
Supporting the Executability of R Markdown Files

by

MD ANAYTUL ISLAM

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE FACULTY OF GRADUATE STUDIES

OF LAKEHEAD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

2023

Lakehead University

Thunder Bay, Ontario, Canada

ii

ABSTRACT

R Markdown files are examples of literate programming documents that combine R code

with results and explanations. Such dynamic documents are designed to execute easily and

reproduce study results. However, little is known about the executability of R Markdown

files which can cause frustration among its users who intend to reuse the document. This

thesis aims to understand the executability of R Markdown files and improve the current

state of supporting the executability of those files.

Towards this direction, a large-scale study has been conducted on the executability of

R Markdown files collected from GitHub repositories. Results from the study show that a

significant number of R Markdown files (64.95%) are not executable, even after our best

efforts. To better understand the challenges, the exceptions encountered while executing

the files are categorized into different categories and a classifier is developed to determine

which Markdown files are likely to be executable. Such a classifier can be utilized by search

engines in their ranking which helps developers to find literate programming documents as

learning resources. To support the executability of R Markdown files a command-line tool

is developed. Such a tool can find issues in R Markdown files that prevent the executability

of those files. Using an R Markdown file as an input, the tool generates an intuitive list

of outputs that assist developers in identifying areas that require attention to ensure the

executability of the file. The tool not only utilizes static analysis of source code but also uses

a carefully crafted knowledge base of package dependencies to generate version constraints

of involved packages and a Satisfiability Modulo Theories (SMT) solver (i.e., Z3) to identify

compatible versions of those packages. Findings from this research can help developers

reuse R Markdown files easily, thus improving the productivity of developers.

iii

ACKNOWLEDGEMENTS

First and foremost, I want to thank my supervisor, Dr. Muhammad Asaduzzaman, for

his continual advice, insightful recommendations, encouragement, and exceptional patience

throughout this thesis effort. Without him, this thesis would not have been possible.

I would like to express my gratitude to Dr. Zubair Fadlullah (Western University) and

Dr. Garima Bajwa (Lakehead University) for their contributions to my thesis committee.

Their guidance, suggestions, evaluation, and insightful remarks helped this thesis to be

completed successfully.

I appreciate Dr. Shaowei Wang (University of Manitoba) for generously dedicating his

time and sharing his knowledge, which has enhanced the quality of my work.

I also want to express my gratitude to the Lakehead University Department of Computer

Science for their kind assistance in the form of scholarships, awards, and bursaries, which

allowed me to focus more intently on my thesis work.

I want to express my gratitude to all of my friends and fellow Department of Computer

Science staff who have supported me along this journey. I am especially grateful to Dr.

Sheikh Moniruzzaman, Subrata Das, Pronab Ghosh, and Shouvik Paul.

I want to convey my gratitude to my family and relatives, particularly expressing thanks

to my mother, Mst. Auleda Begum, and my brothers, Md. Wasequl Islam Anup and Md.

Rezoyanul Islam Ananno.

I would like to thank my friends in Thunder Bay for their constant support and encour-

agement. I would especially like to thank Mostansir Nayeem, Shofi Ahmed, Ragib Raonok,

Prithu Aldrin Costa, Hasib Kamal, and Nahiyan Al Mahmood.

I am grateful to everyone for their participation in this thesis, even if they are not named

specifically in this thesis. Your participation has been really helpful to my growth, both

personally and professionally.

This thesis is dedicated to the memory of my father, Md Saiful Islam, who has consis-

tently served as my source of inspiration. He is no longer with us. May Allah grant him

eternal peace in Jannah.

iv

PUBLICATIONS

Parts of this thesis have been submitted for peer-review or accepted to be published:

• M. A. Islam, M. Asaduzzaman, and S. Wang, “On the Executability of R Mark-

down Files”, accepted to be published in the 21st International Conference on Mining

Software Repositories, 2024. (Chapter 3)

v

Contents

Abstract ii

Acknowledgements iii

Publications iv

Table of Contents v

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Motivation . 1

1.2 Research objectives and significance . 3

1.3 Contributions of the Thesis . 4

1.4 Outline of the Thesis . 5

2 Related Work 6

2.1 Executability . 6

2.2 Reproducibility . 7

2.3 Dependency Conflict . 9

2.4 Dependency Management . 10

2.5 Restoring Executability . 11

2.6 Conclusion . 12

3 On the Executability of R Markdown Files 13

3.1 Introduction . 13

3.1.1 Data Collection . 14

3.1.2 Data Labelling . 15

3.1.3 Features Collection . 16

vi

3.2 RQ1: How executable are R Markdown files? Are there differences between

the executable and non-executable file groups? 19

3.3 RQ2: What are the reasons that hinder the executability of R Markdown files? 22

3.3.1 Missing libraries . 23

3.3.1.1 Dependency not installed 23

3.3.1.2 Library not installed . 24

3.3.1.3 Outdated library . 24

3.3.1.4 Deleted Library . 24

3.3.2 Missing data . 24

3.3.2.1 Local directory missing . 25

3.3.2.2 File missing . 26

3.3.3 Erroneous Code . 27

3.3.3.1 Syntax error . 27

3.3.3.2 Semantic error . 28

3.4 RQ3: Can we predict whether an R Markdown file is not executable? 29

3.5 Discussion . 32

3.5.1 Implications of our findings . 32

3.5.2 Threats to Validity . 33

3.6 Conclusion . 34

4 RFT: A Smart Tool To Fix R Markdown Issues To Restore Executability 35

4.1 Introduction . 35

4.2 Approach . 38

4.2.1 Knowledge Base Creation . 38

4.2.2 Collect Dependency Information . 40

4.2.3 Solving Dependency Constraint . 40

4.2.3.1 SMT Expression Construction 40

4.2.3.2 Optimization of Dependency Constraint 41

4.2.4 Handling the Installation of Libraries 42

4.2.5 Identifying Erroneous Code (SyntaxChecker) 42

4.2.6 Checking Missing Data (FilePathChecker & DirectoryChecker) . . . 42

4.2.7 Identifying Deleted and Outdated Libraries (DeprecatedLibraryChecker

& DeletedLibraryChecker) . 43

4.2.8 Identifying System Requirements (SystemRequirementsChecker) . . 44

4.3 Experimental Setup . 45

4.3.1 Can our process resolve the DC issues successfully? 45

4.4 Usage Scenario . 47

4.5 Threats to Validity . 50

vii

4.6 Conclusion . 51

5 Conclusion 52

5.1 Summary . 52

5.2 Future Work . 53

A Automatically Execute R Markdown Files 55

Bibliography 64

viii

List of Tables

Table 2.1 Comparison of R Package Management Tools. 10

Table 3.1 STUDIED FEATURES THAT ARE RELATED TO SEVEN DIFFER-

ENT DIMENSIONS. 17

Table 3.2 P-value & Cohen ’s |d| for the studied numeric features. 20

Table 3.3 List of reasons that hinder the executability of R Markdown files. . . 23

Table 3.4 The performance of all five classifiers considered in our study. Here,

the terms DT, GNB, KNN, LR, and XGBoost refer to Decision Tree,

Gaussian Naive Bayes, K-Nearest Neighbors, Logistic Regression, and

Extreme Gradient Boosting, respectively. 32

Table A.1 Important file list to automatically execute R Markdown files. 55

Table A.2 File list generated from automatic execution 61

ix

List of Figures

Figure 1.1 An example of an R Markdown file. 2

Figure 2.1 An example of a lock file. 11

Figure 3.1 Steps to execute R Markdown files. 15

Figure 3.2 An example of missing a local directory. 25

Figure 3.3 Another example of missing a local directory. 26

Figure 3.4 An example of missing a file. 27

Figure 3.5 Another example of missing a file. 28

Figure 3.6 An example of a syntax error. 29

Figure 3.7 An example of a semantic error. 30

Figure 3.8 Classifier creation for R Markdown files. 31

Figure 4.1 An example of version conflict. 37

Figure 4.2 The working process of RFT. 38

Figure 4.3 Example of dependency package information. 39

Figure 4.4 Checking File Paths. 47

Figure 4.5 Checking Directory Paths. 48

Figure 4.6 Checking Parsing the file. 48

Figure 4.7 Checking deprecated library. 49

Figure 4.8 Checking deleted library. 49

Figure 4.9 Checking System Requirements. 50

Figure 4.10 Checking versions. 50

Figure A.1 Cloning repositories. 56

Figure A.2 Changing the root directory in line number 17. 59

Figure A.3 Changing the dependency output destination in line number 94. . . . 59

Figure A.4 Changing the output directory in line number 231. 59

Figure A.5 Changing the directory in line number 31. 60

Figure A.6 An example of executing the script to process R Markdown files. . . 60

Figure A.7 An example of rendering output while automatically executing an R

Markdown file. 61

x

Figure A.8 An example of installing dependencies. 62

Figure A.9 An example of output obtained by executing an R Markdown file. . . 62

Chapter 1

Introduction

This chapter provides a short introduction to the thesis. Section 1.1 describes the motivation

for this thesis. Section 1.2 explains the research problem. The contributions of this thesis

are described in Section 1.3. Finally, Section 1.4 discusses the outline of the remaining

chapters.

1.1 Motivation

The literate programming paradigm was developed by Donald Knuth, who emphasized ex-

plaining the process that goes into writing code rather than just writing code to accomplish

a task [1]. This is accomplished by writing documentation which is dotted with computa-

tion results and code. The need to share easily comprehensible and replicable data analysis

results has led to an increase in the popularity of the literate programming paradigm. It

is simpler to reuse because the code’s design is self-documenting and offers a clear style

throughout the file. This documentation offers programmers a better understanding of

where updates are needed as well as what to do during any extension. R Markdown files

are illustrations of literate programming documents used by researchers to share study re-

sults.

An R Markdown file consists of three different components. These are metadata, text,

and code. The metadata (known as the YAML metadata or YAML header) consists of a set

of key-value pairs that provide information about the document and rendering configura-

tion. The metadata is specified within a pair of three dashes (i.e., —). The text component

(also known as prose or narrative) contains the markdown text that describes the needed

operations to be performed by the computer. A code component can be a code chunk or

an inline R code that can be executed to get the output. Figure 1.1 shows an example of

an R Markdown file. R Markdown files depend on the Knitr package for the purpose of

2

Markdown Text

Code Chunk

YAML Header

Click to run the code in RStudio IDE

Click to render the document and
preview the output

Figure 1.1: An example of an R Markdown file.

rendering [2]. The Knitr package executes the code chunks, generates the output, and com-

bines that together with the narratives. When we use the render function in R Markdown,

it takes the initial .Rmd file and execute all of the code chunks, creating a new markdown

(.md) document that includes both the code and its output. This markdown file is then

processed by pandoc to produce the final formatted document (e.g., pdf, word, and html5).

Although this process may seem complex, R Markdown simplifies the process by combining

all of the necessary steps into a single render function.

To reproduce a study result, it is necessary to first understand the process that trans-

forms the input data into the final result in successive steps. R Markdown files make it

easier to share reproducible study results because the result, code, and narratives explain-

3

ing the computational steps (i.e., the process) and explanation of the result are all in one

place. Although R Markdown files are becoming increasingly popular for sharing repro-

ducible results from research, not much is known about how executable they are. It’s a

vital initial step because the ability to run these files is essential for replicating the results

of the research. A solid understanding of the difficulties involved in executing R Markdown

files is crucial because it can assist us in developing potential solutions for the problem.

1.2 Research objectives and significance

An empirical study is performed to determine how executable are R Markdown files. This

is done by collecting 191,966 R Markdown files from GitHub repositories that are publicly

available. Each R Markdown file is executed in a separate execution environment to de-

termine its executability status. In case a file cannot be executed, the error messages are

collected for further investigation. A quantitative study is conducted that compares exe-

cutable and non-executable groups of files to understand their differences. If the two groups

of files are different from each other we can leverage features collected from those files to

build a classifier to predict their executability without even executing them. A qualitative

study is performed on the set of non-executable R markdown files to identify the reasons

that prevent their executability. Thus, the first part of this thesis focuses on the following

two research questions.

• How executable is R Markdown files? Are there differences between the

executable and non-executable groups? Despite our best efforts, 64.95% of R

Markdown files are not executable, according to the results of our study. By consid-

ering different groups of features, we examine the differences between the two groups

of files (executable vs. non-executable). The findings of the investigation reveal that

the two groups of files differ significantly from each other. As an illustration, the

non-executable group of files depends on more libraries than the executable group

does.

• What are the reasons that hinder the executability of R Markdown files?

We find three primary reasons that prevent the executability of R Markdown files.

These are a) Missing libraries (69.76%) b) Missing data (19.12%) c) Erroneous Code

(11.12%).

Since a large number of R Markdown files available online suffer from executability

issues, not all of those files can be reused easily. Users who wish to search for R Markdown

files online to support their development tasks may be unaware of the issues that prevent

4

the executability of R Markdown files. Existing search engines also do not consider the

executability of those files in their ranking and it is also not feasible to test the executability

by executing those files because of resource and time constraints. As a result, we develop

classifiers taking into account characteristics associated with R Markdown files across seven

different dimensions. An extensive evaluation using a large number of R Markdown files

reveals that the classifier achieves a median AUC of 83.02%, indicating the feasibility of

leveraging such classifiers.

Results from our qualitative analysis revealed that library-related issues are the most

dominant factor that prevents the executability of R Markdown files (e.g., missing libraries,

and incompatible library versions). Existing package management tools are not very helpful

in solving these problems. For example, such tools are not able to able to identify required

versions of packages or libraries. While it is possible to install the latest versions of required

packages but latest versions of packages are not always used by R Markdown files. Moreover,

users of R Markdown files do not always use package management tools and document the

versions of required packages. Thus, a tool is developed that utilizes static analysis of source

code and a carefully crafted knowledge base of package dependencies to generate version

constraints of involved packages. The tool then uses SMT solvers (i.e., Z3 [3]) to identify

compatible versions of those packages. The tool can also able to identify missing files and

syntax errors in code.

