, detecting human activities provides a variety of uses in healthcare, sports, and even
in virtual reality games [22]. Although most smartphones have the necessary sensors to train such
a model (like accelerometers and gyroscopes [22]), not many users may consent to allowing third
parties to collect such sensitive data, making federated learning a desirable implementation for
this solution. In [22], they proposed a federated learning-based solution where they implement
two distributed (simulated) and centralized learning setups. The first setup utilizes a deep neural
network and the other one uses multinomial logistic regression. For their training and testing, they
use a Human Activity Recognition dataset that contains a variety of activities, including biking,
sitting, standing, walking, stair up, stair down, and null, recorded from 8 different Android smart-
phones and 2 smartwatches. Null activity indicates that there is no label for the given features,
so they deleted such data instances. In their test results, they showcase that their distributed and
centralized setups have similar validation accuracy, where the centralized model scored 93% with
the deep neural network model, and 83% with the multinomial logistic regression. On the other
hand, the decentralized setup scored 89% on the deep neural network model and 80% on multino-
mial logistic regression. Although the centralized setup slightly outperformed the distributed one,
their performance is still fairly comparable. Furthermore, sensors across devices may be calibrated
differently, which may result in lower validation accuracy in real-life scenarios [22]. However, dis-
tributed learning may remedy this problem by involving a variety of devices from different users
to take part in the learning process, allowing for the development of a more generalized model.

2.6 Remarks About the Use Cases
Considering these use cases, federated learning has proven to be a powerful approach in various
sectors, including healthcare and finance, along with mobile applications. Distributed learning
helps preserve data privacy, provides good model performance, and facilitates cross-institutional
collaboration. Federated learning’s potential to tackle data privacy and model generalization chal-
lenges makes it a promising solution for a wide range of applications, such as medical predictions,
fraud detection, and even autonomous driving. The aforementioned use cases of federated learn-
ing are only a hint of what distributed learning can achieve. Hence, further studies in this field
will enhance the development of more powerful models to provide better solutions for real-world
problems.

7

Chapter 3

Related Work

In this chapter, we discuss four related studies that have been previously published in the field
of federated learning. These particular research studies were chosen for discussion due to their
relevance to our proposed research topic and their significant contributions to the eventual devel-
opment of APFedMe. In addition, simplified algorithms for the discussed studies are provided to
help better understand the general infrastructure of distributed learning without straying from the
scope of this chapter.

3.1 Federated Learning
In 2016, Google researchers introduced the term “Federated Learning,” where they developed an
algorithm called FedAvg [23], a form of federated learning, to mitigate data privacy concerns.
Their version of federated learning works by averaging the model weights obtained from multi-
ple local devices to update the global model. As shown in Algorithm 1, a subset of devices is
randomly selected to perform the training process on each iteration. These devices receive the
global model weights and use Stochastic Gradient Descent (SGD) to update their local models.
Once a device completes its local training, it waits for a response from the global server to send
its new parameters. This response is sent once all devices finish their local training. The global
server then aggregates the local models’ weights, averages them, and produces an updated global
model to send to the clients. The algorithm keeps running for T number of global iterations. How-
ever, While they had both IID and Non-IID data distributions in mind during research and testing,
the heterogeneity of data was still a limiting factor, which pushed further research in enhancing
federated learning.

3.2 Personalized Federated Learning
In an attempt to alleviate the data diversity challenges in federated learning, personalization was
being proposed in various research to be implemented into distributed learning environments. To
put it simply, personalization in federated learning is to use clients’ data to tailor model outputs for
specific contexts or users’ needs. Therefore, in one research [24], the authors propose a person-
alized variant by exploiting the idea behind Model-Agnostic Meta-Learning (MAML) framework.
In MAML, the main objective is to find an initialization that performs well after being updated

8

Algorithm 1 FedAvg [23]
Require: The K clients are indexed by k; B is the local minibatch size, E is the number of local

epochs, and η is the learning rate.
1: Initialize w0

2: for each round t = 1, 2, . . . do
3: St = (random set of K clients)
4: for each client k ∈ St do
5: wt+1

k = ClientUpdate(k, wt)
6: end for
7: wt+1 =

∑
k∈St

nk

mt
wk

t+1

8: end for
9: ClientUpdate(k, w):

10: B = (split Pk into batches of size B)
11: for each local epoch i from 1 to E do
12: for batch b ∈ B do
13: w = w − η∇f(w; b)
14: end for
15: end for
16: return w to server

with respect to a new task. Then, the problem can be reformulated by providing users with the
initial point, which is then updated with respect to their loss function. Based on this concept,
they proposed PFedAvg, a personalization influenced by MAML that works similarly to FedAvg.
However, the main difference is that PFedAvg aims to find a global model to send to devices as an
initialization. Algorithm 2 provides a better illustration where the global server initializes a global
model to send to the clients, similar to how FedAvg works. Once a client receives the model,
it calculates the Hessian matrix and the gradient with respect to its loss function on independent
data batches to obtain a personalized model. Once the devices calculate their new weights, they
send them back to the server once all the devices have finished their training to average them and
continue the distributed learning operation. However, since they utilize the Hessian Matrix in their
implementation, which might require high computational resources, it could make the implemen-
tation impractical to utilize in specific scenarios. With that being said, part of this concept will be
used to help develop PFedMe [3].

In a related study sharing similar objectives with PFedAvg, PFedMe is proposed. As mentioned
earlier, PFedMe is a federated learning algorithm that integrates personalized learning and Moreau
Envelopes frameworks. This approach addresses the personalization challenge by employing a
regularized loss function using the Moreau Envelopes for each client. This allows clients to pursue
personalized models while remaining close to the global one. Furthermore, they are able to control
how far or how close clients’ models are by using a regularizer variable. In addition, unliked PFe-
dAvg, PFedMe relies on gradient calculation rather than Hessian matrix computation. Moreover,
incorporating Moreau Envelopes properties demonstrates the potential for improved convergence
rates while adhering to assumptions related to bounded diversity in federated learning training data.
PFedMe algorithm with additional details and analysis will later be provided in chapter 4.

9

Algorithm 2 PFedAvg [24]
Require: Initial weights w0. The K clients are indexed by k; a is the step size, η is the learning

rate, and T global rounds are indexed by t.
1: for each round t = 1, 2, . . . , T do
2: St = (random set of K clients)
3: Server sends wt to all users in St;
4: for all k ∈ St do
5: wk

t+1,0 = wt;
6: for r : 1 to τ do
7: wk

t+1,r = wk
t+1,r−1 − α∇fk(w

k
t+1,r−1, D

k
r);

8: wk
t+1,r = wk

t+1,r−1 − η(I − α∇2fk(w
k
t+1,r−1, D

′′k
r))∇fk(w,D

′k
r);

9: end for
10: Client k sends w back to server;
11: end for
12: Server updates its model by averaging over received models: wt+1 =

∑
k∈St

nk

mt
wt+1

k ;
13: end for

Data Data Data

Synchronous Environment

w1 w2 w3Send
Local Weights

Progress Progress Progress

Send Global
Model (All

Clients Ready)

Waiting Training –
10% Left

Training –
30% Left

Server

Fast Node Moderate Node Slow Node

Data Data Data

Asynchronous Environment

w1 w2 w3

Send
Local Weights

Send Global
Model (A

Client Ready)

Training –
10% Left

Training –
30% Left

Server

Fast Node Moderate Node Slow Node

Progress Progress Progress

Figure 3.1: Comparison between synchronous and asynchronous updates

10

3.3 Asynchronous Federated Learning
In another research, where its focus is to lessen the aforementioned challenge of communica-
tion bottleneck, they propose Asynchronous Online Federated Learning (ASOFed) [25], an asyn-
chronous method of distributed learning. In their implementation, they have the central model
update its weight parameters right after receiving an update from a single client without waiting
for the others. As illustrated in Algorithm 3 The algorithm starts similarly to other discussed feder-
ated learning implementations by initializing a global model and storing it in its memory. However,
the server sends the global model to all clients rather than choosing a subset. Once a client receives
the global model, it performs local training. A decay coefficient B prevents local models from de-
viating too much from previous learning since clients might have different update frequencies and
data arrival rates. Once a single client is done with the local training process, weight parameters
are sent to the server. However, instead of averaging the aggregated weights, the global model per-
forms weight normalization and cross-client feature extraction to mitigate the inconsistencies that
might arise in the model due to the asynchronous updates. Figure 3.1 Provides a better illustration
of synchronous and asynchronous environments. In the case of synchronous implementation, the
central server must wait since Device 1 lacks network connectivity; therefore, Device 3 is forced to
wait until the device reconnects. Conversely, asynchronous updates demonstrate a more efficient
process where waiting is unnecessary, resulting in a more streamlined workflow.

Algorithm 3 ASOFed [25]
Require: The K clients are indexed by k, η is the learning rate, and T global rounds are indexed

by t.
1: Procedure at Central Server
2: for global iterations t = 1, 2, . . . , T do
3: /* get the update on wt */
4: compute wt

5: update wt with feature learning
6: end for
7: Procedure of Local Client k at round t
8: receive wt from the server
9: Calculate Gradient ∇fk

10: wk
t+1 = wk

t − η∇fk

11: upload wk
t+1 to the server

A different approach for an asynchronous implementation in federated learning was introduced
in [26] proposing Distributed Online Multi-tasks (DOM). In DOM, they have the clients utilize
the Soft Confidence-Weighted (SCW) classifier in their implementation that assumes a Gaussian
distribution of weights. Clients process data in blocks, accumulating samples in a set-size buffer.
When a client fully learns the data segment, it will develop an updated prediction model, forward
its representative data, and model to the server. The server stores all clients’ latest models and
connections using a correlation matrix. It carries out asynchronous multi-task learning and updates
the client’s model without impacting others. Lastly, once the multi-task learning method produces
the model, the server sends it to the client. However, despite its benefits, sharing representative
data may reveal client information, raising potential privacy concerns.

11

Chapter 4

Methodology

This chapter covers the details of the PFedMe algorithm, its problem formulation, and implemen-
tation. However, the convergence analysis will not be included, as it has already been covered
in great detail in [3]. In addition, this chapter discusses the differences in problem formulation
between general, PFedAvg, and PFedMe federated learning algorithms. Furthermore, the chapter
introduces our enhanced implementation, APFedMe, explaining how it is implemented and differs
from PFedMe.