1.3 Contributions of the Thesis

The contributions of the thesis are as follows:

• A large-scale empirical study to understand how executable are R Markdown files.

A quantitative comparison is performed to understand the differences between exe-

cutable and non-executable groups of files.

• A qualitative analysis of non-executable R Markdown files to understand the reasons

that prevent the executability of those files.

• The development and evaluation of classifiers that can predict the executability of R

Markdown files.

• A knowledge base of package dependencies created by mining R packages stored in

the Comprehensive R Archive Network (CRAN [4]). CRAN is the central repository

that contains different versions of packages along with their documentation.

• A tool that can automatically identify executability issues in R Markdown files and

provide solutions to fix those issues.

5

1.4 Outline of the Thesis

This chapter outlines the research problems and briefly describes the contributions of the

thesis to address those problems. The remaining chapters of this thesis are organized as

follows:

• Chapter 2 describes prior studies related to the thesis.

• Chapter 3 provides a detailed description of a study that investigates the executability

of R Markdown files.

• Chapter 4 presents a technique that can automatically identify executability issues in

R Markdown files and assists developers in fixing those issues.

• Chapter 5 concludes the thesis by summarizing research contributions and providing

future research directions.

6

Chapter 2

Related Work

The foundation of this thesis is laid by the prior studies on executability, reproducibility

and dependency management in the literature, which are summarized in this chapter along

with the terminologies related to this thesis.

2.1 Executability

To check executability, Yang et al. [5] examined the Python snippets that are available in

Stack Overflow. They found that among the available snippets, 75% are parseable and

only 25% are executable. Similar to this work, Eric et al. [6] investigated the feasibility

of executing Python gists. A gist is a code snippet that can be shared with others. Us-

ing python:2.7.13 and python:3.6.5 images as the base, they tried running gists in isolated

Docker containers to conduct a baseline analysis. A gist that runs without any errors is

considered an executable gist. On the other hand, the name of the error that was raised

during the execution is used to code any unsuccessful gist. Their findings indicate that the

majority of the gists are not directly executable in a default Python environment, primarily

due to insufficiently configured environments. Although in certain cases a naive inference

algorithm (collect imported library names and install the latest version of those libraries)

can automatically recover the correct application environment configurations, it is not effec-

tive in most cases. They faced mainly two challenges while configuring environments. One

of them is identifying dependencies with non-obvious names and the other one is installing

dependencies with transitive dependence on system modules. However, they introduced a

technique, called Gistable, which can automatically configure and execute approximately

5,000 publicly available Python gists. Each gist has its own docker file, based on the

python:2.7.13 image containing gist and its dependencies which ensures re-executibility on

their docker image. Our study differs in various ways from the research of Yang et al. [5] and

Eric et al. [6]. Comparing our work to earlier studies, we found that Yang et al. [5] focused

7

on Python code, whereas Eric et al. [6] examined the executability of publicly accessible

Python gists. Our approach examines the executability of R Markdown files. While Eric et

al. [6] determined library names from import statements and attempted installation of those

libraries, Yang et al. [5] didn’t consider any dependency installation. On the other hand, we

utilized the renv tool [7] to automatically identify and install dependencies, guaranteeing a

more accurate and efficient evaluation of R Markdown files’ executability.

Apart from that, Samim et al. [8] conducted, a comprehensive mixed-methods investiga-

tion involving an empirical analysis of tutorials sourced from diverse online platforms. They

used a naive execution strategy, in other words, copy and paste strategy, to establish a base-

line executability level. Then they examined the code blocks with tutorials and formulated a

set of annotations to enhance executability. Although there were still a significant number of

failures, these annotated tutorials with Docable resulted in an improved executability rate.

Upon qualitative examination of tutorial failures and holding peer debriefing sessions with

tutorial creators, various issues were identified that hindered successful execution. These

problems affected tutorial quality in addition to providing accessibility challenges. The re-

search proposes various approaches for enhancing software tutorials, such as offering easily

accessible substitutes for tutorial participants and introducing automated testing to ensure

the continuous quality of the tutorials. Monir et al. [9] proposed a scalable Docker-based

evaluator designed for determining whether Python code snippets are executable or not.

Surprisingly, their research result indicates that executability does not significantly impact

the likelihood of an answer whether it is excepted. They argue that explanations are more

important than code that can be executed quickly. However, they mark a noteworthy in-

crease in executability for code snippets which was referenced in GitHub projects, implying

that practical usability is more valued in such contexts. Additionally, Horton at al. [10]

describes a novel approach for automatically inferring and configuring a computing envi-

ronment capable of executing any Python code snippet without encountering import errors.

Their process involves constructing a knowledge base of known Python packages, leveraging

static and dynamic analysis, and association rule mining to find package dependencies. The

authors introduced DockerizeMe, which generates an environment configuration in the form

of a Dockerfile for the Docker container system which can be easily reproducible. Accord-

ing to their experimental results, DockerizeMe achieves a 30% improvement in environment

configuration efficiency over a baseline method.

2.2 Reproducibility

To the best of our knowledge, there has been no large-scale study conducted on the qual-

ity and executability of R Markdown files. In contrast, numerous studies have explored

8

the quality and reproducibility of Jupyter Notebooks which is similar to R Markdown files

because both are designed to support literate programming. As an illustration, Pimentel

et al. [11] did a reproducibility study, identified the best and worst practices for repro-

ducibility in Jupyter Notebooks for the Python language, and suggested ways to enhance

reproducibility. However, the authors acknowledge the need for further work, including

the development of tools that can identify hidden states, out-of-order cells, and undeclared

dependencies in order to address bad practices.

However, Rudolf at al. [12] thoroughly examined publicly available workflows, particu-

larly those that are written in the Taverna 2 language, which is used for creating workflow,

and hosted on the myExperiment platform [13]. Their investigation was focused on finding

weaknesses in different Taverna processing components. They conducted a static analysis

of processor usage and configuration. Afterwards, automated attempts were performed to

execute each workflow, with manual inspections added in case of issue. Based on these ob-

servations, they presented a series of suggestions to increase workflow reproducibility. Their

results point to several ways to address problems, from improving the publishing and mon-

itoring procedures to fine-tuning workflow definitions and insertion of auxiliary metadata

such as Research Objects which allows for a semantic description and linking of other ob-

jects employed in the research investigation. Interestingly, a large percentage of workflows

had execution issues, which were frequently caused by seemingly insignificant errors such as

the absence of example values for input parameters and missing libraries for Java programs.

Saikat et al. [14] examined the reproducibility of issues in 400 posted questions to identify

how software developers use Stack Overflow to solve problems. To find out how replicable

the code is, the researchers spent 200 man-hours parsing, compiling, executing, and even

carefully examining the code segments. The observation reveals a two-fold outcome: First,

22% of the code segments totally fail in replication attempts, and second, 68% of the code

segments require adjustment to reproduce issues that have been reported. After investigat-

ing the causes of non-reproducibility, they proposed evidence-based recommendations for

writing effective code examples in Stack Overflow questions. In addition, they found that

questions with reproducible issues are three times more likely to have accepted answers

than questions with non-reproducible issues.

Ana et al. [15] used publicly available replication datasets which were hosted on the

Harvard Dataverse repository to examine research code quality and performance. they

conducted their study by examining around 2000 replication datasets and 9000 unique R

files from 2010 to 2020. The investigation determines the code’s usability by executing it

in a clean runtime environment to detect common coding errors. Their analysis shows that

74% of the R files encountered errors during the initial execution, while 56% of the issues

9

were found even after code cleaning, emphasizing the importance of strong coding practices.

Our work is different from this work in several ways. Firstly, they considered the replication

dataset hosed in the Harvard Dataverse repository while we considered R Markdown files

that are publicly available in Github. Our dataset is bigger than theirs. Secondly, they

tried the installation of 200 common libraries and in the data cleaning part, they tried to

install the library which is not installed. On the contrary, we used renv to identify the all

dependencies and install them. Finally, they didn’t predict the executability of a file while

developed classifiers to predict the executability of R Markdown files.

2.3 Dependency Conflict

German et al. [16] point out challenges in managing dependencies, focusing on problems

pertaining to the downloading, building, and satisfying interdependent artifacts that might

not have explicit documentation. They introduce a framework for classifying dependency

types and introduce a technique to create and visualize an interdependency graph for pack-

ages. Horton et al. [17] presented Version 2 (V2), an advanced version of DockerizeMe

[10] that goes above and beyond by adding the ability to intelligently analyze dependency

versions and validate multiple environments. They mentioned that despite code snippets’

abundance, they face obstacles to reuse because of a lack of accompanying environment con-

figuration. The absence of active maintenance aggravates the issue, leading to discrepancies

between the code snippet and the most recent configuration. Recent efforts emphasize the

vital role of validating and detecting out-of-date code snippets for effective reuse. How-

ever, distinguishing between correctness and mere obsolescence is a difficult task. In the

best-case scenario, well-documented breaking changes facilitate manual detection of out-of-

date API usage, whereas, in the worst-case scenario, exhaustive searches through previous

dependency versions are required. With the release of V2, their method seeks to detect

isolated cases of configuration drift, especially if the snippet makes use of an API that en-

countered a breaking change. Every drift instance that has been found is characterized by

a validation failure along with a configuration patch containing the required dependency

version changes to fix the underlying problem. By leveraging feedback-directed search, V2

reduces the number of configurations that need to be validated by methodically exploring

the possible configuration space. When V2 is used on a collection of publicly available

Python snippets, it effectively detects 248 cases of configuration drift. After that, Wang et

al. [18] performed an empirical investigation to assess the impact of dependency-resolving

strategy, which revealed changes in one DC (Dependency Conflict) manifestation pattern

(Pattern A) while another (Pattern B) remained consistent. They found inefficiency issues

in Pattern A and time/space waste in Pattern B. To address these issues, They developed

smartPip, a tool that uses a knowledge base for Pattern A and improves the virtual en-

10

vironment solution for Pattern B. SmartPip outperformed existing tools in open source

projects, obtaining speedups of 1.19X - 1.60X for Pattern A while decreasing storage space

by 34.55% - 80.26%, with improvements of 2.26X - 6.53X for Pattern B compared to the

built-in Python virtual environment (venv).

In a similar spirit, Lungu at al. [19] identify dependencies extending beyond specific

projects within a software ecosystem. By introducing a model that can capture inter-

project dependencies, they contribute to a deeper understanding of dependencies within

the context of software development.

2.4 Dependency Management

Among the R package management tools, renv [7], packrat [20], devtools [21], check-

point [22], and pacman [23] are management tools that offer different functionalities to

meet the requirements of different users in the R programming community. The com-

parison table (Table 2.1) clarifies important characteristics. Additionally, we provide an

example of a lock file in figure 2.1 to demonstrate how they are stored. To begin with, tools

that support lockfiles include renv [7], packrat [20], and checkpoint [22]. These tools ensure

reproducibility by keeping track of package versions. Renv [7] and Packrat [20] are excellent

in dependency isolation because they allow users to create environments that are specific

to their projects, which prevents dependencies from interfering with one another. Renv [7],

Checkpoint [22], and Pacman [23] all have the handy feature of automatically installing

dependencies, which makes setup easier. Renv [7] and Packrat [20] support project-specific

configurations, which allow users to install and maintain versions of packages specific to a

project. Notably, automatic snapshot creation is an extra benefit offered by renv [7] and

packrat [20], which further streamlines the process. The selection of a tool is contingent

upon the particular requirements and inclinations of the R user, as each tool offers distinct

advantages.

Table 2.1: Comparison of R Package Management Tools.

Feature renv packrat devtools checkpoint pacman

Lockfile Yes Yes No Yes No

Dependency Isolation Yes Yes No Yes No

Dependency Installation Automatic Manual Manual Automatic Manual

Project-Specific Yes Yes No Yes No

Automatic Snapshots Yes Yes No No No

11

R version number

Package name

Package version number

Figure 2.1: An example of a lock file.

2.5 Restoring Executability

Several techniques have been proposed to address these challenges and enhance reproducibil-

ity in Jupyter Notebooks. Osiris [24], the first technique to restore the executability of

Jupyter Notebooks, is focused on automatically restoring the execution cell order. In-

correct execution order of notebook cells can prevent the executability of the notebook.

Following up on this work, the author of Osiris, Jiawei et al. [24] also presented Sniffer-

Dog [25] to restore the executability. Jiawei et al. [25] have taken a major step towards this

goal in addressing the challenges of restoring the execution environments of Jupyter Note-

books. They pointed out a common problem wherein dependencies are not stated clearly,

which prevents the execution of a notebook. They introduced SnifferDog which overcomes

this problem by analyzing imports and usages of APIs in notebooks, matching them with

libraries in different versions. SnifferDog then finds library candidates that were used to

create the notebook and searches for configurations to make the notebook fully reproducible.

Apart from that to restore the executability of Jupyter Notebooks, Chenguang et al. [26]

introduced a technique, called RELANCER, that restores the executability by automatic

upgrade of deprecated APIs. It uses an iterative runtime-error-driven approach to detect

and resolve individual API problems in almost real-time. Based on runtime error messages,

the system uses a machine-learned model to predict which API repairs are required, encom-

passing updates in API or package names, parameters, or parameter values. RELANCER

12

combines information from API migration examples on GitHub and API documentation

for generating a search space for candidate repairs. They also employed a second machine-

learned model to rank these candidates. RELANCER outperforms a baseline without its

machine learning models, which can only fix 24% of subjects, by restoring execution for

49% of them in a real-time scenario with a 5-minute time limit. However, their result is

based on the evaluation of a dataset of 255 notebooks which might not represent the whole

scenario for all kinds of data.

In case of R Markdown files, however, such efforts are still lacking. Therefore, a large-

scale study exploring the quality and reproducibility of R Markdown files is necessary to

identify best practices and develop tools that can enhance their executability. This study

will be beneficial to researchers who use R Markdown files for their computational research

and can provide them with guidelines on how to enhance the quality and reproducibility of

their work.

2.6 Conclusion

In this section, we examine relevant research and delve into background material to strengthen

the reasoning behind the thesis. We introduce the notion of executability and discuss sev-

eral works that deal with this facet. Furthermore, we also briefly discuss research on re-

producibility. An explanation of several dependency management solutions is presented

after a thorough review of methods for resolving dependence conflicts. Finally, we examine

methods for resolving executability-related concerns.

13

Chapter 3

On the Executability of R

Markdown Files

3.1 Introduction

Donald Knuth introduced the literate programming paradigm where the goal is not to

write code to complete a task but to focus on explaining the process that leads to the

development of that code [1]. This is done by writing documentation interspersed with

code and computation results. Literate programming paradigm gains popularity due to the

necessity of sharing data analysis results that can be understood and reproduced easily.

As the design of the code is self-documenting and a great view of the style is spread all

along the file, it is easier to reuse. At the time of any extension, this documentation helps

programmers to get an idea about where it needs to be updated and what to do.

R Markdown files are examples of literate programming documents that are used by

researchers and data scientists to share their study results. To reproduce a study result, it

is important to understand the process that converts the input data to the final result in

successive steps. R Markdown files facilitate sharing reproducible study results since the

code, result, and narratives that describe the computational steps (i.e., the process) and

explanation of the result are located in the same place. Despite the popularity of R Mark-

down files, we know nothing about the executability of such files. This is important because

R Markdown files are designed to share reproducible study results and executing the files

is the first step toward reproducing the result. Understanding the challenges encountered

while executing those files can help us plan for possible actions to address the issue.

This chapter presents a study to understand the executability status of R Markdown

files. Toward this goal, we collected 191,966 R Markdown files from publicly available

GitHub projects. To understand the executability status, we execute each Markdown file by

separating their execution environment. We collect the error message if a file fails to execute.

14

We compared executable and non-executable Markdown files across different dimensions to

understand the differences between the two groups of files. Next, we conduct a qualitative

study to better understand the reasons that prevent the Markdown files from being executed.

We first structured our study along with the following two research questions.

• How executable is R Markdown files? Are there differences between the

executable and non-executable groups? Results from our study show that

64.95% of R Markdown files are not executable despite our best efforts. We investi-

gate the differences between the two groups of files by considering different features.

Results from our study show that the two groups of files are considerably different

from each other in terms of their characteristics. For example, non-executable group

of files depends on more libraries compared to that of the executable group.

• What are the reasons that hinder the executability of R Markdown files?

Through a qualitative study, we identify three main reasons that hinder the exe-

cutability of R Markdown files. These are a) Missing libraries (69.76%) b) Missing

data (19.12%) c) Erroneous Code (11.12%).

We have found that a large number of R Markdown files suffer from issues that prevent

the executability of those files and their exists differences between the two groups of files

(i.e., executable vs non-executable). Users who wish to search and reuse online Markdown

files may not be aware of these problems. A classifier can warn users if the selected document

is highly likely to suffer from executability issues. Such a classifier can also warn the authors

of those Markdown files, and suggest guidelines to ensure executability and reproducibility

of those documents. Code search engines can also include such a classifier in their ranking

to ensure that the top-ranked files are highly likely to be executable. Thus, we build

classifiers considering features related to R Markdown files across seven different dimensions.

Evaluation with a large number of R Markdown files shows that such a classifier

obtains a median AUC of 83.02%.

3.1.1 Data Collection

To conduct our experiment, we downloaded the GHTorrent dataset, which was released on

March 6, 2021. The dataset contains the metadata about the public repositories in GitHub.

We focus on projects with a primary language of “R” because they are more likely to contain

R Markdown files. After analyzing the data, we collected a total of 773,512 R projects. We

remove those projects that were created through forking or are deleted from GitHub (i.e.,

they are no longer available) from our analysis. We were left with 383,452 projects after

removing forked and deleted projects. This final list was used to clone the projects in our

local machine.

15

We searched for R Markdown files after cloning those target projects locally. Sur-

prisingly, only 16% of those cloned projects contain at least one R Markdown file. After

removing those projects that do not contain any R Markdown files, we obtained 59,089

projects that contain 191,966 R Markdown files.

To provide some statistics of our studied dataset, the minimum number of R Markdown

files per project is one and the maximum number is 556. Interestingly, a small number of

projects in our studied dataset contain the majority of the R Markdown files. For example,

we found that 14.89% of projects in our studied dataset contain five or more R Markdown

files, which contain 58.07% (i.e., 111,496) R Markdown files.

GHTorrent
Dataset

R Markdown
Files

Has a
package

management
system?

Yes

No
Use renv to detect

package dependencies
and install latest versions

of those packages

No

Install specified
versions of
packages

U
se the package

m
anagem

ent system
 to

install the latest version of
packages

Contain
package
version

information
?

Execute code chunks of
each document from top

to bottom

Stop executation and
remove the file from

analysis

Execution
takes more

than 10
minutes?

Save output/
error messages

Yes

No

Filter
repositories

Clone a
repository

List of
repositories

Collect .Rmd
files

Yes

Cloned
Repository

Figure 3.1: Steps to execute R Markdown files.

3.1.2 Data Labelling

To conduct our experiment, we need to divide our studied dataset, containing 191,966 R

Markdown files, into executable and non-executable groups. Thus, we need to execute each

Markdown file and collect their execution status.

An R Markdown file can depend on packages that are external libraries and are not

included with base R installation. Two different R Markdown files can depend on different

versions of the same package. Thus, the execution of each document should be done in

separation so that external packages do not conflict with each other. Thus, we follow the

following process to execute R Markdown files.

Figure 3.1 shows the steps we followed to execute R Markdown files. In Appendix A, we

provide a step-by-step guide for executing R Markdown files automatically. We created a

virtual environment for each project that enables the dependencies of each project to be iso-

lated and avoids conflicts between different versions of the same package. To create a virtual

environment and install the necessary R packages, we entered commands (i.e., R functions

or scripts) in the command line of a terminal. We used the subprocess module of Python to

allow those commands to be executed from the Python scripts and collected the output. If

16

a project uses a package manager (e.g., devtools [21], renv [7], packrat [20], checkpoint [22],

automagic [27], or jetpack [28]), the necessary packages were installed using those package

management tools. To further automate the process of installing dependencies, installa-

tion procedures were created for each package management tool, in case they were used.

Furthermore, when package management tools were not used, we used the renv package

manager to install the necessary dependencies. We used the renv::init() function which

includes all the project’s R packages in the newly created project library. To do this task, it

crawls R files within the project to identify the dependencies using the renv::dependencies()

function.

Once the necessary dependencies have been installed, all the R Markdown files in each

R project directory are identified using the os and re modules in Python. After identifying

the R Markdown files, we rendered them using Rscript, a command-line tool for running R

scripts. Then we used the subprocess module in Python to execute the Rscript command

for each R Markdown file. After completing the rendering process for the R Markdown file,

we saved the output for future analysis. After execution of all Markdown files of a project,

the virtual environment is deactivated and removed. This frees up system resources and

avoids conflicts between different virtual environments.

Around a quarter (25.83%) of R Markdown files in our studied dataset failed to complete

their execution within the execution time limit of 10 minutes. Upon investigation, we

found that those documents were involved with processing large datasets (e.g., training

machine learning models with large datasets) resulting in prolonged times to complete their

execution. As a result, these files could not be executed within the specified time limit.

Thus, we removed those files from our analysis, and the remaining files (142,717) were

labeled into executable and non-executable groups.

3.1.3 Features Collection

In this subsection, we describe the features we collected to understand the differences be-

tween executable and non-executable groups of R Markdown files.

We hypothesize that R Markdown files located in active, popular, and collaborative

projects are more likely to be executable since any issues in those projects are likely to be

identified and fixed quickly. We have collected ten features at the project level as a proxy

to capture the degree of activity, popularity, and collaboration of the project (e.g., number

of stars and developers). Data collection of these features was facilitated through the use

of the GitHub API [29].

At the file level, we have collected six features. For example, the total number of code

cells indicates the computational tasks performed within an R Markdown file. Correspond-

ingly, the total number of markdown cells reflects the degree of documentation present in

the R Markdown file. During our manual study, we observed that many R Markdown files

17

Table 3.1: STUDIED FEATURES THAT ARE RELATED TO SEVEN DIFFERENT
DIMENSIONS.

Feature Explanation (data type) Rationale

P
ro
je
ct

NumContrib The number of developers (numeric)

Higher values of these features indicate that
the project is well-maintained, popular and
collaborative. R Markdown files located
in those projects are more likely to be executable.

NumStars The number of stars (numeric)
NumForks The number of forks (numeric)
NumWatchers Total number of watchers (numeric)
NumDays The duration of the project in days (numeric)
NumCommits The number of commits (numeric)
NumClosedIssues The number of closed issues (numeric)
NumOpenIssues The number of open issues (numeric)
NumPullReqs The number of pull requests (numeric)

F
il
e

NumCommits The number of commits (numeric)

Higher values of these features indicate a
complex file which is more likely to be
non-executable.

NumContrib The number of contributors (numeric)
NumCodeCells The number of code cells (numeric)
NumMkdCells The number of markdown cells (numeric)
NumPaths The number of paths in the file (numeric)
NumCharFileName The number of characters in the file name (numeric)

R
ea
d
ab

il
it
y

FleschMkdCells

These metrics are calculated by the length of sentences
and the number of syllables per word, that are used to
quantify the readability of the text (numeric)

We are interested in learning whether the
readability of an R Markdown file has any
impact on its executability.

FogMkdCells
LixMkdCells
KincaidMkdCells
AriMkdCells
SmogMkdCells

D
ep

en
d
en
cy

NumImpLib The number of imported libraries (numeric)

An R markdown file with high dependency
values is difficult to maintain. Thus, the file is
more likely to be non-executable.

OrdDepTree
The number of dependent libraries of those imported
libraries (numeric)

PkgMang Type of package manager (categorical)
NumImpRFile The number of imported r files (numeric)
NumImpDataFile The number of imported data files (numeric)
NumImpStmt The number of import statements (numeric)
NumLang The number of used languages (numeric)

D
.
E
x
p
.

DevContrib The number of commit contributed by developer (numeric) We are interested in learning whether developer
experience has any relation with the
executability of the file.

DevContribRatio
The number of commits contributed by a developer/Total
number of commits in that repository (numeric)

C
o
d
e
Q
u
al
it
y NumBlkLin The number of Blank lines (numeric)

These features represent the code quality of R
Markdown files. We are interested in learning
whether code quality features have any relation
with the executability of R Markdown files.

NumComLin The number of Comment lines (numeric)
NumPhyLin The number of Physical lines (numeric)
NumWarn The number of warnings, errors and style

suggestions obtained from the linter output
for the file (numeric)

NumErrors
NumStyleSugges

C
on

te
n
t MkdText The words appear in Markdown cell (textual)

We are interested in learning whether certain
words are more specific to executable or
non-executable group of files.

ProjDesc The words appear in project description (textual)
LibList The library names appear in the file (textual)
LinterOutput The words appear in linter output (textual)

18

are not executable because the imported files are missing or the absolute paths used in the

documents are no longer valid. Thus, we consider the number of absolute paths and relative

paths used in the document as the features. A prior study on Jupyter Notebook shows that

a short file name may indicate quality issues present in that file. Thus, we consider the

length of the file name as a feature [11].

We collect seven different features for the dependency dimension. A Markdown file can

not be only dependent on external libraries but can also be dependent on external R source

files, R Markdown files, and data files. First, we collect the total number of packages used

in an R Markdown file by identifying the import statements used in that file. Second, we

determine the order of dependency for each markdown file using the Library.io dataset [30].

This is done as follows. If an R Markdown file (F) imports three different packages (namely

X, Y, and Z) using the import statement, we look into the Library.io dataset to identify the

directly dependent packages of X, Y, and Z. Together, all these packages represent the order

of dependency for F. R Markdown files can put code in R scripts and then run the code

using source() or sys.source(). We consider the number of imported R scripts by identifying

those statements. R Markdown often imports different data files (e.g., csv or text files) by

calling different functions (e.g., read.csv()). Thus, we also consider the number of imported

data files. Intuitively, the use of a package manager can help the project to better maintain

external library dependencies. Thus, we consider the name of the package manager used in

the project as a feature. An R Markdown file can contain code from other languages (e.g.,

Python, Julia) and depends on different language engines for the purpose of their execution.

Thus, we also consider the number of languages used in a document as the feature.

The experience of a developer is determined using the developer contribution ratio fol-

lowing a prior work [31]. A developer X can have a lower contribution ratio than a developer

Y in another project even if X contributed more than Y. Thus, we also consider the number

of commits made by a developer as a proxy of his/her experience. An R Markdown file

can be edited by one or more developers. The more developers are involved in developing

a file, the more difficult it can be to maintain it. Thus, we take the median value when a

document is edited by multiple developers.

For the code metric dimension, we have considered six features. We perform static

analysis of R code using the lintr package [32] after merging all code chunks. We calculate

the remaining code metrics using the clock package [33].

For the readability dimension, we have collected six readability features. These are

Kincaid [34], ARI [35], Flesch [36], Fog [37], Lix [38], and SMOG [39]. We employ the

Python package readability to calculate the above-mentioned features for the description of

the project and the markdown text [40]. For the content dimension, we have considered

four different features. For each R Markdown file, we merge the content of markdown cells,

remove stop words, and calculate the frequency of words that appear in them using the

19

scikit-learn library in Python [41]. We repeat the same process three more times for the

remaining features where the words are coming from three different sources of information.