4.1 PFedMe Problem Formulation
First of all, the general problem of federated learning environments can be denoted as follows:

min
w∈Rd

f(w) :=
1

N

N∑
i=1

fi(w) (4.1)

Where we attempt to minimize the average loss across participating clients. N denotes the
number of clients communicating with the server and function fi represents the expected loss of
the client i. However, instead of attempting to solve the above problem, PFedMe tackles it using
another approach. This approach involves the use of a regularized loss function with l2-norm,
which is represented as follows:

fi(θi) +
λ

2
||θi − w||2 (4.2)

Where λ is a regularizer variable that can be defined as one of the inputs, and θ represents
the personalized model. As mentioned, λ is an input and can control how far or close the local
models should be to the global model. A large value of λ forces a client to be closer to the global
model, while a smaller λ value allows the client to be more personalized towards its data. In other
words, if we are dealing with a client with unreliable data, it would be better to use a large λ value.
Conversely, if we are confident in the quality of the client’s data, a smaller λ would probably work
better. However, defining a proper value for λ may vary from one case to another, and further
analysis is preferable. Nonetheless, based on the above information and formulations, the PFedMe
global and local problemsz can be defined as follows:

12

PFedMe: min
w∈Rd

{F (w) :=
1

N

N∑
i=1

Fi(w)}, where Fi(w) = min
θi∈Rd

[
fi(θi) +

λ

2
||θi − w||2

]
(4.3)

In the PFedMe implementation, the global model w is calculated by aggregating client param-
eters, whereas a local model θ is optimized based on its own data while maintaining a reasonable
distance from the global model. Furthermore, it can be observed from problem formulation 4.3
that Fi(w) is the definition of Moreau Envelopes, which will be used to help implement personal-
ization characteristics into the clients. Therefore, we can define the optimal personalized model as
follows:

θ̂i(w) := proxfi/λ(w) = argmin
θi∈Rd

[
fi(θi) +

λ

2
||θi − w||2

]
(4.4)

Furthermore, to formulate the gradient, PFedMe has proposed, “If fi is convex or nonconvex
with L-Lipschitz ∇fi, then ∇fi is LF -smooth with LF = λ (with the condition that λ > 2L for
nonconvex L-smooth fi).” Therefore, we can derive the gradient using the previous formulations:

Fi(w) = min
θi∈Rd

fi(θi) +
λ

2
∥θi − w∥2

∂Fi(w)

∂w
=

∂

∂w

(
fi(θ̂i(w)) +

λ

2
∥θ̂i(w)− w∥2

)
= 0 + λ(w − θ̂i(w))

= λ(w − θ̂i(w))

∇Fi(w) = λ(w − θ̂i(w)) (4.5)

Hence, we are able to compute the gradient using equation 4.5.
Moreover, according to [3], the closest implementation to PFedMe is PFedAvg. Specifically,

PFedAvg’s local, personalized client updates has similar problem formulation, which can be do-
nated as follows:

θi(w) = w − α∇fi(w) = argmin
θi∈Rd

⟨∇fi(w), θi − w⟩+ 1

2α
∥θi − w∥2 (4.6)

However, there are a couple of crucial differences between PFedMe and PFedAvg. First of all,
PFedAvg is primarily designed to perform a single-step gradient update for the local personalized
model, whereas PFedMe can pursue multiple-step updates. Additionally, PFedAvg only optimizes
the first-order approximation of the loss function, whereas PFedMe directly minimizes the loss
function. Lastly, PFedAvg requires the estimation of the Hessian matrix, which according to [3]
can be computationally expensive, while PFedMe only requires gradient calculations.

13

4.2 PFedMe Algorithm Implementation
Utilizing problem formulations explained in Chapter 4.1, we can properly formulate the pFedMe
algorithm implementation. First of all, as mentioned earlier, the pFedMe algorithm provides a
bi-level solution. At the outer level of a client model, pFedMe implements the local model weight
update as follows:

wt
i,r+1 = wt

i,r − η∇Fi(w
t
i,r) (4.7)

where ∇Fi(w) is the gradient as shown in Equation 4.5, and wt
i,r is the local client model.

However, at the inner client level, this is where they solve their client personalization problem,
which they denote as θ̂i(wt

i,r). Specifically, in the PFedMe algorithm, each client has to solve the
personalization problem to find their personalized model. However, finding the exact personalized
model can be computationally expensive and may require additional information that may not be
readily available. In addition, finding an exact solution for the personalized model is difficult and
may not be possible using a simple, direct solution. Therefore, to overcome this challenge, they
use a δ-approximation of the personalized model, denoted as θ̃i(wt

i,r). The δ-approximation is an
estimate of the personalized model that is close enough to the true personalized model, such that
the expected difference between the two is maintained in a reasonable boundary and no greater
than δ:

E[∥θ̃i(wt
i,r)− θ̂i(w

t
i,r)∥] ≤ δ (4.8)

Furthermore, PFedMe achieves this estimation by approximating ∇fi(θi) through local clients’
mini-batch of data, denoted as:

∇f̃i(θi, Di) :=
1

|Di|
∑
ξi∈Di

∇f̃i(θi; ξi) (4.9)

where Di represents the sample data taken from client i. In addition, they use an iterative
approach to estimate the local personalized model. This is achieved by first defining the following
formulation:

h̃i(θi;w
t
i,r, Di) := f̃i(θi;Di) +

λ

2
||θi − wt

i,r||2 (4.10)

Therefore, by applying modified accelerated gradient descent to help satisfy the following con-
dition:

||∇h̃i(θ̃i;w
t
i,r, Di)||2 ≤ ν (4.11)

Where ν represents an accuracy level, they are able to approximate local personalized model
with high accuracy. Moreover, according to [3], in PFedMe’s implementation, they are able to
adjust the approximation by adjusting |D| and ν values.

Lastly, the global model update is fairly simple and close to how FedAvg works. However,
they have presented β parameter to help control how much the averaged weights contribute to the
global model. In fact, when β is set to equal 1, it can be seen that this is simply averaging the client
weights. This hyperparameter can prevent unreliable clients from causing a major change to the
global model, providing better flexibility to the PFedMe algorithm.

14

Using the above derivations, we are able now to finally introduce a fully constructed form of
the PFedMe algorithm, which is shown in algorithm 4.

Algorithm 4 pFedMe: Personalized Federated Learning using Moreau Envelope Algorithm [3]

1: input: T,R, S, λ, η, β, w0

2: for t = 0 to T do
3: Server sends wt to all clients
4: for all i = 1 to N do
5: wt

i,0 = wt

6: for r = 0 to R do
7: Sample a fresh mini-batch Di with size |D| and minimize h̃i(θi;w

t
i,r, Di), to find a

8: δ-approximate θ̃i(w
t
i,r)

9: wt
i,r+1 = wt

i,r − ηλ(wt
i,r − θ̃i(w

t
i,r))

10: end for
11: end for
12: Server uniformly samples a subset of clients St with size S, and each of the sampled client

sends the local model wt
i,R,∀i ∈ St, to the server.

13: Server updates the global model: wt+1 = (1− β)wt + β
∑

i∈St

wt
i,R

S

14: end for

Using the formulations above along with the algorithm outline, pFedMe algorithm can be out-
lined in the following steps:

1. Initialize the input parameters.

2. Perform global communication rounds:

(a) The server sends the global model to all clients.
(b) Each client performs local updates:

i. Set their local model equal to the global model.
ii. Perform local update rounds:

A. Sample a mini-batch of data.
B. Minimize a function h̃i to find a δ-approximate personalized model.
C. Update the local model using the learning rate, λ, and the δ-approximate per-

sonalized model.
(c) The server receives updated local models from a subset of clients.
(d) The server updates the global model using the average of the received local models and

parameter β.

4.3 Asynchronous Learning into PFedMe
Analyzing PFedMe in theory, it certainly seems to offer numerous benefits to distributed learning.
It provides control over how much clients can contribute to the global model in each round, al-
lowing us to mitigate the problem of local devices with unreliable data. Moreover, implementing

15

personalization into local clients not only improves performance but also enhances convergence
speed. Therefore, we chose to further refine the PFedMe algorithm, as it brings significant advan-
tages to federated learning environments.

One problem PFedMe does not address, which is common in almost every federated learning
setup, is communication bottlenecks. As mentioned earlier, the way most distributed learning
environments are implemented requires waiting for all the chosen clients in a global round to
finish their training before moving to the next global round. With this implementation, clients that
have already completed their tasks are forced to wait for other clients to finish their training before
uploading their local models to the global server. Our enhanced method addresses this issue by
implementing asynchronous distributed learning, which, as mentioned earlier, we call APFedMe.

Implementing an asynchronous environment into the PFedMe algorithm can be tricky. First of
all, PFedMe updates the global model by averaging the chosen clients in a single round. There are
a couple of obvious advantages to utilizing weight averaging in a synchronous environment, such
as:

1. Simplicity: Averaging client weights is a straightforward method that averages local model
updates into a single global update. This simplicity is attractive as it allows for efficient and
rapid implementation.

2. Robustness: Averaging client weights incorporates an element of noise reduction, as the
change to the global model of any single client is reduced by involving other clients. This
makes the global model more robust against unreliable data from individual clients. In other
words, weight averaging prevents clients that train their local models on unreliable data from
contributing significantly to the global model, thereby mitigating inconsistencies caused by
them.

These advantages are attractive for real-life scenarios when implementing a distributed learning
environment, which is why we aim to maintain these benefits in our asynchronous solution. Specif-
ically, our refined implementation, to be discussed in the latter part of this section, will not include
weight averaging but still manages to provide a simple approach, as straightforward as weight av-
eraging. Moreover, we will be able to maintain robustness in the implementation by utilizing the
benefits that the nature of PFedMe offers to a distributed learning environment. Therefore, in our
refined solution, we aim to incorporate an asynchronous learning environment while maintaining
nearly all the advantages that typical federated learning and PFedMe provide.

4.4 APFedMe Algorithm Implementation
To better explain how an asynchronous implementation is integrated into PFedMe, we first have
to understand the changes that need to be made. First of all, to incorporate asynchronous feder-
ated learning, we must change how the global model updates its weights. Specifically, the nature
of PFedMe’s implementation requires a synchronous environment, as it updates the global model
using weight averaging. However, to average the chosen clients’ weights, we would be forced to
wait for multiple clients to send their weights before pushing an update, which would not work in
an asynchronous environment. Therefore, the first step in implementing an asynchronous environ-
ment into PFedMe is eliminating weight averaging.

16

Furthermore, the main difference between APFedMe and PFedMe is that we attempt to refine
the solution primarily on the global server of a distributed learning environment instead of the local
clients. However, since removing weight averaging in our solution might compromise robustness
and fairness in a federated learning environment, we must compensate for that. In fact, we do
so by utilizing the β variable that PFedMe was presented and included in its implementation.
The significant benefit of using β in global client updates is that we can control how each client
contributes to the global model, reducing our reliance on weight averaging. Specifically, using
this parameter allows us to maintain the fairness and robustness that weight averaging provides in
federated learning. Therefore, with the reliance on the β value and removal of weight averaging,
we can specify how weight updating will be implemented in the algorithm with the following:

wt+1 = (1− β)wt + βwt
i,R (4.12)

i represents the client number, and R represents the local rounds. Nonetheless, defining a
proper β value can drastically improve both the global model performance and the convergence
speed. However, for the time being, there is no direct method or a defined way to help in choosing
the right value for it. Furthermore, manually adjusting the hyperparameter is possible for certain
clients if you consider them trustworthy contributors to the global model.

The other change that APFedMe introduces to the original algorithm is how clients communi-
cate with the server. As mentioned earlier, in a typical synchronous federated learning scenario,
clients idle until they receive a message from the central server to send out their updates. However,
to introduce asynchrony into APFedMe, clients will no longer be required to wait for others to
finish before sending their new updates. Specifically, as soon as a client has finished their local
updates, it sends out its local weights for the global model to update the weights immediately. The
global server stores its model on the server and constantly updates it as soon as a new response
arrives. With such an implementation, clients are constantly running, helping them utilize their
resources more effectively.

With that being said, despite the fact that asynchronous federated learning provides excellent
benefits, there is a side-effect that we need to address, which is the updates from stale clients. Stale
clients are devices that participate in the learning process. However, due to their slow updates and
communication with the global server, they might send out an old global model update, which will
most likely decrease the model’s performance and cause convergence issues. Hence, to prevent
this from happening, clients who upload a relatively old model to the server will have their β value
changed to prevent them from influencing the global model too much. This is a relatively simple
solution to this problem since PFedMe’s implementation has already included a method to control
how strongly a client model will affect the global model. With this, we can mitigate this side effect
if it ever occurs. Furthermore, we can detect this issue and control it by defining a threshold, ϵ,
where we keep track of the number of global updates that happen before the server receives the slow
client’s weights. If the number exceeds the threshold, β will be modified accordingly to reduce the
strength of this update’s effect on the global model. However, once the global model is updated, the
client with the slow update will have their β parameter reset since it may not always be the case that
the client will consistently have a slow training and communication process. Using all the changes
we mentioned earlier, we are able to construct APFedMe as shown in algorithm 5. Furthermore,
Figure 4.1 outlines a diagram of APFedMe’s algorithm flow to help better showcase both the
implementation and asynchrony environments as well. Therefore, using the formulations above

17

along with the algorithm outline, APFedMe algorithm steps can be summarized in the following:

1. Initialize the input parameters.

2. Perform global communication rounds:

(a) The server sends the global model to all clients.

(b) Each client performs local updates:

i. Set their local model equal to the global model.
ii. Perform local update rounds:

A. Sample a mini-batch of data.
B. Minimize a function h̃i to find a δ-approximate personalized model.
C. Update the local model using the learning rate, λ, and the δ-approximate per-

sonalized model.
iii. Send the local model to the server as soon as the local training is done.

(c) Server checks how many global model updates occurred during the client’s training and
modify β value if necessary.

(d) The server updates the global model using the received local models and parameter β.

(e) Reset β to original value if the client had a stale update.

Simply put, PFedMe attempts to address the general problem of federated learning environ-
ments through a unique approach that uses an l2 optimizer. The main difference between PFedMe
and its closest implementation, PFedAvg, is that PFedMe can pursue an iterative approach with
multiple-step updates, directly minimizes the loss function, and only requires gradient calcula-
tions. In PFedMe’s algorithm the global model is calculated by averaging the aggregated pa-
rameters from clients, while local models are optimized based on their data while maintaining a
reasonable distance from the global model. This method is efficient when directly compared to
PFedAvg’s implementation since it does not require the estimation of Hessian matrix.

However, in order to address communication bottlenecks commonly found in federated learn-
ing setups, APFedMe, an asynchronous version of PFedMe, is introduced. This approach elimi-
nates weight averaging by refining PFedMe’s solution primarily on the global server of a distributed
learning environment. By utilizing the β variable introduced in PFedMe, the asynchronous method
maintains robustness in the learning environment while reducing reliance on weight averaging.
Asynchronous federated learning environments suffer from stale client updates. APFedMe solves
the stale problem by automatically reducing slow clients’ distribution to the global server when
their updates are sent. The main advantage of APFedMe is that it significantly reduces waiting
times for clients, which will help improve efficiency and scalability in real-world applications.

APFedMe differs from the original federated learning [23] in several key aspects. While fed-
erated averaging relies on synchronous communication, requiring clients to coordinate and share
their model updates simultaneously, asynchronous Learning allows clients to contribute updates
independently, reducing communication bottlenecks. The integration of Moreau envelopes offers
improved regularization, enhancing robustness of the learning process. Additionally, APFedMe
also provides better control over client contributions to the global model, addressing potential is-
sues with unreliable clients. Furthermore, the personalization of local clients tailors the learning

18

process to individual clients’ data, mitigating the negative effects of Non-IID data on the model.
This personalized approach results in more effective learning for each client and better overall
model performance.

Now that all the algorithms have been thoroughly explained, along with their strengths and
differences, we are ready to run the experiments and showcase the results, which will be shown in
Chapter 5.

Algorithm 5 APFedMe: Asynchronous Personalized Federated Learning using Moreau Envelopes

1: input: T,R, λ, η, β, w0, ϵ
Server:

2: for t = 0 to T do
3: Server sends wt to a client
4: while clients are active do
5: Receive local model wt

i,R

6: if stale then
7: Modify βi for client i
8: end if
9: Update the global model: wt+1 = (1− βi)wt+1 + βiw

t
i,R

10: Reset βi for client i
11: end while
12: end for

Client i:
13: for all i = 1 to N do
14: Receive wt from the server
15: wt

i,0 = wt

16: for r = 0 to R do
17: Sample a fresh mini-batch Di with size |D| and minimize h̃i(θi;w

t
i,r, Di), to find a

18: δ-approximate θ̃i(w
t
i,r)

19: wt
i,r+1 = wt

i,r − ηλ(wt
i,r − θ̃i(wt

i,r))
20: end for
21: Send the local model wt

i,R

22: end for

19

…

Send Global Model
(Initialization)

Estimate
Personalized Model

Update Local
Model

Send Local
Weights

Update Global
Model

Send Global
Model

Node #1

Node #2

Node N

Server

t
t = 0 Global Communication (One Round)

Asynchronous Update

Fast
Communication/Training

Speed

Slow
Communication/Training

Speed

Moderate
Communication/Training

Speed

Produces stale update –
Server adjusts contribution

t = 1

Model
Uploads/Downloads

APFedMe
Operations

t0, t1, t2, … T
Global

Communication Rounds

Figure 4.1: Visualization of APFedMe Algorithm Flow

20

Chapter 5

Experiments & Results

This chapter discusses our experiments on the abovementioned algorithms (PFedMe, APFedMe).
To ensure that we are running our tests in scenarios that are relatively close to real-life implemen-
tations, we will be conducting our tests on Non-IID data. Precisely, we will split the datasets into
different sets of clients, where each one has a different distribution than the others. Details on how
these data are split will be provided later in the diagrams. Moreover, we will conduct our tests on
synthetic data to generate a variety of scenarios as a way to test the algorithms comprehensively.
Afterward, we will present our findings with detailed graphs and tables to help better outline the
strengths and differences between the implementations.

5.1 Experiment Setup
As mentioned earlier, we will use multiple setups to test the limits of the algorithms, which will
help us better understand their potential and how well they perform in real-life environments,
so we can outline the feasibility of implementing such distributed learning methods in real-life
applications. With that being said, the datasets that we will be using in the experiments are as
follows:

1. MNIST: A large dataset collection of handwritten digits ranging from 0 to 9. It typically
contains 60,000 training images and 10,000 testing images (7,000 images per class) [27].

2. Synthetic: Artificially generated data that is able to mimic the properties of real-world
datasets. This kind of dataset is often used to test algorithms and models under various
conditions, allowing us to evaluate the performance and robustness of the methods. Further-
more, in our particular setup, the synthetic dataset will provide the flexibility to control the
number of users and their data distribution.

The reasons why we chose these particular datasets are first because of their relative simplic-
ity. They are usually easy to deal with and pre-process if needed for machine learning tasks. In
addition, these datasets are widely used in both machine learning and distributed learning tasks, al-
lowing us to compare better and understand where our implementation stands. Lastly, their public
availability allows us, and other implementers, to use a similar setup, providing ease of comparison
in other studies and further refinements.

21

When testing each dataset, we will consider these factors where different parameters will be
used on each run. (it is worth noting that in order to ensure consistency, each test will run 5 times,
then average out the results):

1. Data Distribution: As mentioned earlier, we are splitting the datasets among clients with a
Non-IID split, where we are also able to specify how many labels each user will get. This
allows us to mimic real-life scenarios better since most distributed learning setups deal with
non-IID data.

2. Number of Clients: We will be testing each run with 10 and 20 clients to understand better
how well the implementations scale as the network of clients grows. 10 number of clients is
particularly chosen since PFedMe had a similar experiment setup, which will help us better
compare our results with their findings. In addition, we chose 20 clients for the other setup
to further study how well the algorithms scale.

3. Communication Rounds: We will evaluate the implementations’ performance over differ-
ent numbers of communication rounds. However, when presenting our results, we will aim
to find a reasonable number of communication rounds to use in our test cases, where going
above that number does not yield too much difference across the different algorithms and
setups as well.

4. Regularizer and Controller Parameters: We will be testing a variety of different numbers
for λ and β hyperparameters, as they undoubtedly play a significant role in our asynchronous
implementation of federated learning with Moreau Envelopes. In addition, they will also
help us further comprehend how large or small values will affect the performance of PFedMe
and APFedMe. The specifics of the values will be pointed out later in the results.

5. Performance Metrics: We will be using global model’s prediction accuracy, as well as the
loss values to help compare performance between the different implementations. In addition,
to show where APFedMe stands out, we will be calculating the run-time speed for each run
to use it as a performance metric, providing a better overview of the performance difference
between synchronous and asynchronous federated learning environments.

Furthermore, the tests will be conducted in Google Colab [28] using Python. The main reason
we chose Python is because it provides numerous flexible tools for machine and deep learning, as
well as some tools that facilitate federated learning implementations along with excellent analytical
tools. In addition, since we are running on Google Colab [28], the server-client communications
and training is simulated. In other words, the server and the clients are artificial and all located
within Google Colab’s servers. With that being said, specifications of the hardware are hard to
specify since Google Colab works by providing whatever resources are available on their side.
Lastly, we will mainly rely on PyTorch [29] for most of the model designs and implementation, as
well as for the training process.

5.2 Data Distribution
As mentioned earlier, we will split the experiment into 10 and 20 users setups. For the MNIST
dataset setup, we have 14,780 samples split for 10 users, whereas we have 28,911 samples for

22

the 20 users setup. Our setups have an 80-20 data split, meaning we are preserving 80% of the
dataset for training and 20% for testing. Furthermore, Figure 5.1 and Figure 5.2 represent the
data distribution for the clients, which helps us verify that we are running a non-IID data training
environment.

Figure 5.1: MNIST Distribution: 10 Users with 2 Labels Each.

We are not utilizing the entire dataset for MNIST on each run since the samples are chosen and
distributed randomly among clients. On top of that, to ensure that we are dealing with a non-IID
setup, our setup maintains that some clients will have a relatively low amount of data samples
to train on since this is a scenario that may happen in a real-life federated learning environment.
Furthermore, for the 10 users setup, we have 2 labels assigned to each client, whereas we have 4
labels assigned to each client in the 20 users setup.

Lastly, the synthetic dataset setup is similar to MNIST’s setup. However, the main difference is
that this dataset is artificially generated, where we can control how random the distribution of the
generated dataset is. Furthermore, with this particular implementation, we can control additional
parameters to decide whether we want a non-IID or IID setup. This can be controlled by the
following parameters:

1. α: This parameter can control how different each local client model is from one another.

2. β: This parameter controls how different the local data is for each client.

3. iid check: A simple parameter that allows us to control whether we want a non-IID distri-
bution or not.

In order to develop a similar setup to PFedMe’s, we have set a = 0.5, and b = 0.5. Furthermore,
we have iid check set to false in order to generate non-IID data. Our data distribution can be seen
in Figure 5.3 and Figure 5.4, where we have 69,590 data samples for the 20 users setup and 52,795
samples for the 10 users setup.

23

Figure 5.2: MNIST Distribution: 20 Users with 4 Labels Each.

Figure 5.3: Synthetic Distribution: 10 Users, α = 0.5, β = 0.5.

24

Figure 5.4: Synthetic Distribution: 20 Users, α = 0.5, β = 0.5.

We are using this particular data generation algorithm since it has been used in various fed-
erated learning experiments, and it is also easy to use and control. Further details on how the
algorithm works can be found in [30]. However, in simple terms, the data generation and distribu-
tion are done with the help of the softmax function and power law.

5.3 Running the Experiment

In order to produce the best cases for the three algorithms, we performed a grid search to find
suitable learning rates, personal learning rates, personalization steps, and global communication
numbers. Most learning rates that performed well were similar from one dataset and algorithm to
another. Therefore, we set the personal learning rate to 0.08 and the global learning rate to 0.005 for
MNIST experiments. Moreover, we had a personal learning rate of 0.02 and a global learning rate
of 0.005 with the Synthetic experiments. Furthermore, we used Multi-class Logistic Regression
(MCLR) for the MNIST dataset experiments and a Deep Neural Network model for the Synthetic
datasets. We chose these two particular models because they have been used in PFedMe’s experi-
mentation, helping us better compare and verify our results. However, for communication rounds,
we kept our global communication rounds at around 500 since anything further than that did not
yield a significant performance increase. Additionally, we found that the optimal number of per-
sonalization steps is around 5 with 20 local epochs, similar to what is used in [3]. We also wanted
to highlight how the primary hyperparameters introduced to PFedMe’s implementations (λ|β) can
drastically affect performance. Therefore, we will primarily highlight these hyperparameters in
our results. Furthermore, there was no threshold set for stale clients in the asynchronous imple-
mentation since the clients are artificial with the same amount of computing resources, meaning
they all have equal training and computation times.