These are a) library names used in the file b) the description of the project that contains

the Markdown file c) output obtained from linting code cells written in R using the lintr

package.

3.2 RQ1: How executable are R Markdown files? Are there

differences between the executable and non-executable

file groups?

Motivation: Understanding the prevalence of the non-executability of R Markdown files

helps us to determine the severity of the problem. We are also interested in learning whether

the executable and non-executable groups of markdown files differ from each other. Our

investigation can provide a deeper understanding of the differences between the two groups

of files, not only from the perspective of their content but also based on the contributing

users.

Approach: We collect the output and error messages for those R Markdown files that

either complete their execution or throw exceptions within the execution time limit of 10

minutes (see Section 3.1.2 for more details). We also categorize those files into executable

and non-executable groups.

For each of the R Markdown file-related numeric features (see Section 3.1.3 for more

details), we perform the Mann–Whitney U test [42] to determine whether or not the differ-

ences between executable and non-executable groups of Markdown files (along the collected

numeric features) are statistically significant. We obtain a p-value by running the Mann-

Whitney U test to compare two groups. We use a predetermined level of significance, which

is 0.05, to compare the p-value. If the p-value is equal to or less than the significance level,

we reject the null hypothesis and conclude that there is a significant difference between the

two groups. We also use the Cohen’s d test to measure the magnitude of the differences.

We use the thresholds provided by Cohen [43] to determine the effect size, where |d|< 0.2

indicates that the effect size is negligible, 0.2 ≤ |d|< 0.5 indicates that the effect size is

small, 0.5 ≤ |d|< 0.8 indicates that the effect size is medium, otherwise the effect size is

large.

Result: A large number of R Markdown files failed to complete their exe-

cution. To be precise, 92,695 R Markdown files (64.95%) encountered errors out of the

total processed files (142,717), while only 50,022 (35.05%) R Markdown files were executed

successfully without any issues. Subsequently, we continued our investigation to determine

20

Table 3.2: P-value & Cohen ’s |d| for the studied numeric features.

Mean/Median/Min/Max

Dimension Feature Executed Non-executed P-value & Cohen ’s |d|

Project

NumContrib 3.99/2.00/1.00/254.00 2.83/2.00/1.00/286.00 >=0.05 & 0.11 (N)
NumStars 29.05/3.00/0.00/4453.00 22.23/3.00/0.00/5926.00 <0.05 & 0.04 (N)
NumForks 9.05/2.00/0.00/2004.00 6.25/2.00/0.00/1956.00 <0.05 & 0.05 (N)
NumWatchers 29.05/3.00/0.00/4453.00 22.23/3.00/0.00/5926.00 <0.05 & 0.04 (N)
NumDays 822.85/1308.00/1.00/5005.00 869.05/1320.00/1.00/5479.00 <0.05 & 0.05 (N)
NumCommits 353.32/155.00/1.00/21104.00 242.84/166.00/1.00/47517.00 <0.05 & 0.09 (N)
NumClosedIssues 44.41/2.00/0.00/6744.00 28.82/3.00/0.00/6744.00 <0.05 & 0.07 (N)
NumOpenIssues 5.60/1.00/0.00/816.00 3.45/1.00/0.00/630.00 >=0.05 & 0.09 (N)
NumPullReqs 20.81/1.00/1.00/2018.00 12.34/1.00/1.00/2018.00 <0.05 & 0.09 (N)

File

NumCommits 3.76/3.00/1.00/335.00 5.15/5.00/1.00/527.00 <0.05 & 0.14 (N)
NumContrib 1.22/1.00/1.00/45.00 1.26/1.00/1.00/23.00 <0.05 & 0.05 (N)
NumCodeCells 4.99/6.00/0.00/287.00 13.76/16.00/0.00/622.00 <0.05 & 0.60 (M)
NumMkdCells 5.44/7.00/0.00/2344.00 13.23/16.00/0.00/621.00 <0.05 & 0.47 (S)
NumPaths 0.62/0.00/0.00/154.00 2.01/2.00/0.00/591.00 <0.05 & 0.26 (S)
NumCharFileName 13.55/18.00/1.00/101.00 15.66/20.00/2.00/136.00 <0.05 & 0.24 (S)

Readability

FleschMkdCells 106.03/206.84/-2162.99/206.84 55.16/62.17/-2565.31/206.84 <0.05 & 0.71 (M)
FogMkdCells 6.61/10.63/0.00/268.76 11.01/12.67/0.00/294.17 <0.05 & 0.57 (M)
LixMkdCells 29.14/48.69/0.00/699.03 46.80/54.43/0.00/761.01 <0.05 & 0.72 (M)
KincaidMkdCells 0.96/11.10/-15.70/315.20 10.03/13.20/-15.70/376.60 <0.05 & 0.72 (M)
AriMkdCells 12.08/16.20/-16.30/1147.10 16.94/18.70/-16.30/1076.50 <0.05 & 0.26 (S)
SmogMkdCells 3.87/13.75/-39.61/760.80 12.37/15.43/-39.61/1260.35 <0.05 & 0.46 (S)

Dependency

NumImpLib 1.21/1.00/0.00/528.00 4.01/5.00/0.00/372.00 <0.05 & 0.59 (M)
OdrDepdTree 19.35/22.00/0.00/5350.00 60.85/86.00/0.00/5712.00 <0.05 & 0.50 (S)
NumImpRFile 0.11/0.00/0.00/47.00 0.37/0.00/0.00/332.00 <0.05 & 0.12 (N)
NumImpDataFile 0.49/0.00/0.00/136.00 1.57/1.00/0.00/588.00 <0.05 & 0.23 (S)
NumImpStmt 1.21/1.00/0.00/528.00 4.01/5.00/0.00/372.00 <0.05 & 0.59 (M)
NumLang 0.72/1.00/0.00/3.00 1.01/1.00/0.00/4.00 <0.05 & 0.99 (L)

Developer Experience
DevContrib 2.74/3.00/1.00/220.00 3.62/4.00/1.00/239.00 <0.05 & 0.16 (N)
DevContribRatio 0.92/1.00/0.00/1.00 0.90/1.00/0.01/1.00 <0.05 & 0.07 (N)

Code Quality

NumBlkLin 33.35/39.00/0.00/16364.00 63.63/74.00/0.00/9031.00 <0.05 & 0.30 (S)
NumComLin 74.92/81.00/0.00/17569.00 107.76/122.00/0.00/10744.00 <0.05 & 0.20 (S)
NumPhyLin 28.67/28.00/0.00/4650.00 108.93/116.00/0.00/13756.00 <0.05 & 0.44 (S)
NumWarn 0.86/0.00/0.00/695.00 3.88/0.00/0.00/1687.00 <0.05 & 0.14 (N)
NumErrors 0.03/0.00/0.00/4.00 0.03/0.00/0.00/10.00 <0.05 & 0.05 (N)
NumStyleSugges 33.63/19.00/0.00/9892.00 138.91/123.00/0.00/34802.00 <0.05 & 0.29 (S)

whether these R Markdown files shared similarities or exhibited notable distinctions. This

investigation covered six key dimensions: project, file, readability, dependency, developer

experience, and code quality.

All the features except the number of open issues and the number of contrib-

utors in a project, are statistically significantly different between executable

and non-executable groups of files. For example, for the readability dimension, the

non-executable group of files obtains a lower Flesch readability score compared to that of

the executable group of files. The Flesch readability scores are statistically significantly

different between the two groups of files with a medium effect size. Table 3.2 shows the

comparison of studied numeric features between two groups of files, including the mean,

median, minimum and maximum values of each feature.

21

Non-executable files have significantly more dependencies compared to ex-

ecutable files. For example, non-executable R markdown files have an average of 0.37

dependent R files, 1.57 dependent data paths, 4.01 imported libraries, and 60.85 order of

dependency, respectively. In contrast, for executable files, these values were lower at 0.11,

0.49, 1.21, and 19.35, respectively. This is reasonable, as a file with more dependencies

is more likely to have broken dependencies. While both executable and non-executable R

Markdown files had a minimum number of zero, the maximum number consistently sur-

passed that of executable R Markdown files for those features, except for the number of

libraries used in that file. For example, considering executable files, the maximum number

of libraries used in a single file was 528 whereas it was 372 for non-executable files. The

maximum value for the order of dependency for R Markdown files is 5,350 for an executable

file, in contrast, the value for the non-executable file is higher, specifically 5,712.

Non-executable R Markdown files exhibited consistently larger feature val-

ues in the realm of code quality compared to executable R Markdown files. The

averages for non-executable R Markdown files, considering the number of lines, blank lines,

comment lines, and physical or code lines were 280.33, 63.63, 107.76, and 108.93, respec-

tively. In contrast, executable files showcased lower mean values of 136.96, 33.35, 74.92,

and 28.67 for the same categories. For executable R Markdown files, the average number

of messages in linter output is lower, roughly 34.51, than the non-executable group of files

for which the value was 142.82. Though both non-executable and executable R Markdown

files have a minimum value of zero, the maximum values for executable files surpassed all

features except the number of physical lines representing code. The disparities in code

quality-related features between non-executable and executable files were statistically sig-

nificant (p− value < 0.05) with a small effect size (such as for comment and blank lines the

values were 0.20 and 0.30, respectively).

In case of the file dimension, non-executable files have higher feature values

(e.g., higher commits, contributors, paths used in the file) compared to that of

executable files. Non-executable R Markdown files, on the whole, showcased

greater values in terms of contributions compared to executable R Markdown

files. For example, non-executable files have an average commit of 5.15 whereas the value

is 3.76 for the executable files. Here, the effect size of commits, and contributors are neg-

ligible whereas the effect size is medium for the number of code cells between executable

and non-executable groups of files. The mean values for non-executable files, regarding the

total contributors and commits, were 1.26 and 5.15, respectively. In contrast, for executable

files, these values were slightly lower at 1.22 and 3.76. Despite both non-executable and

executable files have a minimum of one contributor, the maximum number of contributors

22

and commits consistently surpassed that of executable R Markdown files. The disparities in

contribution-related features between executable and non-executable files were found sta-

tistically significant (p− value < 0.05), accompanied by negligible effect size, 0.05 and 0.14

for the number of contributors and commits, respectively.

3.3 RQ2: What are the reasons that hinder the executability

of R Markdown files?

Motivation: Understanding why R Markdown files are not executed can benefit us in

two ways. First, R Markdown users can understand the problem better and make neces-

sary changes to execute those documents. Second, tool developers can develop automated

techniques to support the execution of such documents.

Approach: We conducted a qualitative study to determine the underlying reasons

that prevent the execution of Markdown files. It is not feasible to manually analyze all

non-executable Markdown files for this qualitative study. Thus, we randomly sampled 387

Markdown files to obtain a 95% confidence level with a margin of error of 5%. We perform

the random selection of files using the pandas.DataFrame.sample function [44] to conduct

the manual study. We performed an open-coding-like process on the sampled non-executable

Markdown files to identify the reasons that prevent the execution of those files. The process

is summarized as follows.

• Two participants checked the error messages obtained while executing the Markdown

files and manually investigated the files without any specific reasons in mind. The

error message we obtained may not represent the underlying reasons that affect the

executability of the markdown files. For example, while executing a markdown file

we received the following error message: “Error in library (AlphaSimR): there is

no package called “AlphaSimR”. However, it is not clear what prevents the library

from being installed without further investigation. For the purpose of this study,

participants review prior research papers, online documentation, and GitHub issues

to identify the underlying reasons.

• A set of reasons was derived from the manual study. The sampled Markdown files

are then categorized based on these derived reasons. If there was a disagreement

during the manual study, the participants discussed it with each other to make the

final decision.

• We computed Cohen’s kappa [45] to measure to inter-rater agreement before the

disagreement was resolved. The higher the kappa value, the better the agreement

23

Table 3.3: List of reasons that hinder the executability of R Markdown files.

Reasons Number of files Percentage (%)

Dependency not installed 171 44.18

Library not installed 91 23.51

File missing 56 14.47

Semantic error 40 10.34

Local directory missing 18 4.65

Deleted library 5 1.29

Outdated library 3 0.78

Syntax error 3 0.78

between the observers. We obtained a kappa value of 0.81 which indicates a high

degree of agreement.

The result from our manual study is summarized as follows.

Results: Our qualitative analysis identified the following reasons that hinder the ex-

ecution of R Markdown files (see Table 3.3 for the distribution of manually analyzed R

Markdown files).

3.3.1 Missing libraries

The most common problem that hinders the executability of R Markdown files is missing

libraries. Around 270 out of 387 files that we manually analyzed were unable to execute

due to missing libraries for various reasons. We describe those reasons in the following

sub-sections.

3.3.1.1 Dependency not installed

This is the most common issue we observed. 171 out of 387 files encountered this issue.

Each library depends on other libraries to complete its tasks, and if these dependencies

are not correctly installed, errors can occur. To illustrate this, let’s take the example of a

library named leaflet, which is used to create interactive web maps within an R Markdown

file. When renv was used to manage the dependency, it identified the library correctly.

However, leaflet has dependency on several libraries, such as raster and sf. The raster

library depends on another library, called terra, which has specific system requirements

(e.g., C++17, GEOS (= 3.4.0), GDAL (= 2.2.3), PROJ (= 4.9.3), sqlite3). When we

tried to install terra, it required those specific system requirements to be installed. If

those requirements are not found on the system that will fail the installation of the terra

library. Failure to install terra impacts the installation of raster which ultimately causes

the installation of leaflet library to fail.

24

Another example is rJava, which is a low-level R to Java interface. We found that rJava

also has system requirements (Java JDK 1.2 or higher (for JRI/REngine JDK 1.4 or higher)

and GNU make). If JDK is not available on the system, the installation of rJava will fail.

3.3.1.2 Library not installed

23.51% (91 out of 387) of the R Markdown files were not executed due to a library not being

correctly installed (triggering errors, such as “Error in library”). Upon closer examination,

we found that renv primarily depends on the CRAN for installing libraries. The package

management tool renv offers some parameters to be configured, such as repos and biocon-

ductor for downloading libraries from alternative sources (such as GitHub repositories and

Bioconductor). However, it struggles to install libraries that are hosted in places other than

CRAN and requires manual installation of libraries for such cases.

For instance, let’s consider a library named ggtree that is used for visualizing tree and

annotation data. When we used renv to automatically install imported libraries in an R

Markdown file, renv correctly identified the library but failed to install it because the library

is hosted in Bioconductor.

3.3.1.3 Outdated library

We also found 3 (out of 387) cases in which outdated libraries hinder the execution of R

Markdown files. For example, in an R Markdown file, renv tried to install and load a library

named EBImage that is located in Bioconductor. The R Markdown file used the biocLite

function to install the package pragmatically from Bioconductor. However, the function

is now outdated and BiocManager is now used to install any libraries from Bioconductor

for R version 3.5 or greater. Here, the developer used the outdated function to install the

library. Thus, we failed to install the required library that prevented the execution of the

R Markdown file.

3.3.1.4 Deleted Library

We also found some libraries that were used in R Markdown files but are no longer available

now as those libraries were removed from CRAN. In total, 5 out of 387 files had this issue.

Thus, we were unable to execute those files. For example, HydeNet was used in an R

Markdown file but is now removed from CRAN. When renv tried to install the dependency,

it produced an error because the target library is no longer available.

3.3.2 Missing data

Developers occasionally forget to modify local paths in their code before committing it or

forget to upload required file(s), which can prevent R Markdown files from being executed

25

because those paths or files are no longer available. The following section describe each of

those cases.

Figure 3.2: An example of missing a local directory.

3.3.2.1 Local directory missing

18 out of 387 files were not executed because of missing directories. This error occurs when a

developer uses a local directory of their system in an R Markdown file, but forgets to remove

it from the R Markdown file before committing it . When someone downloads the R Mark-

down file and tries to execute it, the file fails to execute because the path to the directory is

no longer available. For example, a developer used “setwd(“C:/Users/Charles/Desktop/Cour-

sera/Reproduceable Research/repdata-data-activity”)” to change the working directory (see

figure 3.2). When we cloned the project and tried to execute the file we received the follow-

ing error: “Error in setwd”. This is because the location to the directory is invalid in our sys-

tem. For better understanding, we can consider another example where a user assigned the

following path to the workDir variable: “/home/noble mannu/Documents/PhD/First/STAT 21

31 Applied Statistical Methods I”. After assigning the variable the user changed his work-

ing directory using setwd(workDir) command. When we tried to execute the file we received

an error message. This is because the path does not exist in our system. For better under-

standing, we can look for another example in figure 3.3 where the developer tried to set

26

the working directory to “/home/eco/work/npde/npde30”. When we tried to run that file,

Error in ‘setwd()’: hinder the execution. This occurred because the path only exists in the

creator’s system, not ours.

Figure 3.3: Another example of missing a local directory.

3.3.2.2 File missing

We also found a noticeable amount (i.e., 56 out of 387 files or 14.5%) of R Markdown files

that were not executed because of missing files. It is found that developers accessed files in

R Markdown files to complete certain tasks. When they committed those Markdown files

in GitHub, they forgot to upload those required files. For example, when we downloaded an

R Markdown file and tried to execute the file, we found an error that stopped the execution

of that file. When we further analyzed the error, we found that the Markdown file used

27

Figure 3.4: An example of missing a file.

“fread(“FARS/2015/PBType.csv”, sep = “,”, header= TRUE)” to read a CSV file but

CSV file was not available in the project (see Figure 3.4). The missing file prevented the

execution of the R Markdown file. Another example is in figure 3.5), where the developer

created an R Markdown file to create a report. At the beginning of the file, he read a CSV

file “2018 2019 site.csv” to create that report. When we downloaded that file and tried to

execute it, it stopped its execution because of the unavailability of the CSV file.

3.3.3 Erroneous Code

R Markdown files failed to execute because of the presence of erroneous code in those files.

We observed two different types of errors (i.e., syntax error and semantic error) caused the

issue.

3.3.3.1 Syntax error

3 files failed to execute due syntax errors. For example, we encountered an R Markdown

file that was not seamlessly merged. The file failed to execute because of the presence of

surplus syntax in it (see Figure 3.6).

28

Figure 3.5: Another example of missing a file.

3.3.3.2 Semantic error

Semantic errors, also known as logical errors, occur when R Markdown files are syntactically

correct but there are some logical errors in those files. Around 10.5% (40 out of 387) of

files were not executed due to such error. For example, we found a file where a variable db

is assigned a value based on certain conditions. If the condition does not satisfy, db will

be set to null because there is no default value for this variable. When we tried to execute

the file, it produced errors because of the null value. If the developer could manage the

null value carefully, it would not produce such errors. For better understanding, we can

consider another example where a dataframe is created with fixed column names: Maths,

Geography, English, Physics, Chemistry, and Sex. When a developer added a new row

containing values for all the columns except Chemistry, it produced an error as the number

29

Figure 3.6: An example of a syntax error.

of column arguments did not match. Another example, within the context of the figure

3.7, the file path is assigned using the variable datadir. However, upon close inspection, we

found that there was no initialization or assignment above it. Consequently, we failed to

execute the file because the variable was not defined previously.

3.4 RQ3: Can we predict whether an R Markdown file is not

executable?

Motivation: We have found that 64.95% of R Markdown files are not executable, even

though they are meant for sharing and supporting reproducible results. A non-executable R

Markdown file can cause even more confusion for novice users when they try to reproduce

the study result. This is because they may not be familiar with the underlying reasons

that hinder the execution of the file. In our study, 25.83% of all R Markdown files failed

to complete their execution within 10 minutes, the actual time to complete their execution

can be even more. Such a long waiting time makes it difficult to test the executability of

R Markdown files through execution, particularly when the goal is to search for reusable

documents to complete a development task. Thus, we are interested in learning whether

we can build a classifier to predict the executability of R Markdown files. The classifier can

30

Figure 3.7: An example of a semantic error.

alert users about executability issues when they select an online Markdown file to use. Such

a classifier can also be used by search engines to automatically filter files that are highly

likely to be non-executable.

Approach: We consider the problem as a binary classification task. It is important

to identify viable factors for the success of the classification. We use all the factors across

seven different dimensions that were discussed in Table 3.1. In the following subsections,

we describe the methodology of building classifier(s), evaluation metrics, and analysis of

the result.

Classifier Construction: We consider five different classifiers in this study. These are

Gaussian Naive Bayes, Logistic Regression, Decision Tree, Random Forest, and Extreme

Gradient Boosting (XGBoost). Prior studies in the software engineering area also used

these classifiers. Gaussian Naive Bayes is a probabilistic classification algorithm based on

Bayes’ theorem that assumes the features follow a Gaussian distribution [46]. The reason

why the algorithm is called ‘naive’ is because it assumes that all features are independent

of each other. This assumption is often regarded as too simplistic, but it can still produce

satisfactory results in real-world scenarios. Logistic Regression uses a logistic function to

convert feature values to binary outcomes [47]. Decision Trees are supervised learning algo-

rithms that predict the target variable by learning decision rules from input features [48].

31

Training Corpus Testing Corpus

Project, file,
readability,

dependency,
developer
experience
and code

metric
dimension

naive bayesian
classifier for

project
description

naive bayesian
score for project

description

naive bayesian
classifier for
markdown

content

naive bayesian
score

for markdown
content

naive bayesian
classifier for

library list

naive bayesian
score

 for library list

naive bayesian
classifier for linter

output

naive bayesian
score

for linter output

naive bayesian
score for project

description

naive bayesian
score

for markdown
content

naive bayesian
score

 for library list

naive bayesian
score

for linter output

Classifier (Gaussian
Naive Bayes,

Logistic Regression,
Decision Tree,

Random Forest and
Extreme Gra- dient

Boosting (XGBoost))

Model

Results

Project, file, readability,
dependency, developer

experience and code metric
dimension

Figure 3.8: Classifier creation for R Markdown files.

Random Forest is a robust ensemble learning method that combines the knowledge of sev-

eral decision trees [49]. XGBoost is a high-performance gradient-boosting algorithm that

shows high predictive power and exceptional speed [50].

Since the number of non-executable R Markdown files is significantly higher than the

number of executable files (i.e., the data is imbalanced. Around 65% of them are non-

executable and 35% of them executable.), we apply an oversampling algorithm, called

SMOTE [51]), to the training dataset to handle the data imbalance issue. When con-

structing the classifiers, we use the composite model architecture, similar to the prior work

of Ibrahim et al. [31], which consists of two steps (Figure 3.8). First, we construct a classifier

using the content to determine the likelihood of a file to be executable. For each of the

R Markdown files, the classifier provides the probability that the document belongs to the

executable category based on the content of the document. Please note that the content

can come from four different sources of information (these are project description, mark-

down content, library names, and linter output) and we construct the first-level classifier

for each source of information. Second, we combine the probability scores obtained from

the four first-level classifiers with the remaining features to determine whether the file will

be executable or not.

Performance evaluation: We evaluate the performance of classifiers using AUC (Area

under the ROC Curve) as the primary evaluation metric. The value of AUC ranges between

0 and 1. An AUC of 0.5 indicates random guessing. While an AUC of 0 indicates com-

32

Table 3.4: The performance of all five classifiers considered in our study. Here, the terms
DT, GNB, KNN, LR, and XGBoost refer to Decision Tree, Gaussian Naive Bayes, K-Nearest
Neighbors, Logistic Regression, and Extreme Gradient Boosting, respectively.

Classifier AUC Accuracy Precision Recall F1 score

DT 83.02
E 85.52 78.64 77.10 77.86
NE 85.42 87.41 88.36 87.88

GNB 74.36
E 77.93 75.07 60.61 67.05
NE 76.23 73.66 84.59 78.73

KNN 79.81
E 83.83 70.03 78.40 73.98
NE 84.38 89.59 84.72 87.09

LR 74.40
E 80.41 58.42 76.61 66.29
NE 81.83 90.38 80.13 84.95

XGBoost 82.68
E 86.33 72.66 84.29 78.05
NE 86.93 92.70 86.28 89.37

plete failure, an AUC of 1 indicates a perfect classifier. In addition, we also determine the

precision, recall, and F-measure. For all experiments, we use the 10-fold cross-validation to

measure the performance of a classifier. In the case of 10-fold cross-validation, the dataset

is randomly divided into 10 equal-size folds. We use one of the folds for testing and the

remaining nine folds for testing. The process is repeated 10 times and we record the average

value for each metric.

Results: Table 3.4 shows the performance of all five classifiers considered in our study.

The DT classifier shows a median AUC of 83.02%, the highest AUC value among all five

classifiers considered for this study. The result is closely followed by XGBoost, with a

median AUC of 82.68%. The remaining three classifiers (i.e., KNN, LR and GNB) also

perform well, obtaining a median AUC of 79.81%, 74.40% and 74.36%. If our goal is to

identify R Markdown files that are most likely to be non-executable (i.e., we do not want

to miss any non-executable file), XGBoost performs the best, obtaining 86.93% accuracy

for the non-executable file category. This is followed by LR (81.83%), KNN (84.38%), DT

(85.42%) and GNB (76.23%). Overall, all the classifiers perform well in our study. Thus,

the selected factors are effective in distinguishing non-executable R Markdown files from

those that are executable.

3.5 Discussion

3.5.1 Implications of our findings

Future research is encouraged to develop tools to resolve non-executable R

Markdown files (e.g., resolving dependencies/libraries issues). In RQ3, we devel-

33

oped classifiers to predict the executability of an R Markdown file and achieve good AUC,

which showcases the potential of building classifiers to detect non-executable R Markdown

files. However, how to resolve non-executable files requires future research. In RQ2, we ob-

serve the majority of the issues that lead to the failures of execution for R Markdown files

are related to missing and broken dependencies of libraries to be installed. For instance,

One research direction is to first analyze the specific system requirements for installing a

library (e.g., C++17, GEOS=(3.4.0), GDAL= (2.2.3), PROJ (=4.9.3,sqlite3)), then use a

large language model to generate the specific commands to resolve the system requirements

iteratively.

R Markdown files are usually written for data analysis tasks, and data itself plays an

important role as the R Markdown files. However, in RQ2, we observe that a remarkable

portion of the files failed to execute due to missing data. We strongly encourage the authors

of R Markdown files to make sure the data files are uploaded if possible. Authors should

also carefully document any dependencies and system requirements to ensure that the files

can be executed without problems.

3.5.2 Threats to Validity

Threats to external validity refer to the generalizability of our findings. In this study,

we collected markdown files from GitHub repositories whose primary language is “R”. To

collect the list of GitHub repositories we used the GHTorrent dataset released on March

6, 2021. Thus, we may miss repositories containing markdown files that are not tracked

by the GHTorrent dataset. Thus, the results from our study may not be generalized to

other repository hosting services or other markdown files. However, we want to highlight

the fact that GitHub is a popular hosting platform for Git repositories and we consider a

large number of markdown files in this study. The repositories can be changed due to the

evolution of those repositories (i.e., files can be added, deleted, or modified). However, we

considered the latest version of the repository at the time of conducting the study. Thus,

our results should largely carry forward.

Threats to internal validity refer to the bias and errors in conducting our studies. Due

to the large number of markdown files, it is not feasible to manually analyze markdown files

that are non-executable. Thus, we conducted the manual study on a sample rather than

the entire population. One can argue that our manual study may not be representative.