First of all, our initial set of results, shown in Table 5.1 and Table 5.3, outline the performance

25

of our implementation, APFedMe. In the asynchronous implementation, we can see that the av-
erage accuracy levels in both client and global are close to PFedMe’s performance (Table 5.2 and
Table 5.4), with some scenarios where our implementation performs slightly worse than PFedMe’s
and vice versa. Furthermore, we have noticed that increasing the personalization parameter across
different tests has yielded better overall performance. However, providing a too high value for per-
sonalization causes convergence issues (similar to PFedMe), which could pose a slight challenge
in choosing an optimal value for it. In addition, choosing a good β value can be tricky as well
since it is preferable to involve the global model in global updates for APFedMe, which is why we
chose β = 0.9 in APFedMe. That being said, since the two implementations are similar, increasing
or decreasing λ and β yields similar results for most scenarios between the two algorithms. Fur-
thermore, we decided to mainly showcase these values for λ and β because they provided the best
performance on average for our setups. Other values either caused convergence issues or simply
did not enhance performance.

However, when comparing run times, we can see in the table results that APFedMe excels
by a great margin. In fact, there are some cases where it was able to run around 50% and up
to 67% faster compared to the other algorithm, providing a much faster convergence speed than
PFedMe. Furthermore, as mentioned before, an asynchronous implementation does not require
all clients to finish training in a single global round, resulting in faster speeds. Therefore, despite
the fact that our implementation does not provide enhanced performance in accuracy scenarios,
it still dominates the other implementation in terms of run-time. In fact, one benefit that we can
gain from faster run times is the ability to implement slightly heavier models due to the time saved
running an asynchronous implementation. In other words, APFedMe provides an outstanding
balance between accuracy levels and convergence speed levels.

Furthermore, as previously mentioned, we have included multiple numbers of users for each
implementation and dataset to gain better insight into a variety of factors, including scalability.
Firstly, the run-time for both algorithms increases when the number of clients increases. This is
expected since more data and users are involved in the training. Moreover, both algorithms do lose
some accuracy when increasing the number of users, which is anticipated based on our experiment
design and data distribution. Importantly, it is worth noting that increasing the number of users
does not negatively impact APFedMe as much as it does for PFedMe’s solution when comparing
algorithm run times. In fact, the more users we add to the experiment, the more significant the
gap between PFedMe and APFedMe run-times becomes, with our implementation running much
faster.

Table 5.1: APFedMe - MNIST Dataset

Hyperparameters Acc - Local Acc - Global Global - Loss Run-time Number of Users
λ = 15|β = 2 95.22% 94.03% 0.155 64.83 Seconds 10
λ = 15|β = 2 94.11% 92.21% 0.165 101.61 Seconds 20
λ = 15|β = 0.9 94.77% 92.11% 0.177 66.01 Seconds 10
λ = 15|β = 0.9 92.51% 90.90% 0.198 99.30 Seconds 20

26

Table 5.2: PFedMe - MNIST Dataset

Hyperparameters Acc - Local Acc - Global Global Loss Run-time Number of Users
λ = 15|β = 2 95.64% 94.79% 0.142 164.58 Seconds 10
λ = 15|β = 2 94.50% 92.78% 0.155 210.32 Seconds 20
λ = 15|β = 1 95.11% 92.49% 0.162 162.41 Seconds 10
λ = 15|β = 1 92.45% 90.59% 0.192 216.44 Seconds 20

Table 5.3: APFedMe - Synthetic Dataset

Hyperparameters Acc - Local Acc - Global Global Loss Run-time Number of Users
λ = 20|β = 2 84.70% 84.34% 0.576 113.44 Seconds 10
λ = 20|β = 2 84.33% 83.32% 0.603 223.65 Seconds 20
λ = 15|β = 2 83.47% 82.68% 0.612 112.84 Seconds 10
λ = 15|β = 2 83.01% 82.33% 0.654 220.14 Seconds 20

Table 5.4: PFedMe - Synthetic Dataset

Hyperparameters Acc - Local Acc - Global Global Loss Run-time Number of Users
λ = 20|β = 2 84.40% 83.88% 0.591 225.18 Seconds 10
λ = 20|β = 2 84.11% 83.25% 0.620 330.08 Seconds 20
λ = 15|β = 2 84.29% 83.61% 0.609 220.94 Seconds 10
λ = 15|β = 2 83.16% 82.50% 0.635 317.77 Seconds 20

27

Figure 5.5: APFedMe - MNIST - Global Accuracy - 10 Users (Blue/Green), 20 Users
(Orange/Red)

Figure 5.6: APFedMe - Synthetic - Global Accuracy - 10 Users (Blue/Green), 20 Users
(Orange/Red)

28

Figure 5.7: PFedMe - MNIST - Global Accuracy - 10 Users (Blue/Green), 20 Users (Orange/Red)

Figure 5.8: PFedMe - Synthetic - Global Accuracy - 10 Users (Blue/Green), 20 Users
(Orange/Red)

29

5.3.1 Final Remarks
A significant advantage of APFedMe over PFedMe can be witnessed in its superior run-time per-
formance, with some instances showing a substantial reduction in run-time. Both implementations
have similar convergence rate, but in theory APFedMe has a faster convergence speed when con-
sidering the run-times of both implementations. Although APFedMe’s accuracy may be slightly
lower in some instances, its advantage in run-time performance can make it a more desirable option
for real-world applications.

When examining scalability by increasing the number of participating users, both algorithms
exhibit the expected increase in run-time and a decrease in accuracy. However, APFedMe is less
affected by an increased number of users compared to PFedMe. Therefore, APFedMe offers a
well-balanced solution in terms of accuracy and convergence speed, making it an appealing choice
for practical implementations. We can further analyze the results by looking at the global models’
accuracy shown in graphs 5.4, 5.5, 5.6, and 5.7, which verify that both implementations have
relatively close results, with PFedMe performing only slightly better.

As a result of our experiments, asynchronous federated learning indeed offers a significant
advantage in convergence speed and helps mitigate the substantial impact of involving a high
number of participants in the learning process. Furthermore, asynchronous distributed learning
has great potential for improvements and flexibility, as other researchers have proposed multiple
methods to enhance asynchronous federated learning even further[31, 32].

30

Chapter 6

Practicality Showcase of Asynchrony in
Federated Learning

In this chapter, we test the practicality of the asynchronous implementation of PFedMe in a sce-
nario where reduced communication overhead is desirable. Specifically, we will utilize a publicly
available dataset with various user setups and test their performance based on global model accu-
racy and loss. This will help better illustrate the advantages that asynchronous federated learning
implementations can provide. Moreover, we will implement a similar model to a centralized setup
and compare its results to APFedMe to gain a better insight of the performance difference.

6.1 Dataset

First of all, we will be using a publicly available dataset called IDS 2018 [33]. The University of
New Brunswick originally created this dataset, and it contains a wide range of network packets. To
be specific, these packets can be either benign or malicious. The malicious packets in their dataset
are Denial of Service (DoS) packets. DoS is a type of network attack that comes in various forms
and aims to disrupt the availability of a network service to users [34, 35]. In fact, DoS attacks is
becoming more prevalent in the last few years, making it a dangerous online threat [36]. One of
the primary purposes of using this type of dataset is to develop an AI-based intrusion detection
system to help defend against DoS attacks.

We chose to showcase this particular dataset to illustrate an area where reduced communica-
tion overhead is needed. For instance, we will consider the following scenario: A company is
hosting its service online on servers. However, one or multiple servers are being attacked using
DoS packets where the current IDS cannot distinguish between malicious and legitimate packets.
In order to mitigate the damages, a quick solution will be required. Therefore, as soon as an attack
is detected, an asynchronous Federated Learning system can be launched across the servers to help
learn and distinguish between the legitimate and malicious packets. The reduced communication
overhead in asynchronous federated learning can help servers communicate together to learn faster
using the packets they are receiving that are causing a DoS. Since asynchrony provides reduced
communication overhead, developing a model will be much faster than in a synchronous environ-
ment, allowing the company to implement a solution much quicker, mitigating the DoS damage.
Furthermore, Figure 6.1 provides a visual illustration of the scenario. In this visualization, legiti-

31

mate users are not able to reach the network services since servers are down due to a DoS attack,
and IDS was not able to distinguish them. Therefore, once a DoS was detected, an asynchronous
federated learning was initiated to learn which packets are malicious to help deal with them.

Main ServerServer (IDS #1)

Server (IDS #2)

Server (IDS #3)

Legitimate
User

Attacker Legitimate
User

Legitimate
User

Attacker Legitimate
User

DoS Detected -> Initiate Training

Main ServerServer (IDS #1)

Server (IDS #2)

Server (IDS #3)
Legitimate

User

Legitimate
User

Attacker Legitimate
User

Federated Learning is Done -> DoS Packets Filtered

Legitimate
User

Attacker

Figure 6.1: DoS Attack Mitigation Through Federated Learning

As mentioned, this dataset will be used with APFedMe to train a model. The dataset contains
1,297,249 instances, where each instance is a packet. Moreover, each packet contains 79 features
(packet headers). However, we will be dropping one of the features (timestamp) since we will not
need the feature to train an IDS model. In addition, each packet has a label that indicates the packet
type. These labels are Benign, FTP-BruteForce, SSH-Bruteforce, DoS attacks-GoldenEye, DoS
attacks-Slowloris, and DDOS attack-HOIC. However, since the main aim of this implementation is
to develop an IDS, we will be replacing the labels of non-benign packets with malicious. Therefore,
we have 663,808 packets with benign intentions (label=0) and 633,441 packets with malicious
intentions (label = 1).

6.2 Experiment Setup
This test’s setup is similar to what was done in Chapter 5. However, the main difference is that
we use a different dataset with different sets of users. Specifically, to help further showcase how
well the algorithm scales with different numbers of users, we will test the dataset on 5, 10, 15, 20,
and 25. Moreover, following a similar setup to our previous experiment, we are using 80% of the
dataset for training and 20% for testing. Furthermore, the dataset will be shuffled, then randomly
distributed among the participating users. As a result, users will have different numbers of data
instances, where some users will be provided with a relatively high number of samples, and others
with a minimal number of instances. As mentioned in previous chapters, this type of setup helps
test the algorithm in extreme scenarios where clients have extremely low data points.

The centralized setup, however, is more straightforward. We will use a similar data split,
where 80% will be reserved for training, and 20% is reserved for testing. Furthermore, similarly

32

to the decentralized setup, we develop our model using PyTorch [29]. Furthermore, the same
custom Convolutional Neural Network model will be used for both setups. Lastly, since we are
dealing with a massive dataset with more than a million data points and 78 features, we had to
perform additional garbage collection for both implementations and upgrade our workstation to
utilize Google Colab Pro+ [28] to gain more memory.

6.3 Experiment Results
For our federated (APFedMe) experiment on the IDS dataset, we found that β = 2 and λ = 15
are suitable parameters for the training process. Furthermore, we used 400 global iterations across
all setups. Lastly, we set the global learning rate to 0.005 and the local learning rate to 0.1. The
centralized setup will run on a 0.001 learning rate with the Adam optimizer. After running each
setup four times and averaging the results, we can now discuss the experiment results.

Firstly, it can be seen that all the decentralized setups have a global model accuracy of at
least 97.11% and above. In fact, the highest model accuracy was achieved by the 5 users setup
at 99.54%. Furthermore, despite the fact that global model accuracy seems to be dropping as
more users are added into the training setup, the performance difference is still low nonetheless. In
addition, a higher number of global rounds will likely boost the global model performance since an
increased number of users with Non-IID data distribution can cause the training process to achieve
desired performance at a slower pace. However, the same number of global rounds was used
across all setups. The main motive behind this experiment is to better understand the convergence
behavior as more users participate in the learning process.

Furthermore, the centralized setup performed slightly better than the 5 users setup at 400 global
rounds, where it reached a validation accuracy of 99.97% at 40 epochs. However, this is expected
since centralized setups are relatively less complex than federated learning, giving it an advantage
in model training. Nonetheless, with that being said, the performance difference is not major since
the difference in performance in our experiments is as low as 2%. Furthermore, this difference
might be possible to reduce when using a higher number of global rounds. Therefore, consider-
ing the slight performance difference between the centralized and decentralized setups, federated
learning still nonetheless has more attractive properties due to the reasons mentioned at the begin-
ning of this thesis.

Table 6.1: Centralized & Decentralized Setups: Model Performance

Users Average Accuracy Average Loss
5 99.54 0.03213

10 99.29 0.05758
15 98.20 0.16118
20 97.76 0.18045
25 97.11 0.18874

Centralized 99.97 0.01801

33

0 100 200 300 400
50

60

70

80

90

100

Global Rounds

M
od

el
A

cc
ur

ac
y

Users: 5
Users: 10
Users: 15
Users: 20
Users: 25

Figure 6.2: Decentralized Setup: Showcase of Users’ Performance in IDS Dataset using
APFedMe in 400 Global Rounds

0 5 10 15 20 25 30 35 40
99.7

100

Epoch

A
ve

ra
ge

A
cc

ur
ac

y

Average Accuracy

Figure 6.3: Centralized Setup: Centralized Model Performance in 40 Epochs

34

Chapter 7

Combating Missing Data in Local Models in
the Federated Learning Framework

In this chapter, we focus on the challenges related to data in the context of federated learning. Data
is a critical aspect of supervised machine learning models, and any discrepancies can significantly
impact model performance and the overall learning quality. Specifically, by data issues, we refer to
missing values. Therefore, this chapter will address this problem by first defining it and then pro-
viding the potential causes. Next, we will present various techniques and strategies to mitigate this
challenge. Finally, we will discuss how to incorporate these solutions into a distributed learning
environment to enhance the robustness of the learning process.

Addressing the missing data issue in federated learning is undoubtedly crucial. The reason
behind that is that in a typical setup, we most likely do not have access to the data, nor can we
manually correct them in case they get corrupted unless someone has authorized access to the data.
In addition, this issue may not only harm the performance of the local clients, but may also lead
to significant generalization issues for the global model, potentially causing the whole training
process to fail. Therefore, addressing this problem is a necessity when developing distributed
learning environments.

7.1 Causes of Missing Data

Firstly, as the name suggests, missing data in a machine learning environment refers to situations
where a variable of a data point or an instance in a dataset lacks a corresponding value, making it
difficult or impossible to use the data point for supervised learning tasks. There are three generally
defined forms of missing data, which are: missing completely at random (MCAR), missing at
random (MAR), and missing not at random (MNAR) [37].

The definitions for the three forms of missing data are relatively close to each other, yet they all
represent different scenarios. First, the MCAR scenario refers to the probability that a missing data
point is unrelated to both the observed and unobserved data. For instance, accidentally removing
an answer on a questionnaire from a survey while inputting data [38]. In addition, MAR refers
to the probability of a missing data point depending on the observed data but not the unobserved
(missing) data. For example, in a political opinion survey, some individuals might decline to
respond to a question due to their demographic characteristics. As a result, the missingness relies

35

on an observed variable (demographics) rather than the actual answer to the question. This scenario
is typically prominent in health science studies datasets. Lastly, MNAR refers to the probability
of a missing data point depending on the unobserved (missing) data itself and potentially on the
observed data. For instance, in a questionnaire, participants with weaker opinions intentionally
skip a specific question, leading to missing data on that question [38].

7.1.1 Causes of Missing Data in Federated Learning
Since this thesis is focused on the research area of federated learning, we will elaborate on the
instances that are likely to occur during a federated learning process. In fact, there are a variety
of causes that could lead to missing data in a real-life distributed learning setup, especially when
dealing with IoT. Such cases can be, but are not limited to:

1. Device Failure (MCAR): Participating devices may have collected data points but did not
record all corresponding values due to errors or technical issues. For example, a device col-
lecting data for some machine learning task may have missing values because the automated
labeling process failed. This failure can be related to either the device itself or the sensor
it uses to gather the data. In fact, in the context of IoT, failures have become a significant
risk for them because many of these devices rely on each other to function properly. This
means that when one IoT device stops working, it can cause a chain reaction of unexpected
and undesirable changes in other devices, leading to missing and corrupted data [39].

2. Resource Constraints (MAR): Some clients participating in a federated learning environment
might have limited storage space. These days, devices can collect a large amount of data due
to their fast processing speeds. In fact, processing power has become extremely fast and
efficient, and it is only expected to become even faster in the future, allowing devices to
collect and process data at high speeds [40]. However, even though storage capacities have
improved, they are still limited nonetheless. Therefore, if not carefully monitored, storage
can fill up extremely quickly, potentially causing the loss of many data points.

3. Privacy Concerns (MNAR): We mainly deal with sensitive user data in a typical federated
learning environment. Therefore, some devices participating in the training process may
choose not to share all data due to privacy concerns. For instance, users may be hesitant and
refuse to provide personal information, such as age, income, or even gender, which could be
necessary for labeling specific data points.

Although the aforementioned points do not cover all the causes that can lead to missing data,
they are still some of the most common reasons when dealing with real-life setups. With that being
said, understanding the causes and the reasons behind this issue is one of the first necessary steps
to take in order to mitigate this problem.

7.2 Dealing with Missing Data
Many studies have explored potential ways to deal with missing data. In fact, a variety of these
researches are commonly used these days and further improved upon. However, despite the fact

36

that these methods do not guarantee a proper estimate for the missing value, they nonetheless help
recover the values with a reasonable estimation. Therefore, we will introduce various methods to
deal with this challenge, then help improve and integrate them into a distributed learning environ-
ment.

Data imputation is the standard method for mitigating the problem of missing data. This
method generally recovers values by estimating missing values using already-available data. Al-
though data imputation does not guarantee accurate estimations for the missing instances, it may
still be helpful since we are estimating the missing data by gathering information from the dataset
itself, providing a higher probability of a proper estimation for the actual value. In fact, there are a
variety of methods to impute data. However, the four most common data imputation methods are:

1. Mean imputation: This method refers to estimating the missing data by replacing missing
values with the mean of the available data. Therefore, following the scenario for Table 7.1,
we are able to estimate Eve’s Math score as 84, as shown below. However, this method may
be more suitable for continuous data.

Mean =
1

4
(85 + 84 + 92 + 75) =

1

4
(336) = 84

2. Conditional mean imputation: This type of imputation is relatively similar to normal mean
imputation. However, the main difference is that the mean calculation is slightly different.
Specifically, we will rely on a condition that will be enforced when calculating the mean
value. For instance, if we want to estimate Eve’s Math score in Table 7.1, we can do so by
specifying a condition that will allow us to calculate a more reasonable mean value to use.
We can calculate the mean Math score for students who scored similarly to Eve in Science
(94 in this case). Therefore, we can estimate Eve’s Math score as shown in the following:

Conditional Mean (Math score — Science score = 94) =
85 + 84

2
= 84.5

3. Median imputation: This data imputation method involves replacing missing values with the
median. For instance, let us again consider Table 7.1, but with Eve’s missing Math score
being estimated using median imputation. As a result, we get the missing Math score to
be 84.5, as shown below. Furthermore, we may use this method to lower extreme values
sensitivity.

Sorted: 75, 84, 85, 92 ⇒ Median =
84 + 85

2
= 84.5.

4. Mode imputation: This type of data imputation refers to replacing missing values with the
most frequent value. In fact, this method is more suitable for categorical data. To better
illustrate mode data imputation, we will refer to the gender column from Table 7.1, where
Eve’s gender field is missing. By analyzing the Gender column, we can calculate the most
common gender in the dataset, which is Female in this case. Therefore, we can estimate
Eve’s Gender field as Female.

37

Table 7.1: Artificial Dataset - Recovery Through Data Imputation

Name Math Score Science Score Gender
Alice 85 94 Female

Andrew 84 94 Female
Siesta 92 82 Female
Annie 75 90 Female
Eve NaN 94 Female

An additional typical method to deal with dataset missing data is instances removal. As the
name implies, this process removes data instances where the data values are unavailable. For
instance, consider Table 7.1 as an example, where we will remove the row with missing data
entirely from the dataset. Specifically, we will eliminate the name Eve, along with their scores
and gender, from the dataset since they are missing at least one tag (in this case, both tags are
missing). However, with that being said, deleting instances may cause an imbalance in the dataset
and introduce bias [41], especially if we are applying this method in MNAR and MAR scenarios.
Therefore, using this method as the last step of data estimation and recovery is wiser.

Another two common methods that can be used to help deal with missing data and mitigate
their adverse effects are Last Observation Carried Forward (LOCF) and Worst Observation Car-
ried Forward (WOCF). In fact, these two methods are sometimes referred to as single imputation
methods.

Firstly, LOCF refers to taking the last available data point and copying it into the missing data
value to estimate the missing data. LOCF is often used in longitudinal or time series data when a
measurement is missing at a particular point in the dataset. To further comprehend the idea behind
LOCF, we can refer to Table 7.2, which represents an artificial dataset with patients’ pain levels
across different months. In order to follow the principle behind LOCF, Patient A’s pain value in
March will be taken from the previous month, which is 6 since it is the last available observation.
In addition, Patient B’s missing value in May will be 4 since their pain level was 4 in the previous
month.

Table 7.2: Dataset - Recovery Through LOCF and WOCF

Week Patient A - Pain Patient B - Pain
January 6 2
February 5 2
March NaN 1
April 3 4
May 7 NaN

On the other hand, WOCF, which has a similar concept to LOCF, refers to taking the previous
worst observation found at the time of recovering the data rather than taking the last available
observation. However, the worst observation may differ from one context or dataset to another.
For better illustration, let us consider Table 7.2 once again. To estimate the patients’ value, we will

38

search for the highest pain level (worst) that occurred before the missing data point. For Patient A’s
pain level, their pain level in March will be replaced with 6, which is from January. In addition,
Patient B’s pain level in May will be replaced with 4, a similar value to LOCF. In other words,
Patient A and B’s pain levels were estimated by copying their worst pain level previously reported
(from March and May, respectively). However, with that being said, it is worth noting that some
studies show that utilizing LOCF in MCAR scenarios may not yield relevant results [42].

The above methods provide a relatively simple implementation with reasonable performance
when estimating missing values, but with some limitations. Moreover, the mentioned data estima-
tion methods work best when analyzing the type of missing data you are dealing with. Therefore,
it is crucial to be aware of the type of environment you are dealing with during implementation.

7.2.1 Dealing with Missing Data in Federated Learning

Handling missing data in a federated learning environment may differ from handling them in a
typical machine learning setup. As previously mentioned, it is not expected that we will have
access to any of the data on local clients, making it difficult for us to implement the previously
mentioned methods directly. In addition, not all data estimation methods that work well in a cen-
tralized learning setup will perform as well in a distributed learning setup. Therefore, this section
will address applicable methods to utilize and mitigate the problem of missing data in a distributed
learning setup to help further understand how one can implement them in real-life scenarios. There
are many proposed methods where that involve sharing some sort of data among clients. However,
it is only sometimes the case that we have authorized access to clients’ data. In fact, one of the
essential purposes of federated learning is to maintain user confidentiality. Therefore, we will not
be discussing those implementations in this thesis.