However, we would like to point to the fact that we consider a statistically representative

sample for our manual study that ensures a 95% confidence level with a 5% confidence

interval.

We conducted a manual study to understand the reasons that prevent us from executing

those markdown files. To avoid any biases, two participants investigated the markdown

34

files and labeled them separately. The high inter-rater agreement of our manual study

indicates a high degree of reliability of the study. The manual study was conducted by two

participants and it can be argued that this could lead to a biased result. However, both

of the participants have extensive experience in programming and software development -

more than five years in programming and three years specifically in R programming. They

performed the manual study objectively, without any preconceived assumptions, and they

made their decisions solely based on the collected data.

During our study, we did not perform any hyper-parameter tuning and considered the

default hyper-parameter values. We cannot guarantee that this will not affect the classifier’s

performance, and therefore, further research is required in this area. This remains as a future

work.

3.6 Conclusion

In this study, we investigate the executability of R Markdown files collected from open-

source GitHub repositories. We investigate the relationship between features related to

seven different dimensions and the executability status of those files. We find that 64.95%

of Markdown files failed to execute. We observe that all the studied features, except the

number of contributors and the number of open issues, are statistically significantly different

between executable and non-executable groups of files. Results from our manual study show

that library-related issues are the dominant factor that prevents the execution of Markdown

files. We also show that the selected features can be used to build a classifier that can

identify non-executable files with an accuracy of 92.69%. Such a classifier can warn users as

they search online for R Markdown files to reuse. Authors should carefully document any

dependencies and assumptions (e.g., version of R, package managers used, data, and session

requirements) to facilitate the reuse. Tool developers should focus on developing tools and

techniques to automatically correct runtime requirements of R Markdown files and R code.

While several studies have been done in the Python ecosystem [10] [18], such support is

considerably missing in the R ecosystem.

35

Chapter 4

RFT: A Smart Tool To Fix R

Markdown Issues To Restore

Executability

4.1 Introduction

R Markdown files act as solid examples of literate programming because they incorporate

R code, explanations, and results in a way that makes it effortless to execute and reproduce

study findings in documents. R Markdown files are meant to be reproducible but their

executability is still a little-studied topic that concerns users. In the previous chapter, we

investigated the executability of a large number of R Markdown files collected from GitHub

and found that a significant percentage (64.95%) of those files were not executable, even

with our best efforts. We investigated the errors that occurred during the execution of R

Markdown files to better understand the complexities surrounding this problem. Our results

emphasize the need for a more sophisticated understanding of the problems that prevent

the execution of R Markdown files. As a result, we offer a new classifier that is intended

to predict whether R Markdown files will be executable or not, without executing it. This

classifier has potential applications in search engine optimization, improving the ranking of

literate programming documents. It will help developers to find executable R Markdown

files, which will help to save resources, time and cost by ignoring the non-executable files.

Through manual investigation, we identify reasons that prevent the execution of R

Markdown files. These can be divided into three groups- a) Missing libraries b) Missing

data c) Erroneous Code. Dependency issue is the most common issue, impacting a sig-

nificant 44.18% of the files that we examined. If the libraries with their dependencies are

not installed carefully, the complex network of dependencies between libraries can cause

36

errors and make it difficult to execute R Markdown files. We also discovered cases where

R Markdown files used libraries that were either deprecated, removed from CRAN, or ren-

dered obsolete, which resulted in errors during execution. Apart from that, around 19% of

files can not be executed due to missing directories or files. This problem frequently occurs

when developers forget to change the local paths in their code or upload necessary files,

making the referenced paths or files unavailable for correct execution. Finally, a subset of

R Markdown files with execution problems caused by incorrect code was discovered by our

analysis. Our results highlight the complex range of obstacles that hinder the execution of

R Markdown files, including problems related to dependency handling, library accessibility,

path setups, and code correctness. These various obstacles must be addressed to guarantee

that R Markdown files run smoothly in different development environments.

Regarding dependencies, renv, Packrat, and devtools are the most popular tools in the

R package management community for managing dependencies in R Markdown projects.

Each tool offers a unique feature set and set of restrictions suited to various stages of the

development process. Devtools is particularly useful for package development tasks because

of its wide range of development tools and integration with GitHub. It is less appropriate

for guaranteeing project reproducibility, though, since it is deficient in features for isolating

project environments and in comprehensive dependency management. Packrat’s ability to

capture and manage dependencies unique to a project makes it highly reproducible. How-

ever, there is a higher learning curve and the packrat.lock file needs to be actively maintained

by users, which could be a burden. Renv, on the other hand, offers stringent version control

and thorough environment management while striking a compromise between development

and reproducibility. To integrate with other tools, users can run into compatibility prob-

lems or need to make additional configurations. The particular use case, project size, and

desired ratio of development flexibility to reproducibility assurance will determine which of

these tools is best. Users must carefully consider these factors and choose the tool that best

fits their workflow and project needs.

During our investigation, we found a flaw in renv’s capacity to track R versions associ-

ated with packages. Although renv does a good job of tracking package versions, it is not as

good at managing the R version, which leaves room for errors. Renv normally restores de-

pendencies using the system’s current R version rather than the version that was specified,

which could lead to compatibility problems. Moreover, renv introduces a possible source

of errors by not being able to determine the version compatibility between two packages.

When renv is utilized in a project without a package manager, there is still another dis-

advantage. Under these circumstances, renv downloads the most recent package versions

without confirming their compatibility, endangering the stability of the project. Developers

37

must be made aware of any potential problems with the file for them to address and fix any

compatibility or version-related problems, which will help to mitigate these problems. This

proactive approach can make a big difference in how smoothly projects are developed and

implemented.

Following a thorough investigation, it was found that a substantial large number of the

files had problems, most of which were caused by library-related issues that prevented them

from being executed. A more thorough investigation showed that these library errors ex-

tended beyond version-specific problems to include compatibility problems across various R

versions. The problem surfaced when trying to install a library inside the confines of a fixed

R version because the package manager, renv, only functioned within those restrictions. For

example, if the system version was 4.3.1 and renv stored R version 4.0.4, it would try to

restore dependencies in 4.3.1 rather than the necessary 4.0.4, which could lead to errors.

Additionally, our investigation produced instances of certain libraries that were incom-

patible with other libraries and could not be installed. Consider the conflict between the

libraries scales (version 1.1.0) and ggplot2 (version 3.4.4), for example (Figure 4.1). The

dependency error that appeared during the installation process was caused by the fact that

scales version 1.2.0 or a later version is required for ggplot2 version 3.4.4. As a result, an

error occurred because the scales version 1.1.0 was incompatible. The difficulties encoun-

tered highlighted the significance of carefully examining and managing dependency data in

order to improve the system’s overall effectiveness.

scales = 1.1.0

ggplot2 = 3.4.4 scales >= 1.2.0

Installing libraries Version
Conflict

Figure 4.1: An example of version conflict.

In order to improve the publishing process for R Markdown files, we created a special

tool named RFT (R Markdown Fixing Tool) that methodically evaluates each file and

helps users to fix any issues before publishing. To determine compatibility between versions

in dependency files, we use a knowledge base and the Z3 algorithm with SMT dependency

constraints. We can find and fix compatibility problems with this methodical analysis, which

sets the stage for a successful implementation. The use of Conda to install the appropriate R

version before moving on to dependencies is a crucial component of our methodology. We’ve

38

had a great deal of success with this approach, fixing dependency problems in a substantial

portion of files that were previously not executed because of compatibility problems. We

also provide support for system requirement identification, deprecated and deleted library

detection, and file and directory path validation. These tools are intended to address and

resolve potential issues that might occur. This creative solution guarantees a more seamless

and effective workflow when working with R Markdown files by expediting the publishing

process and enabling users to anticipate and address potential roadblocks.

4.2 Approach

We downloaded and attempted to run the R Markdown file in the previous section. We

discovered a few common problems that prevent the R Markdown file from being executed.

In this section, we develop a tool RFT (R Markdown Fixing Tool) (Figure 4.2) that, given

an R Markdown file as input, will identify which files may not be reproducible and which

parts require inspections to ensure their executability.

Figure 4.2: The working process of RFT.

4.2.1 Knowledge Base Creation

Building a thorough knowledge base is essential in the early phases of our process to gain a

deep comprehension of the complex dependencies linked to every software package. In order

to achieve this, the Comprehensive R Archive Network (CRAN) is our chosen repository

because it is the most popular repository to host R packages along with their versions.

39

Additionally, CRAN is a versatile platform that consists of web servers and FTP networks

that are used to host and maintain a wide variety of R packages.

Package Name

Version Number

Dependency List

System Requirements

Figure 4.3: Example of dependency package information.

Our process involves carefully extracting the most recent versions of the code for every

library, which are easily accessible on CRAN. Additionally, in order to guarantee a compre-

hensive analysis, we broaden our scope by downloading earlier versions of these packages

from a specified URL. Then, for each package version, a methodical examination is carried

out, carefully examining the DESCRIPTION file to extract and record each dependency.

Figure 4.3 illustrates an example DESCRIPTION file containing comprehensive depen-

dencies details of a package. The information is arranged logically in the file: “packages”

contains the names of the packages, “versions” the version number of the packages, “de-

pends” the list of libraries that the packages depend on, and “system requirements” the

list of requirements needed to install before installing the packages. Our approach entails

a methodical study of each package’s dependency file to collect these important facts sys-

tematically.

The gathered information is then combined with the corresponding version numbers to

keep everything precise and clear as it is arranged and structured inside a dataframe. This

knowledge base functions as a fundamental tool, providing an understanding of the complex

web of dependencies supporting every package. Using CRAN as our main source allows us

to have access to the most recent versions while also providing a complete historical view

by incorporating earlier versions.

Upon closer inspection, CRAN (Comprehensive R Archive Network) contains a reposi-

tory that houses 20,325 packages, each of which has multiple versions, making up a sizable

dataset with 158,564 unique versions. We methodically downloaded all of the packages and

40

recorded each one with its matching versions. We also examined dependencies in detail like

figure 4.3, resulting in the creation of a centralized store of dependencies for 158,564 unique

versions of those libraries.

To enhance the compatibility of SMT solvers with version constraints on dependency

packages, we apply a methodical way to transform each constraint (e.g., rJava==1.*) into

an SMT expression. The first step is to query the knowledge base to get an ordered list of

all the versions of the library in concern that were created when the knowledge base was

constructed from CRAN. We then use this version information to identify the versions that

satisfy the given constraint, and we use their index range to create an SMT expression. In

the case of rJava== 1.* for example, we can determine the versions 1.0-4, 1.0-5, 1.0-6,

and 1.0-10 by sorting the ordered list of 56 rJava versions. We transform rJava== 1.*

into the SMT expression 53 rJava 56 given that their index range is 53 to 56.

4.2.2 Collect Dependency Information

In the initial stage of our procedure, we start by carefully going over each file and methodi-

cally gathering data about the libraries that are used in them. A file usually depends on the

libraries that have been imported into it. Packages are typically imported into R using meth-

ods like require(package˙name), library(package˙name), and install.packages(”package˙name”).

We extract and create an extensive list of the imported packages by using these patterns.

This collected list is then utilized for compatibility testing, guaranteeing that these libraries

install without any problems.

4.2.3 Solving Dependency Constraint

This section primarily explains how to gather all necessary library version constraints for a

given R project. Additionally, we describe how to optimize version constraints.

4.2.3.1 SMT Expression Construction

We collect detailed dependency information while analyzing an R project using the proce-

dure described in the “Collect Dependency Information” section. Then we gather all the

transitively dependent libraries along with their version constraints by utilizing the local

dependency knowledge base based on the directly dependent libraries. We construct a sys-

tematic approach to build the SMT expression which is inspired by a previous work [18].

The description of the process is given below.

First, the R Markdown files in the projects are parsed, and the import statements are

looked at to determine direct dependencies. Then, TRUE is assigned as an initial value

41

to the SMT expression for version constraints, denoted as Expr. After that, the program

gathers the SMT expression, ExprLi, for each directly dependent library Li along with the

dependent libraries for Li. ExprLi and the overall expression Expr are subsequently merged

at each iteration using the conjunction operation.

Subsequently, the function LibraryAnalysis is utilized for this task, accepting three in-

puts: a collection of library names S, the version constraint VCi for Li, and the dependent

library name Li. When a library Li and its necessary dependent libraries are provided, this

function is in charge of producing the SMT expression of the version constraint. To avoid

calculating library SMT expressions that have already been collected twice, the input set s is

used. In order to prevent unnecessary computations, the function first determines whether

the library Li is already in the set S before adding it. After analyzing the version constraint

VCi using a knowledge base, it produces a list of versions, V. And after that ExprV, which

is the SMT expression for the version constraint, is initially set to FALSE. The function

retrieves the set of direct libraries D that are version-consistent with each version Vi in the

list V. Then it initializes the SMT expression for direct libraries, ExprD, to TRUE. The

function recursively calls itself on the direct library Di with its version constraint VCDi

and the set Si for each tuple in D. Between ExprD and the recursive result ExprDi, the

conjunction operation is executed to merge the data. For every version Vi, the disjunction

of ExprV and ExprD is updated in the SMT expression ExprV. Lastly, the function returns

the conjunction of ExprV and the original version constraint VCi after removing the library

Li from the set S. The function returns its version constraint VCi directly if the library Li

has already been resolved.

To summarise, the algorithm uses the LibraryAnalysis function to control the creation

of SMT expressions for specific libraries and their dependencies, iteratively examines direct

dependencies and the constraints they are linked to, and performs conjunction operations

to systematically construct SMT expressions for version constraints.