One imputation method that is used in centralized machine learning that can also be used in
federated learning is Multiple Imputation by Chained Equations (MICE) [43]. Figure 7.1 illustrates
a visualization of how the algorithm works for a dataset with missing data in 3 different variables.
MICE is a popular adaptation of Multiple Imputation (MI) [44]. The implementation starts by
defining the number of iterations, which will be discussed later as to why it is needed. After
that, we take each variable that contains missing data and calculate a placeholder for them. Then,
we can replace them with the average value of the observed numbers for that particular variable
for the time being. Afterward, we can implement an analysis method, like a regression. This
analysis method will be used to recover the missing values of the current variable with the other
observed variables. Once the missing values are estimated, we replace them with their placeholder
(the average value in this case) and rerun the same steps. On each iteration, we are replacing the
previously found values with the new regressed ones. In addition, it is worth noting that we will
use the latest regressed values for each new iteration. Typically, this method is repeated 5 to 10
times, depending on the iterator variable we define at the beginning [45]. Once the loop ends,
we repeat the same steps for the next variable. Usually, you can start estimating missing data for
variables with the least missing instances. The final output will be a dataset with estimated values
of the last iteration of each variable. Therefore, we can outline MICE implementation as follows:

1. Replace every missing data with the mean of the observed values for the variable, which acts
as a placeholder.

39

2. Regress the observed values of a variable with missing data on the other variables in the
dataset. Start with variables with the least missing data.

3. Replace the missing values with the predictions derived from the regression model.

4. Imputed values will then be part of the dataset and will be included in the next regression.

5. Repeat steps 2-4 for each variable with missing data for approximately 5 to 10 rounds.

Input: Dataset
with Missing

Labels

Regression on
Variable 1

Regression on
Variable 2

Regression on
Variable n

Replace Missing
Data of Variable 1

Replace Missing
Data of Variable 2

Replace Missing
Data of Variable n

Output: Dataset
with Imputed Data

....

....

Figure 7.1: MICE Visual Outline for a Dataset with 3 Variables Containing Missing Data

MICE is known to be an effective estimation method of missing data [46, 43]. It can be im-
plemented in federated learning by applying it locally to clients with missing data. However, one
limitation of this algorithm is that it does not work well for high-dimensional data [47]. Therefore,
we can either refer to other algorithms that support multidimensional data or utilize algorithms for
data transformation to reduce dimensionality and adapt the data to MICE [48]. In addition, Princi-
pal Component Analysis (PCA) [49] can also be used to perform dimensionality reduction. PCA
performs dimensionality reduction with low error/variance when reconstructing the compressed
data. With that being said, dimensionality reduction algorithms may cause convergence issues in
federated learning settings since undoing the dimensionality reduction may not yield the original
data. Furthermore, the type of regression used and the number of iterations can drastically slow
down the run-time algorithm. Therefore, these implementations require analysis before consider-
ing them.

Another well-performing algorithm that is used to impute data in centralized setups [50, 51]
and can also be utilized in federated learning is K-Nearest Neighbors (KNN) [52]. In fact, KNN is
a popular machine learning method that can also be used to impute missing data. What makes KNN
extremely useful is that it can operate with high-dimensional data, allowing it to be usable in many
scenarios. The way KNN works is fairly simple. First of all, we will have to determine a variable,
K. The reason why we need K will be discussed later on, but it should be noted that a low value of
K provides a ”localized” imputation, while a higher value can provide smoother imputation with

40

less noise. However, once that is done, we will convert our dataset into a multidimensional feature
space. The reason for converting our data into multidimensional space is to calculate a distance
metric, like Euclidean, Manhattan, and Minkowski distances [53]. The choice of distance metric
depends on the nature of the data and the desired outcome, which is why KNN may also require
some additional analysis before implementing it. However, with that being said, once we convert
our data and define a variable K, we can now start the imputation process. Imputing missing
values in KNN starts by first placing the data point with the missing data into the feature space.
The data point will be placed based on its current known features (other variables). Afterward, we
will calculate the distance between the missing data point and all the other points in the feature
space to find a k number of nearest neighbors (Figure 7.2 illustrates an example of imputed data
point from 3 nearest neighbors using mode imputation). Once we find the k nearest neighbors to
the missing data point, we can impute the missing data based on the neighbors’ mean, median,
mode, or whatever method applies to the dataset. Once we iterate over all the missing points, we
will get an output with a dataset with all missing data points replaced with the values based on
their nearest neighbors. Therefore, we can outline the KNN algorithm as follows:

1. Define K to set the number of nearest neighbors to consider.

2. Transform data into multidimensional feature space and choose a feature distance measure-
ment appropriate for your application.

3. Calculate the distance between the missing data point (based on non-missing features), and
all other data points.

4. Identify the K nearest neighbors to the missing data point.

5. Calculate either mean, median, or mode from the value of nearest neighbors depending on
what is applicable to the dataset.

6. Replace the missing data with the calculated value from the previous step.

7. Iterate over all missing data points and repeat steps 3-6 until all missing data are imputed.

Implementing KNN directly into local clients has shown good performance when imputing
data in federated learning setups [52]. In addition, its support for high-dimensional data makes it
desirable to utilize. However, it is worth noting that KNN can be a slow algorithm since distance
calculation is intensive, but some enhancements can be implemented proposed in other studies. In
addition, similarly to many other imputation methods, careful analysis is required to determine the
distance metrics and imputation methods to use.

Even though we have only mentioned two methods that can handle missing data in the context
of federated learning, there are still plenty of other methods. However, these two methods have
shown to be working with reasonable performance [52], and they can operate in various scenarios.
In addition, if the slowness of KNN might be an issue and enhancement methods did not work,
we can still deal with high-dimensionality data by incorporating an algorithm, like Expectation-
Maximization with PCA [54].

41

X1

X2

Figure 7.2: KNN - Nearest Neighbors (Mode Emputation) Example (k=3)

7.3 Evaluating Imputation Methods for Distributed Learning
In this section, we will discuss the testing of imputation methods, namely KNN and MICE, to
evaluate their performance in a distributed learning setup. Our goal is to assess how these methods
affect the global model accuracy and run-time while handling missing labels.

7.3.1 Experiment Design
To gain a better insight of how well the aforementioned algorithms will perform in a distributed
learning setup, we will put them to the test. Specifically, we will use the MNIST dataset mentioned
in our APFedMe experiment to test the KNN and MICE implementations by randomly deleting
labels off data points in the dataset, then impute the missing labels to use them to train the model.
We implemented a method to mimic MCAR that deletes a specified percentage from the users’
data. In addition, for our imputation experiment, we will run 10 different setups. Each setup
will have different percentage of missing labels but the same APFedMe hyperparameters (Global
Rounds = 300, λ = 15, β = 2). Each setup will have the following percentage of missing labels: 5%,
10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, and 50%. Furthermore, we ran a grid search for both
imputation methods to choose proper imputing hyperparameters. For the KNN implementation,
we will consider the three nearest neighbors of a missing data point across all setups, and the take
the mode of these neighbours. On the other hand, we will use 7 imputation iterations for MICE for
all the setups. Lastly, we ran each setup three times and averaged the results.

7.3.2 Test Results
The first imputation test was done using KNN. As shown in Table 7.3, imputing missing labels
using KNN shows fair performance, where APFedMe’s global model accuracy barely drops as
more instances are deleted. In fact, at 50% label dropout, the global model accuracy has only

42

gone down by around 4% (from 91.30% to 87.52%), indicating that KNN is imputing labels with
relatively fair accuracy. However, KNN’s run-time is heavily affected by the number of missing
labels in the dataset. As seen in Table 7.3, the algorithm run-time at 5% dropout is only 1.21
seconds, and goes up to 11.36 seconds at 50% dropout. The reason behind this is that the more
missing data points there are in the dataset, the more distance calculations will be done, which can
be an expensive task. Therefore, a lower number of missing data points in a dataset can make this
implementation more appealing to use.

The second imputation test results are shown in Table 7.4. MICE performance is quite robust
when considering the minimal performance drop in each setup. In fact, similarly to KNN, MICE
has almost dropped only 4% in global model performance (from 90.58% to 86.93%) at 50% label
dropout. However, with that being said, MICE’s run-time is much higher than KNN. One of the
main reasons behind this is because we used 7 imputation iterations, which can be computationally
expensive. Reducing the number of iterations has shown much faster run-times, but we chose 7
iterations since lower numbers did not always yield good accuracy. Furthermore, the run-time can
be reduced by using less complex regression models. With that being said, an interesting perk
of MICE is that its run-time goes down as the number of missing data points increases. This is
because the more missing labels there are in a dataset, the fewer data points will be used to develop
the regression model, reducing the overall imputation run-time.

Table 7.3: KNN Imputation Results

Percentage Run-time Accuracy
5% 1.21 Seconds 91.30%

10% 2.18 Seconds 90.97%
15% 3.83 Seconds 90.54%
20% 4.29 Seconds 89.94%
25% 5.43 Seconds 90.11%
30% 6.41 Seconds 89.19%
35% 7.73 Seconds 89.11%
40% 9.00 Seconds 88.39%
45% 9.85 Seconds 87.34%
50% 11.36 Seconds 87.52%

7.3.3 Final Remarks
Both implementations show comparable numbers in terms of global model accuracy as shown in
Figure 7.3. The slight drop in performance when increasing the dropout percentage is a com-
mon trend, as higher amounts of missing data can lead to less accurate imputations. The choice
between these methods may depend on the specific percentage of missing data and the desired
balance between run-time and accuracy. Furthermore, showcasing the behaviour of these two im-
plementations should enable a better understanding of the strengths and weaknesses of them, which
can potentially further enhance the practicality when implementing a federated learning setup.

43

Table 7.4: MICE Imputation Results

Percentage Run-time Accuracy
5% 22.37 Seconds 90.58%

10% 23.79 Seconds 90.66%
15% 22.54 Seconds 90.32%
20% 22.18 Seconds 90.16%
25% 20.86 Seconds 89.38%
30% 20.78 Seconds 89.04%
35% 20.38 Seconds 88.52%
40% 20.18 Seconds 88.48%
45% 18.38 Seconds 87.84%
50% 18.56 Seconds 86.93%

5 10 15 20 25 30 35 40 45 50
80

82

84

86

88

90

92

94

96

98

100

Percentage of Missing Data

A
cc

ur
ac

y
(%

)

KNN
MICE

Figure 7.3: Comparison of KNN and MICE Imputation Methods

44

Chapter 8

Conclusion

In conclusion, this research delved into various aspects of federated learning, tackling key chal-
lenges such as data heterogeneity, missing data, and communication bottlenecks. Additionally, a
comprehensive overview of related work in federated learning was provided, focusing on algo-
rithms that have attempted to address these challenges. These studies have contributed to devel-
oping more effective federated learning approaches and laid the foundation for the asynchronous
federated learning algorithm, APFedMe.

Federated learning has demonstrated substantial potential across various sectors. For exam-
ple, applications in healthcare, finance, intelligent vehicles, and IoT devices also showcase the
value of federated learning in addressing data privacy, model generalization challenges, and cross-
institution collaboration in machine learning. With ongoing research in this area, federated learning
will play an increasingly significant role in the future of AI and machine learning solutions.

The primary contribution of this thesis is the development and evaluation of APFedMe, an en-
hanced version of the PFedMe algorithm. PFedMe is a personalized federated learning approach
using Moreau envelopes that addresses personalization in distributed environments while maintain-
ing relatively good efficiency in the implementation. PFedMe employs an iterative update method
and a bi-level solution for optimizing local models while maintaining a reasonable distance from
the global model. To improve this, APFedMe, an asynchronous version of PFedMe, was intro-
duced to address communication bottlenecks in synchronous federated learning setups. APFedMe
refines the solution primarily on the global server by reducing reliance on weight averaging and
improving efficiency as well as scalability by eliminating the need for clients to wait for others
before sending updates.

Moreover, a comparison between APFedMe and PFedMe was presented regarding global model
accuracy, loss values, and training run times using benchmark datasets (Cifar 10 and Synthetic).
The experiments showed that asynchronous federated learning provided significant benefits in con-
vergence speed and helped alleviate the impact of involving participants with relatively slow learn-
ing and communication speeds in the process. Asynchronous distributed learning holds immense
potential for enhancements and flexibility, with other researchers proposing various methods to
improve asynchronous approaches further.