4.2.3.2 Optimization of Dependency Constraint

Our method uses the most widely used open-source constraint-solving tool, Z3-solver, to

solve the version constraints for the required libraries after gathering SMT expressions for

them [52] [3]. Our effort is motivated by a prior study [18] in which they optimized the

version constraints using Z3.

We use a methodical approach wherein Expr, an SMT expression, is the first input. The

aim is to produce a list L containing the names of libraries with version restrictions (e.g.,

“rJava== 1.0-10”). It starts by extracting all library names from Expr and loops through

42

each library in the resulting list, represented by LNi. Using the “AND” operation, it makes

a copy of the original expression (Exprcopy) for each version Vi in the retrieved versions

and incorporates the version constraint (LNi == Vi) into the expression. We will use the

constraint LNi == Vi to preserve the version Vi if it is satisfiable.

4.2.4 Handling the Installation of Libraries

A workable solution for the compatible versions of the necessary libraries is provided by the

step that solves dependency constraints. Then, our method turns this workable solution

into a dependency configuration file that can be used to successfully install the necessary

libraries. For example, the appropriate library versions for the project client are Lib-X

1.0.1, Lib-Y 2.0.1, and Lib-Z 3.0.1. Our method transforms these library versions into the

dependency configuration file, “RVersionRequirements.lock”, containing the equations Lib-

X = 1.0.1, Lib-Y = 2.0.1, and Lib-Z = 3.0.1. Afterward, it creates a compatible installation

script for the libraries to be downloaded.

4.2.5 Identifying Erroneous Code (SyntaxChecker)

After a R Markdown file is examined, our procedure entails determining whether any incor-

rect code is present. Finding semantic errors is difficult because every R Markdown file is

created with a specific purpose in mind, making it challenging to recognize logical problems

without having an in-depth knowledge of the reasoning behind them. Our main goal is to

detect syntactical errors within the file.

To overcome this issue, we parse the R Markdown file using Antlr [53]. When parsing

succeeds, it means there are no problems with the file, which is a sign of its integrity. On

the other hand, if an error occurs during the parsing process, our tool notifies users with

detailed information regarding the type of error that occurred, including the precise loca-

tion of error. Equipped with this useful data, users can quickly locate the appropriate line

and handle any problems that may arise. This meticulous process guarantees that the R

Markdown file is corrected accurately and is prepared for flawless execution.

4.2.6 Checking Missing Data (FilePathChecker & DirectoryChecker)

Around 19 percent of files have issues with non-execution, which are mainly caused by miss-

ing data. This includes situations in which execution fails because referenced directories or

files are not in the path that is supplied. The analysis finds gaps, like missing directories

that are expected to change the set directory but might only be present on the system of the

creator. It is crucial to resolve these differences in order to make sure smooth file execution

43

and proper system operation.

To address the first issue, we use a comprehensive approach for collecting file path infor-

mation via file parsing. Then, our program performs a methodical check to verify that these

files actually exist. It will provide no issues when files are found in their specified paths.

When the program fails to locate a file, it offers comprehensive information indicating the

exact location of the absent file along with the line that corresponds to it in the code.

Programmers sometimes use absolute file paths rather than relative ones, which makes the

file easier to identify locally but makes it irreproducible on other systems. Our tool finds

instances in which developers employed full paths rather than relative paths in order to

address this. After that, developers are quickly alerted to change the path based on our

tool’s instructions, guaranteeing smooth file reproducibility. This painstaking procedure

not only guarantees that no files are missing but also encourages developers to use relative

paths, which makes the codebase more widely reproducible.

To overcome the second challenge, we collected and inspected every path provided in

the file. To confirm that each path existed, verification was done programmatically. As

long as a folder path was confirmed as existing, there was no cause for concern during this

assessment. But if a folder was missing from the system, a notification was sent out that

identified the exact line that needed to be changed in the path. Similar to the method used

in the first problem, this comprehensive examination included the verification of actual

paths. Users were alerted immediately by our tool if absolute paths were found, suggesting

that they needed to replace these with relative paths to improve file executability. This

comprehensive path verification procedure is implemented by the system to guarantee not

only the integrity of file references but also to assist users in resolving possible discrepancies,

thus enabling a more streamlined and dependable file reproduction process.

4.2.7 Identifying Deleted and Outdated Libraries (DeprecatedLibraryChecker

& DeletedLibraryChecker)

Identifying obsolete and deleted libraries in an R Markdown file involves creating an exten-

sive database with details about those libraries. To do this, CRAN’s library data has been

reviewed closely, and information about libraries that have their documentation removed

or out-of-date is only collected. The task also includes the incorporation of data from the

Library.io dataset, containing packages from multiple package managers. The dataset helps

gather data on deleted libraries while focusing specifically on packages written in R. The re-

sult of these efforts is the development of a single database that incorporates obsolete and

deleted libraries. This combined database is a crucial resource for later tasks, especially

44

when it involves finding out which libraries are out-of-date in R Markdown files. Using this

painstaking curation procedure, the system guarantees a strong base for detecting and deal-

ing with out-of-date libraries, supporting maintenance and enhancement of R Markdown

files.

Our tool parses library data extracted from package import statements to process R

Markdown files. After that, it compares this data with the database of obsolete and deleted

libraries. The tool alerts the file’s creator if a match has been found, indicating unavail-

ability. Because the specified libraries are either removed or out-of-date, this proactive

approach intends to prevent users from encountering execution issues when they attempt

to download and execute the file. We help make the R Markdown files more reproducible

by encouraging the use of up-to-date and available dependencies by warning authors about

problematic packages. This system ensures that users can reliably replicate the file without

running into issues with outdated or missing libraries, which enhances the code’s overall

effectiveness and dependability.

4.2.8 Identifying System Requirements (SystemRequirementsChecker)

Based on our investigation, 44.18% of R Markdown files have irreproducibility problems

because the system requirements of the dependent libraries are not met. One prominent

instance is the usage of rJava, a low-level R to Java interface, that requires certain system

requirements like GNU make and Java JDK 1.2 or higher (for JRI/REngine JDK 1.4 or

higher). If the above requirements are not satisfied, rJava cannot be installed, making the

entire R Markdown file non-executable. It is important for developers to be aware of depen-

dency requirements in order to improve the executability of their projects. By addressing

these problems, the community can collaborate more easily and consistently while building

a more solid and dependable ecosystem for R Markdown files.

As part of our strategy, we extracted dependency information and associated it with

the system requirements in a methodical manner to tackle the current challenge. Our ap-

proach is based on an in-depth web crawling of package pages from CRAN in order to

create an extensive database of relevant data. Notably, each page has a particular “System-

Requirements:” section that contains the essential system requirements information. We

ensure a thorough coverage with our comprehensive data collection process, which has been

specifically designed to fit the packages that are available on CRAN. The resulting System-

Requirements database is carefully archived for later use. This well-thought-out compilation

is a useful tool that makes it easier to find and use crucial system-related data. In addition

to resolving the immediate issue, our strategy lays the groundwork for expedient access to

critical information, highlighting the importance of a clean, easily accessible database in

45

negotiating the complex web of interdependencies between systems.

When working with an R Markdown file, the first step is to parse the file and create a list

of packages that are used. The next step is to investigate the SystemRequirements library

to find out which particular system requirements are needed for every package that has been

found. All of this data is then combined into a single file called, SystemRequirements.txt.

The principal aim of this process is to provide users with an open understanding of the

necessary system requirements. This information makes it easy for those who are trying to

download and run the file to determine if their system is compatible with the requirements.

This technique basically acts as a helpful manual, allowing users to proactively confirm

that the related R Markdown file operates as intended by making sure all required system

requirements are met.

4.3 Experimental Setup

We evaluate the effectiveness of our approach in resolving dependency conflict (DC) prob-

lems on publicly available R projects which was collected previously in the dataset creation

section. The following research questions are the main focus of our evaluation.

4.3.1 Can our process resolve the DC issues successfully?

This research question evaluates the effectiveness of our approach in resolving data conflict

(DC) issues through an analysis of dependency library installations on our dataset. We

compare our approach with a baseline that installs all dependency libraries sequentially

using scripts. We also compare our procedure with the renv project manager, which is a

dependency management tool used by the chosen project. The renv.lock files facilitate the

restoration of dependencies. In order to shed light on potential improvements for DC issue

resolution, we hope to ascertain the effectiveness and benefits of our approach relative to

the renv project manager and the baseline method through this investigation.

One of the most important parts of our assessment of the “renv” project is the examina-

tion of the R Markdown file, which contains the dependencies for the project. Using this file

as input, the process first extracts the necessary dependencies from the import statements.

Moreover, we collect these libraries’ direct dependencies with great care, understanding that

they are directly and indirectly essential to the project’s functionality.

For every library, we create version constraints in order to simplify the complex web of

dependencies. This is a crucial step in making sure the project is cohesive and compatible.

46

Subsequently, these transitive and direct dependencies are transformed into SMT expres-

sions, thereby laying the groundwork for an organized resolution of dependency constraints.

In this optimization process, the Z3 solver shows up as a crucial tool because of its ability

to resolve possible conflicts between various packages.

Utilizing the output of the Z3 solver, we create a script after the dependencies have been

harmonized. Providing a clean, streamlined base for the “renv” project, this script contains

the package names and their matching version numbers. The reliability and stability of

the project are largely attributed to this methodology, which guarantees an organized and

effective management of dependencies.

Using Conda, we installed the required R version in the project folder. We then in-

stall the necessary library versions from within that folder using a pre-generated script.

Afterward, we methodically render each R Markdown file, automating the procedure and

compiling all of the results. This methodical implementation is an important checkpoint in

assessing the effectiveness of our strategy, offering a comprehensive view of its operation.

By using the baseline approach to evaluate our algorithm in our study, we improve the

methodology’s robustness. To identify imported libraries, the baseline method parses R

Markdown files. Afterward, we install these libraries one by one and render each R Mark-

down file, documenting the results. This set of findings is our starting point, making it easier

to compare our suggested algorithm comparatively. Establishing this baseline provides a

point of comparison for performance evaluation and gives us important insights into the

efficacy and efficiency of our strategy. The thorough analysis of our algorithm’s improve-

ments over traditional techniques is ensured by this all-encompassing evaluation strategy,

which strengthens the validity of our research findings.

We thoroughly compared our methodology in our study with the well-known renv project

manager, a common tool of the projects that we chose to evaluate. First, we used renv to

restore the project dependencies. Then, we rendered all R Markdown files and collected

the results with care. Notably, we organized the results for later review and analysis, which

strengthened the comparison between the two methods. This strategic investigation em-

phasizes our method’s efficacy and places it in the perspective of current practices.

Our tool consists of six components: a directory checker, system requirement checker,

syntax checker, deleted library checker, file path checker, and version compatibility checker.

With the first five components, we can easily identify issues and notify users to modify the

necessary lines. We identified all the issues related to these checkers and with a simple

47

effort, we were able to execute all the files that couldn’t be executed due to these issues. To

evaluate the last checker, we randomly chose 20 R Markdown files that couldn’t be executed

due to library compatibility issues. After applying our tool, we collected compatible versions

of libraries for each file and applied those compatible lists. As a result, we were able to

re-execute 13 files, indicating that our technique is working and we can now execute files

that previously couldn’t be executed due to library issues.

4.4 Usage Scenario

Bob is eager to become an expert in the area of machine learning and data analysis. He

looks for real-world code examples to help him learn, and he has collected 20 R markdown

files that show his go-to method in action. It takes time to go through each of these files,

and not all of them might be executable. Bob can choose to use our tool in this case to

effectively re-execute the needed files.

Bob starts the tool by giving it an R Markdown file to work with, carefully going over

each output to make sure the file will execute in the future. The tool looks over every

project file in the first stage. The program alerts Bob to change the directory for successful

execution if any files reference paths that are not available on his machine. As an example

in figure 4.4, Bob has chosen an R Markdown file that consists of two files: “./train.csv” and

“./test.csv.” By capturing these files and alerting Bob about their absence, the program

helps Bob change the paths so that the results are reproducible.

File path checking

Figure 4.4: Checking File Paths.

The tool searches files for folder paths that are necessary to modify the current working

directory. When these files are missing, Bob gets notified and has to change the direc-

tory. To change the directory for a certain task, for example in figure 4.5, certain paths like

“C:/Users/keyserf/Documents/” and “C:/Users/keyserf/Desktop/asset˙allocation/” are used.

Interestingly, these routes only exist within the file system of the developer, which presents

a problem with universality. Bob receives the notice as a preventive action to make sure the

48

files are flexible and rerun. By locating and resolving directory anomalies, this automated

procedure strengthens the system’s resilience and highlights how crucial path alignment is

to ensure smooth operation across several file systems.

Directory Checking

Figure 4.5: Checking Directory Paths.

Parsing a file is also attempted by our tool using pypandoc library [54], and if there are

no parsing problems, the procedure is considered successful (figure 4.6). The tool will alert

Bob and provide the line number if an error arises while parsing. It will also highlight the

exact line where the problem is found. This makes it possible for Bob to find and fix the

file’s issue quickly. This result will help Bob to make this file executable again.

Syntax checking

Figure 4.6: Checking Parsing the file.

The next procedure entails parsing a file, locating and gathering imported packages, and

then determining which of these packages are deprecated. To do this, a pre-existing depre-

cated library list is compared to the list of imported packages. Bob receives a notification

if a deprecated library is found, encouraging him to replace the deprecated library with a

suitable one.

For example in figure 4.7, Bob chose an R Markdown file that used the biocLite func-

tion to install the package pragmatically from Bioconductor. However, the function is now

outdated and BiocManager is now used to install any libraries from Bioconductor for R

version 3.5 or greater. Here, the developer used the outdated function to install the library.

Our tool will identify the library and show the list of deprecated libraries so that he can

replace the library and make the file executable again.

49

Deprecated Libraries Checking

Figure 4.7: Checking deprecated library.