Additionally, the integration of missing data techniques into federated learning was examined.
The discussion focused on how each participating client could apply imputation methods at the
local level to address missing data issues while adhering to the privacy-preserving principles of
federated learning. Some methods, such as MICE and KNN, have shown promising results when

45

applied to federated learning. However, assessing each method’s applicability and potential issues
is crucial before applying them to a specific federated learning problem.

Future work in asynchronous federated learning, explicitly targeting the APFedMe implemen-
tation, can focus on addressing several key challenges associated with client selection, stale clients,
and improving global model updates. Specifically, the research scope can investigate the following
areas:

Future work in asynchronous federated learning, explicitly targeting the APFedMe implemen-
tation, can focus on addressing several key challenges associated with client selection, stale clients,
and improving global model updates. Specifically, the research scope can investigate the following
areas:

1. Developing more effective node selection: Optimizing client participation based on several
factors, such as data quality, availability, and communication latency, researchers can design
algorithms that enhance the overall performance of the asynchronous federated learning sys-
tem. This would involve creating adaptive selection mechanisms that prioritize clients con-
tributing the most relevant and timely data. In fact, this can also include dropping out clients
who are not providing a good contribution to the global model.

2. Investigating new techniques to handle stale clients: Stale clients that provide outdated or
slow updates can negatively impact global model performance. This is a common issue
found in asynchronous federated learning implementations, and mitigating it should pro-
vide significant enhancements to the learning process. Specifically, exploring innovative
approaches to either incorporate their updates more effectively or minimize their influence
on the global model can help maintain the accuracy and efficiency of the asynchronous fed-
erated learning system.

3. Exploring advanced model aggregation methods: In the context of APFedMe, we are reduc-
ing inconsistency through the β variable. However, it is wiser to account for varying factors
related to clients when aggregating their local models. By developing and implementing
more advanced aggregation techniques that weigh clients’ contributions better, researchers
can enhance the global model updates and improve the overall accuracy of the asynchronous
federated learning system.

By addressing these challenges, the efficiency and performance of the APFedMe algorithm can
be further refined, unlocking the potential of asynchronous federated learning in various real-world
applications.

Furthermore, in this thesis, we have presented a novel approach without delving into the con-
vergence analysis of the proposed implementation. As an essential aspect of any machine learning
method, convergence analysis helps in understanding the stability and reliability of the algorithm
in reaching optimal solutions. Thus, a direction for future work would be to provide a convergence
analysis for the method proposed in this thesis. This analysis could involve evaluating the rate of
convergence, the impact of communication delays and increased users, as well as the influence of
straggling nodes on the overall learning process. Additionally, the study of convergence guarantees
under various conditions, such as non-convex loss functions and non-IID data distributions, will
further bolster the applicability and robustness of the proposed algorithm in real-world scenarios.

46

In summary, this thesis contributed to the understanding and developing of federated learn-
ing algorithms, particularly in the context of asynchronous learning and handling missing data. It
opens up avenues for future research and the potential for further enhancements to federated learn-
ing systems’ efficiency and overall performance. The findings and advancements presented in this
study demonstrate the potential of federated learning to revolutionize the way machine learning
models are developed and deployed while maintaining data privacy and security.

47

Bibliography

[1] C. E. A. Zaouiat and A. Latif, “Internet of things and machine learning convergence: The e-
healthcare revolution,” in Proceedings of the 2nd International Conference on Computing and
Wireless Communication Systems, ser. ICCWCS’17. New York, NY, USA: Association for
Computing Machinery, 2017. [Online]. Available: https://doi.org/10.1145/3167486.3167551

[2] L. Li, Y. Fan, M. Tse, and K.-Y. Lin, “A Review of Applications in Federated Learning,”
Computers & Industrial Engineering, vol. 149, p. 106854, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0360835220305532

[3] C. T. Dinh, N. H. Tran, and T. D. Nguyen, “Personalized Federated Learning With Moreau
Envelopes,” 2020. [Online]. Available: https://arxiv.org/abs/2006.08848

[4] X. Ma, J. Zhu, Z. Lin, S. Chen, and Y. Qin, “A state-of-the-art survey on solving non-iid data
in federated learning,” Future Generation Computer Systems, vol. 135, pp. 244–258, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167739X22001686

[5] D. Li and J. Wang, “FedMD: Heterogenous Federated Learning via Model Distillation,”
CoRR, vol. abs/1910.03581, 2019. [Online]. Available: http://arxiv.org/abs/1910.03581

[6] A. L’Heureux, K. Grolinger, H. El Yamany, and M. Capretz, “Machine Learning With
Big Data: Challenges and Approaches,” IEEE Access, vol. 5, pp. 7776–7797, Apr 2017.
[Online]. Available: https://ieeexplore.ieee.org/document/7906512

[7] S. Schelter, F. Biessmann, T. Januschowski, D. Salinas, S. Seufert, and G. Szarvas,
“On Challenges in Machine Learning Model Management,” IEEE Data Engi-
neering Bulletin, 2015. [Online]. Available: https://www.amazon.science/publications/
on-challenges-in-machine-learning-model-management

[8] T. Zhang, L. Gao, C. He, M. Zhang, B. Krishnamachari, and S. Avestimehr, “Federated
Learning for Internet of Things: Applications, Challenges, and Opportunities,” CoRR, vol.
abs/2111.07494, 2021. [Online]. Available: https://arxiv.org/abs/2111.07494

[9] M. J. Sheller, G. A. Reina, B. Edwards, J. Martin, and S. Bakas, “Multi-institutional Deep
Learning Modeling Without Sharing Patient Data: A Feasibility Study on Brain Tumor
Segmentation,” in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain
Injuries, A. Crimi, S. Bakas, H. Kuijf, F. Keyvan, M. Reyes, and T. van Walsum, Eds., vol.
abs/1810.04304. Cham: Springer International Publishing, 2019, pp. 92–104. [Online].
Available: http://arxiv.org/abs/1810.04304

48

https://doi.org/10.1145/3167486.3167551
https://www.sciencedirect.com/science/article/pii/S0360835220305532
https://arxiv.org/abs/2006.08848
https://www.sciencedirect.com/science/article/pii/S0167739X22001686
http://arxiv.org/abs/1910.03581
https://ieeexplore.ieee.org/document/7906512
https://www.amazon.science/publications/on-challenges-in-machine-learning-model-management
https://www.amazon.science/publications/on-challenges-in-machine-learning-model-management
https://arxiv.org/abs/2111.07494
http://arxiv.org/abs/1810.04304

[10] I. Dayan, H. R. Roth, A. Zhong, A. Harouni, A. Gentili, A. Z. Abidin, A. Liu, A. B.
Costa, B. J. Wood, C.-S. Tsai et al., “Federated Learning for Predicting Clinical Outcomes
in Patients with COVID-19,” Nature Medicine, vol. 27, pp. 1735–1743, 2021. [Online].
Available: https://doi.org/10.1038/s41591-021-01506-3

[11] N. Surantha, P. Atmaja, David, and M. Wicaksono, “A review of wearable internet-of-things
device for healthcare,” Procedia Computer Science, vol. 179, pp. 936–943, 2021, 5th
International Conference on Computer Science and Computational Intelligence 2020.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S1877050921001149

[12] G. Xu, “Iot-assisted ecg monitoring framework with secure data transmission for health
care applications,” IEEE Access, vol. 8, pp. 74 586–74 594, 2020. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9068222

[13] G. Long, Y. Tan, J. Jiang, and C. Zhang, Federated Learning for Open Banking.
Cham: Springer International Publishing, 2020, pp. 240–254. [Online]. Available:
https://doi.org/10.1007/978-3-030-63076-8 17

[14] W. Yang, Y. Zhang, K. Ye, L. Li, and C.-Z. Xu, “FFD: A Federated Learning Based Method
for Credit Card Fraud Detection,” in Big Data – BigData 2019, K. Chen, S. Seshadri, and
L.-J. Zhang, Eds. Cham: Springer International Publishing, 2019, pp. 18–32. [Online].
Available: https://link.springer.com/chapter/10.1007/978-3-030-23551-2 2

[15] K. W. Bowyer, N. V. Chawla, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic
Minority Over-sampling Technique,” CoRR, vol. abs/1106.1813, 2011. [Online]. Available:
http://arxiv.org/abs/1106.1813

[16] S. A. Beiker, “Legal aspects of autonomous driving,” Santa Clara L. Rev., vol. 52, p.
1145, 2012. [Online]. Available: https://heinonline.org/hol-cgi-bin/get pdf.cgi?handle=hein.
journals/saclr52§ion=36

[17] M. Alawadhi, J. Almazrouie, M. Kamil, and K. A. Khalil, “A systematic literature review
of the factors influencing the adoption of autonomous driving,” International Journal of
System Assurance Engineering and Management, vol. 11, pp. 1065–1082, 2020. [Online].
Available: https://link.springer.com/article/10.1007/s13198-020-00961-4

[18] A. Nguyen, T. Do, M. Tran, B. X. Nguyen, C. Duong, T. Phan, E. Tjiputra, and Q. D. Tran,
“Deep Federated Learning for Autonomous Driving,” CoRR, vol. abs/2110.05754, 2021.
[Online]. Available: https://arxiv.org/abs/2110.05754

[19] J.-P. Giacalone, L. Bourgeois, and A. Ancora, “Challenges in aggregation of heterogeneous
sensors for autonomous driving systems,” in 2019 IEEE Sensors Applications Symposium
(SAS), 2019, pp. 1–5. [Online]. Available: https://ieeexplore.ieee.org/document/8706005

[20] M. Anderson, “Technology Device Ownership: 2015,” May 2020, accessed on
April 28, 2023. [Online]. Available: https://www.pewresearch.org/internet/2015/10/29/
technology-device-ownership-2015/

49

https://doi.org/10.1038/s41591-021-01506-3
https://www.sciencedirect.com/science/article/pii/S1877050921001149
https://ieeexplore.ieee.org/abstract/document/9068222
https://doi.org/10.1007/978-3-030-63076-8_17
https://link.springer.com/chapter/10.1007/978-3-030-23551-2_2
http://arxiv.org/abs/1106.1813
https://heinonline.org/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/saclr52§ion=36
https://heinonline.org/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/saclr52§ion=36
https://link.springer.com/article/10.1007/s13198-020-00961-4
https://arxiv.org/abs/2110.05754
https://ieeexplore.ieee.org/document/8706005
https://www.pewresearch.org/internet/2015/10/29/technology-device-ownership-2015/
https://www.pewresearch.org/internet/2015/10/29/technology-device-ownership-2015/

[21] A. Hard, K. Rao, R. Mathews, F. Beaufays, S. Augenstein, H. Eichner, C. Kiddon,
and D. Ramage, “Federated Learning for Mobile Keyboard Prediction,” CoRR, vol.
abs/1811.03604, 2018. [Online]. Available: http://arxiv.org/abs/1811.03604

[22] K. Sozinov, V. Vlassov, and S. Girdzijauskas, “Human Activity Recognition Using
Federated Learning,” in 2018 IEEE Intl Conf on Parallel & Distributed Processing
with Applications, Ubiquitous Computing & Communications, Big Data & Cloud
Computing, Social Computing & Networking, Sustainable Computing & Communications
(ISPA/IUCC/BDCloud/SocialCom/SustainCom), 2018, pp. 1103–1111. [Online]. Available:
https://ieeexplore.ieee.org/document/8672262

[23] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas, “Federated Learning of Deep
Networks using Model Averaging,” CoRR, vol. abs/1602.05629, 2016. [Online]. Available:
http://arxiv.org/abs/1602.05629

[24] A. Fallah, A. Mokhtari, and A. E. Ozdaglar, “Personalized Federated Learning:
A Meta-Learning Approach,” CoRR, vol. abs/2002.07948, 2020. [Online]. Available:
https://arxiv.org/abs/2002.07948

[25] Y. Chen, Y. Ning, and H. Rangwala, “Asynchronous Online Federated Learning
for Edge Devices,” CoRR, vol. abs/1911.02134, 2019. [Online]. Available: http:
//arxiv.org/abs/1911.02134

[26] X. Jin, P. Luo, F. Zhuang, J. He, and Q. He, “Collaborating Between Local and
Global Learning for Distributed Online Multiple Tasks,” in Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management, ser. CIKM ’15.
New York, NY, USA: Association for Computing Machinery, 2015, pp. 113–122. [Online].
Available: https://doi.org/10.1145/2806416.2806553

[27] L. Deng, “The MNIST Database of Handwritten Digit Images for Machine Learning
Research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012. [Online].
Available: https://ieeexplore.ieee.org/document/6296535

[28] E. Bisong, Google Colaboratory. Berkeley, CA: Apress, 2019, pp. 59–64. [Online].
Available: https://doi.org/10.1007/978-1-4842-4470-8 7

[29] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An
Imperative Style, High-Performance Deep Learning Library,” 2019. [Online]. Available:
http://arxiv.org/abs/1912.01703

[30] A. K. Sahu, T. Li, M. Sanjabi, M. Zaheer, A. Talwalkar, and V. Smith, “On the
Convergence of Federated Optimization in Heterogeneous Networks,” 2018. [Online].
Available: http://arxiv.org/abs/1812.06127

[31] “Asynchronous Federated Learning on Heterogeneous Devices: A Survey,” 2021. [Online].
Available: https://arxiv.org/abs/2109.04269

50

http://arxiv.org/abs/1811.03604
https://ieeexplore.ieee.org/document/8672262
http://arxiv.org/abs/1602.05629
https://arxiv.org/abs/2002.07948
http://arxiv.org/abs/1911.02134
http://arxiv.org/abs/1911.02134
https://doi.org/10.1145/2806416.2806553
https://ieeexplore.ieee.org/document/6296535
https://doi.org/10.1007/978-1-4842-4470-8_7
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1812.06127
https://arxiv.org/abs/2109.04269

[32] J. Xu, L. Shi, Y. Shi, C. Fang, and J. Xu, “An asynchronous federated learning
optimization scheme based on model partition,” in Wireless Algorithms, Systems, and
Applications, L. Wang, M. Segal, J. Chen, and T. Qiu, Eds. Cham: Springer Nature
Switzerland, 2022, pp. 367–379. [Online]. Available: https://link.springer.com/chapter/10.
1007/978-3-031-19211-1 31

[33] U. of New Brunswick, “IDS 2018 Intrusion CSVs (CSE-CIC-IDS2018), Ver-
sion: 1,” Retrieved 2023-05-12 from https://www.kaggle.com/datasets/solarmainframe/
ids-intrusion-csv, 02 2018.

[34] G. Carl, G. Kesidis, R. Brooks, and S. Rai, “Denial-of-service attack-detection techniques,”
IEEE Internet Computing, vol. 10, no. 1, pp. 82–89, Jan 2006. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/1580418

[35] J. K. Chahal, A. Bhandari, and S. Behal, “Distributed denial of service attacks: A threat
or challenge,” New Review of Information Networking, vol. 24, no. 1, pp. 31–103, 2019.
[Online]. Available: https://doi.org/10.1080/13614576.2019.1611468

[36] T. Mahjabin, Y. Xiao, G. Sun, and W. Jiang, “A survey of distributed denial-of-service
attack, prevention, and mitigation techniques,” International Journal of Distributed
Sensor Networks, vol. 13, no. 12, p. 1550147717741463, 2017. [Online]. Available:
https://journals.sagepub.com/doi/pdf/10.1177/1550147717741463

[37] T. Emmanuel, T. Maupong, D. Mpoeleng, T. Semong, B. Mphago, and O. Tabona, “A
Survey on Missing Data in Machine Learning,” Journal of Big Data, vol. 8, no. 1, p. 140,
2021. [Online]. Available: https://doi.org/10.1186/s40537-021-00516-9

[38] M.-P. Fernando, F. Cèsar, N. David, and H.-O. José, “Missing the Missing Values:
the Ugly Duckling of Fairness in Machine Learning,” International Journal of
Intelligent Systems, vol. 36, no. 7, pp. 3217–3258, 2021. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.22415

[39] L. Xing, “Cascading Failures in Internet of Things: Review and Perspectives on Reliability
and Resilience,” IEEE Internet of Things Journal, vol. 8, no. 1, pp. 44–64, 2021. [Online].
Available: https://ieeexplore.ieee.org/document/9174628

[40] M. Halpern, Y. Zhu, and V. J. Reddi, “Mobile CPU’s Rise to Power: Quantifying the
Impact of Generational Mobile CPU Design Trends on Performance, Energy, and User
Satisfaction,” in 2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2016, pp. 64–76. [Online]. Available: https://ieeexplore.ieee.org/
document/7446054

[41] J. Dziura, L. Post, Q. A. Zhao, Z. Fu, and P. Peduzzi, “Strategies for Dealing
With Missing Data in Clinical Trials: From Design to Analysis,” The Yale journal
of biology and medicine, vol. 86, no. 3, pp. 343–358, Sep 2013. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3767219/

51

https://link.springer.com/chapter/10.1007/978-3-031-19211-1_31
https://link.springer.com/chapter/10.1007/978-3-031-19211-1_31
https://www.kaggle.com/datasets/solarmainframe/ids-intrusion-csv
https://www.kaggle.com/datasets/solarmainframe/ids-intrusion-csv
https://ieeexplore.ieee.org/abstract/document/1580418
https://doi.org/10.1080/13614576.2019.1611468
https://journals.sagepub.com/doi/pdf/10.1177/1550147717741463
https://doi.org/10.1186/s40537-021-00516-9
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.22415
https://ieeexplore.ieee.org/document/9174628
https://ieeexplore.ieee.org/document/7446054
https://ieeexplore.ieee.org/document/7446054
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3767219/

[42] R. Joseph, J. Sim, R. Ogollah, and M. Lewis, “A Systematic Review Finds Variable Use
of the Intention-To-Treat Principle in Musculoskeletal Randomized Controlled Trials with
Missing Data,” Journal of Clinical Epidemiology, vol. 68, no. 1, pp. 15–24, 2015. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0895435614003461

[43] M. J. Azur, E. A. Stuart, C. Frangakis, and P. J. Leaf, “Multiple Imputation by Chained
Equations: What Is It and How Does It Work?” International Journal of Methods
in Psychiatric Research, vol. 20, no. 1, pp. 40–49, Mar 2011. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/mpr.329

[44] P. Li, E. A. Stuart, and D. B. Allison, “Multiple Imputation: A Flexible Tool for Handling
Missing Data,” JAMA, vol. 314, no. 18, pp. 1966–1967, Nov 2015. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/26547468/

[45] J. Wulff and L. Ejlskov, “Multiple Imputation By Chained Equations in Praxis: Guidelines
and Review,” Electronic Journal of Business Research Methods, vol. 15, pp. 2017–2058, Apr
2017. [Online]. Available: https://academic-publishing.org/index.php/ejbrm/article/view/
1355

[46] J. N. Wulff and L. E. Jeppesen, “Multiple imputation by chained equations in praxis:
guidelines and review,” Electronic Journal of Business Research Methods, vol. 15,
no. 1, pp. 41–56, 2017. [Online]. Available: https://vbn.aau.dk/ws/files/257318283/
ejbrm volume15 issue1 article450.pdf

[47] Y. Deng, C. Chang, M. S. Ido, and Q. Long, “Multiple imputation for general missing data
patterns in the presence of high-dimensional data,” Scientific reports, vol. 6, no. 1, p. 21689,
2016. [Online]. Available: https://www.nature.com/articles/srep21689

[48] D. W. Hodge, S. E. Safo, and Q. Long, “Multiple imputation using dimension
reduction techniques for high-dimensional data,” 2019. [Online]. Available: https:
//arxiv.org/abs/1905.05274

[49] H. Abdi and L. J. Williams, “Principal Component Analysis,” WIREs Computational
Statistics, vol. 2, no. 4, pp. 433–459, 2010. [Online]. Available: https://wires.onlinelibrary.
wiley.com/doi/abs/10.1002/wics.101

[50] M. Kenyhercz and N. Passalacqua, “Chapter 9 - missing data imputation methods and their
performance with biodistance analyses,” in Biological Distance Analysis, M. A. Pilloud and
J. T. Hefner, Eds. San Diego: Academic Press, 2016, pp. 181–194. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B9780128019665000093

[51] M. Zhu and X. Cheng, “Iterative knn imputation based on gra for missing values
in tplms,” in 2015 4th International Conference on Computer Science and Network
Technology (ICCSNT), vol. 01, Dec 2015, pp. 94–99. [Online]. Available: https:
//ieeexplore.ieee.org/abstract/document/7490714

[52] A. Gkillas and A. S. Lalos, “Missing Data Imputation for Multivariate Time Series
in Industrial IOT: A Federated Learning Approach,” in 2022 IEEE 20th International

52

https://www.sciencedirect.com/science/article/pii/S0895435614003461
https://onlinelibrary.wiley.com/doi/abs/10.1002/mpr.329
https://pubmed.ncbi.nlm.nih.gov/26547468/
https://academic-publishing.org/index.php/ejbrm/article/view/1355
https://academic-publishing.org/index.php/ejbrm/article/view/1355
https://vbn.aau.dk/ws/files/257318283/ejbrm_volume15_issue1_article450.pdf
https://vbn.aau.dk/ws/files/257318283/ejbrm_volume15_issue1_article450.pdf
https://www.nature.com/articles/srep21689
https://arxiv.org/abs/1905.05274
https://arxiv.org/abs/1905.05274
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wics.101
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wics.101
https://www.sciencedirect.com/science/article/pii/B9780128019665000093
https://ieeexplore.ieee.org/abstract/document/7490714
https://ieeexplore.ieee.org/abstract/document/7490714

Conference on Industrial Informatics (INDIN), 2022, pp. 87–94. [Online]. Available:
https://ieeexplore.ieee.org/document/9976093

[53] R. Duda, P. Hart, and D. Stork, Pattern Classification, ser. 11/04 16:50:48 GMT. Wiley,
2000, no. pt. 1. [Online]. Available: https://books.google.ca/books?id= sO4DwAAQBAJ

[54] H. Hegde, N. Shimpi, A. Panny, I. Glurich, P. Christie, and A. Acharya, “MICE Vs
PPCA: Missing Data Imputation in Healthcare,” Informatics in Medicine Unlocked, vol. 17,
p. 100275, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2352914819302783

53

https://ieeexplore.ieee.org/document/9976093
https://books.google.ca/books?id=_sO4DwAAQBAJ
https://www.sciencedirect.com/science/article/pii/S2352914819302783
https://www.sciencedirect.com/science/article/pii/S2352914819302783

	Introduction
	Motivation
	Research objectives and significance
	Contributions
	Thesis Structure

	Federated Learning Use Cases
	Privacy
	Healthcare
	Finance
	Smart Vehicles
	Mobile Applications
	Remarks About the Use Cases

	Related Work
	Federated Learning
	Personalized Federated Learning
	Asynchronous Federated Learning

	Methodology
	PFedMe Problem Formulation
	PFedMe Algorithm Implementation
	Asynchronous Learning into PFedMe
	APFedMe Algorithm Implementation

	Experiments & Results
	Experiment Setup
	Data Distribution
	Running the Experiment
	Final Remarks

	Practicality Showcase of Asynchrony in Federated Learning
	Dataset
	Experiment Setup
	Experiment Results

	Combating Missing Data in Local Models in the Federated Learning Framework
	Causes of Missing Data
	Causes of Missing Data in Federated Learning

	Dealing with Missing Data
	Dealing with Missing Data in Federated Learning

	Evaluating Imputation Methods for Distributed Learning
	Experiment Design
	Test Results
	Final Remarks

	Conclusion