The procedure also involves deciding whether libraries are used in the source code and

locating any library deletions by contrasting the library with a list that has already been

prepared based on deletion. Bob receives information if a library is discovered to be re-

moved, and he is then prompted to change the code by replacing the missing library to keep

the file executable.

In illustration (Figure 4.8), HydeNet was used in an R Markdown file which is selected

by Bob but is now removed from CRAN. When Bob tries to install the dependency, it will

produce an error because the target library is no longer available. By using our tool Bob

can identify the deleted library easily so that he can replace the library with a suitable one

to make the file executable again.

Deleted libraries checking

Figure 4.8: Checking deleted library.

The tool methodically compiles the libraries indicated in the R Markdown file that Bob

supplied. It then gathers needs for the system from an already existing library database.

Then the tool generates a file called systemRequirements.txt that contains all of the

system dependency information of those libraries.

Bob has supplied an R Markdown file in this scenario that makes use of the animation,

terra, and rJava packages. Before installation, certain system prerequisites for each of these

libraries must be satisfied. To simplify this procedure, our tool creates a systemRequire-

ments.txt file that includes all of these libraries’ dependencies (Figure 4.9). After reviewing

and meeting these system prerequisites, Bob will be able to successfully install the libraries

and rerun the files as necessary. This method streamlines the setup and makes it easier for

the R Markdown file to run without a hitch.

50

System requirements checking

Figure 4.9: Checking System Requirements.

The next procedure involves retrieving library information from designated R Markdown

files, extracting all package versions, transforming the extracted information into version

constraints, and using the Z3 solver to find a set of compatible versions. The “RVersionRe-

quirements.lock” file contains the saved results (Figure 4.10). Bob then installs the libraries

using this lock file, checks that they are compatible, and runs the files again.

Version compatibility checking

Figure 4.10: Checking versions.

4.5 Threats to Validity

Threats to external validity refer to the generalizability of our findings. We built our

knowledge base by using packages from CRAN, which is a popular repository for R package

publications. On the other hand, we noticed that R packages are also available on GitHub

[55] and Bioconductor [56]. Thus, R packages located in those locations are not present in

our database. If an R Markdown file depends on those packages, we will not be able to

determine the required versions of those packages. This remains as a future work.

The evaluation of the dependency compatibility checker was done on 20 files. Therefore,

it doesn’t represent the whole scenario, and the results may vary on a large dataset. Our

future plan is to evaluate our technique on a large dataset.

51

4.6 Conclusion

In this study, we developed a tool called RFT (R Markdown Fixing Tool) to enable users to

address issues with R Markdown files before publishing, to streamline the publishing process

for these files. We employ a knowledge base and the Z3 algorithm with SMT dependency

constraints to find compatible package versions in dependency files. With this thorough

study, compatibility issues can be found and fixed, paving the way for a successful deploy-

ment. An important part of our process is to install the appropriate R version using Conda

before going on to dependencies. This strategy has helped us solve a significant number

of files’ dependency issues that were previously impeding execution due to compatibility

issues. In addition, we offer additional parsers for file and directory path validation, depre-

cated and removed library detection, and system requirement identification. These are the

kinds of tools that are meant to deal with and fix possible problems. By accelerating the

publication process and empowering users to anticipate and address possible obstacles, this

innovative approach ensures smoother and more efficient executability while working with

R Markdown files.

52

Chapter 5

Conclusion

In this chapter, the thesis comes to a close with a summary of its contributions in Section

5.1. A summary of the significance of this thesis and a roadmap for future research are

provided in Section 5.2.

5.1 Summary

In this study, we investigate the executability of R Markdown files collected from open-

source GitHub repositories. We investigate the relationship between features related to

seven different dimensions and the executability status of those files. We find that 64.95%

of R Markdown files failed to execute. We observe that all the studied features, except

the number of contributors and the number of open issues, are statistically significantly

different between executable and non-executable groups of files. Results from our manual

study show that library-related issues are the dominant factor that prevents the execution

of Markdown files. We also show that the selected features can be used to build a classifier

that can identify non-executable files with an accuracy of 92.69%. Such a classifier can

warn users as they search online for R Markdown files to reuse. Authors should carefully

document any dependencies and assumptions (e.g., version of R, package managers used,

data, and session requirements) to facilitate the reuse. Tool developers should focus on

developing tools and techniques to automatically correct runtime requirements of R Mark-

down files and R code. While several studies have been done in the Python ecosystem [10]

[18], such support is considerably missing in the R ecosystem.

To help developers reuse R Markdown files available online, we offer a command-line

tool that is intended to identify possible problems in R Markdown files. The program

takes an R Markdown file as an input and produces an easy-to-use list of outputs that

help developers identify areas that need their attention before publishing their work online

53

to improve the executability of the R Markdown file. The tool utilizes static analysis

to identify missing data and coding issues (i.e., syntax errors). The tool depends on a

knowledge base of package dependencies and their version constraints created by mining

open-source R packages available online. It leverages an SMT solver (i.e., Z3) to identify

compatible versions of used packages.

5.2 Future Work

Prospective directions for further improvement and refinement in this field of study are

promising for future research. Based on our present discoveries and the created instrument,

multiple avenues for subsequent research can be investigated:

• Extending the Knowledge Base: We used CRAN packages as the foundation for

our knowledge base. The knowledge base includes package dependencies and system

requirements, which our tool uses to identify compatible versions of used packages.

R packages are also stored on two more locations, GitHub [55] and Bioconductor

[56]. Future work should focus on extending the knowledge base to include packages

from diverse repositories like GitHub [55], and Bioconductor [56]. This extension will

enhance the tool’s capacity to handle a greater variety of scenarios and offer a more

thorough understanding of dependency management.

• Analyzing and Addressing System Requirements: Our investigation showed

that a large number of R Markdown files are not being executed because of the sys-

tem requirements imposed by used packages. For example, “terra” which provides

methods for spatial data analysis with vector and grid data, has specific system re-

quirements (C++17, GEOS=(3.4.0), GDAL= (2.2.3), PROJ (=4.9.3,sqlite3)). If the

system requirements are not satisfied before installing the library, it will produce an

error. Future research can look more closely at the system requirements. By utilizing

large language models, we can produce targeted scripts that can automatically fulfill

these system prerequisites, guaranteeing more efficient code execution.

• Integrating with GitHub: One exciting direction for future work is to create add-

ons for our tool that integrate with GitHub seamlessly, which will improve user expe-

rience and expedite the development process. The ability to instantly check uploaded

R Markdown files for possible problems can be made possible through this integra-

tion. Such an approach can offer a proactive solution by automatically identifying

and resolving dependency issues.

• Resolving Issues on Dependency Management: Future work can concentrate

on improving the tool’s ability to automatically resolve dependency-related issues

54

discussed in issue repositories, building on the automated checks carried out through

GitHub integration. To lessen the amount of manual user intervention necessary, the

tool may do this by updating packages or by installing any missing dependencies.

• Supporting Automatic Graders for Programming Classes: While the pri-

mary focus of this thesis is on R Markdown files, the results obtained and the tech-

niques developed can be applied in other areas. An example of this is the grading

of student assignments where they submitted code examples to solve programming

challenges. This can be accomplished through an automatic grading mechanism that

requires the execution of the submitted code examples. Even if those code examples

are written in different languages, we anticipate a high degree of similarity of reasons

that prevent their executability. Thus, the solutions developed in this thesis can lay

the foundation to build a more robust tool.

55

Appendix A

Automatically Execute R

Markdown Files

In this section, we provide a detailed guide on how to automatically execute R Markdown

files. We explain each of the data files, which contain the necessary data, and the scripts

that outline the process of executing those files. Furthermore, we have also included the

necessary commands to setup the system before we run the execution of R Markdown files.

Along with R Markdown files that execute in less than 10 minutes, the file Automat-

icallyExecuteR MarkdownFiles/ProjectList.csv includes a carefully curated list of

projects that have been filtered from the GHTorrent Dataset. Cloning the dataset and fol-

lowing the instructions will allow to replicate the results. An illustrative example is given

below-

Table A.1: Important file list to automatically execute R Markdown files.

File Name Description

ProjectList.csv Contains the git paths of the projects

cloneProjects.py Clone all the projects using ProjectList.csv

AutomaticallyExecuteR MarkdownFiles.py Render all the R Markdown files from those projects

For illustration, consider the repository https://github.com/cnjelita/datasciencecoursera

where multiple R Markdown files are located. Our goal is to execute those files automati-

cally and store the output.

Installing the required dependencies and cloning the project are the first steps in start-

ing the procedure. Cloning requires that Git be installed beforehand, which you can do

56

with the following command.

I n s t a l l Git

sudo apt−get update

sudo apt−get i n s t a l l g i t

After that, the terminal command which is given below can be used to clone the

repository. Put your Git login credentials in place of UserName and Password. The

Github Project folder contains a cloned version of the project. Adjust the path if you

have a preference for a different directory.

g i t c l one https : // user : UserName : Password@github . com/ c n j e l i t a / datasc i en−
c e cour s e ra . g i t ‘ ‘ Github Project ’ ’

Figure A.1: Cloning repositories.

In order to automate operations, the process involves systematically installing the re-

quired libraries and running RMarkdown scripts, all while maintaining an efficient workflow.

First things first, installing the necessary libraries is a must to enable this automated pro-

cess.

Make sure Python is installed before attempting to automate the process. Visit the offi-

cial Python website to obtain the most recent version: https://www.python.org/downloads/.

Alternatively, download Python 3.11—the version that is used for our particular proce-

dure—by running the following command.

• Update the package list:

sudo apt update

• Prerequisites Install:

sudo apt i n s t a l l −y bui ld−e s s e n t i a l z l i b1g−dev l i bncu r s e s 5−dev

libgdbm−dev l i bn s s3−dev l i b s s l −dev l i b r e a d l i n e −dev l i b f f i −dev

l i b s q l i t e 3 −dev l ibbz2−dev l ib lzma−dev tk−dev l ibdb−dev

57

• Python source code Download:

mkdir ˜/python−3.11 # Create a d i r e c t o r y f o r the Python source code

cd ˜/python−3.11

wget https : //www. python . org / f tp /python /3 . 11 . 0/ Python −3 .11 . 0 . tgz

• Extract the file:

ta r −xf Python −3 .11 . 0 . tgz

• Configure and build:

cd Python−3.11.0

. / c on f i gu r e −−enable−opt im i za t i on s

make −j$ (nproc)

• Python install

sudo make i n s t a l l

• Installation verify

python3 .11 −−ve r s i on

After that, we need to install pip and upgrade the setuptools so that we can install the

required libraries using pip.

• Install pip

sudo apt i n s t a l l python3−pip

• Upgrade setuptools using pip

pip i n s t a l l −−upgrade s e t up t oo l s

• Install the required build tools

sudo apt i n s t a l l bui ld−e s s e n t i a l

• Install rpy2

pip i n s t a l l rpy2==3.4.5

• Install pandas

pip i n s t a l l pandas

58

• Install tqdm

pip i n s t a l l tqdm

You must have R installed on your computer in order to render R Markdown files. Get

it from the official R Project website (https://www.r-project.org/) or use the supplied

command to install version 4.1.2.

• The CRAN repository add

sudo apt update

sudo apt i n s t a l l −y software−prope r t i e s−common

sudo add−apt−r e po s i t o r y ‘ deb https : // c loud . r−p ro j e c t . org /bin / l inux−
/ubuntu f o ca l−cran40 / ’

• Add the CRAN GPG key

sudo apt−key adv −−keyse rve r keyse rve r . ubuntu . com −−recv−keys

E298A3A825C0D65DFD57CBB651716619E084DAB9

• Install R

sudo apt i n s t a l l r−base =4.1.2 −1.2004.0

• Verify the installation

R −−ve r s i on

• Alternatively, you can use the below command to install R. After executing the below

code, it will install R version 4.1.2 in your system. As no version is mentioned there,

it will automatically install the latest stable version and it will vary from time to time.

sudo apt i n s t a l l r−base−core

• The script uses various R libraries. To install them, open a terminal and run the

following commands:

Rscr ipt −e ‘ ‘ i n s t a l l . packages (‘ renv ’) ’ ’

Rscr ipt −e ‘ ‘ i n s t a l l . packages (‘ devtoo l s ’) ’ ’

Rscr ipt −e ‘ ‘ i n s t a l l . packages (‘ rmarkdown ’) ’ ’

Installing Pandoc on your machine is necessary in order to get ready to render the R

Markdown file. Pandoc is a flexible tool for converting documents between different markup

and document formats. When it comes to R Markdown, Pandoc is frequently utilised as the

underlying engine to transform R Markdown files into a variety of output formats, including

Word, HTML, and PDF. Use the code supplied below to ensure a smooth installation.

59

sudo apt−get update

sudo apt−get i n s t a l l pandoc

Then Run theAutomaticallyExecuteR MarkdownFiles/AutomaticallyExecuteR-

MarkdownFiles.py script to execute the R Markdown files automatically. To run the

script you need to change the root dir to the folder where the projects are cloned previ-

ously.

change the root_dir

Figure A.2: Changing the root directory in line number 17.

The next step is to change the dependency output destination directory to the location

where you want the dependency installation results to be kept. Additionally, you must

specify where you wish to save the rendered results of each markdown file in the output

directory.

Change path for dependency output

Figure A.3: Changing the dependency output destination in line number 94.

Change output directory

Figure A.4: Changing the output directory in line number 231.

60

Lastly, it is essential to edit the root folder to set the installation and rendering lo-

cations for every Markdown file. The purpose of this directory change is to preserve the

original directory, from which the files are cloned, for potential future study. To ensure a

smooth workflow, the project will be copied to the specified directory before it is executed.

Change the root_folder

Figure A.5: Changing the directory in line number 31.

The next action is to execute the “AutomaticallyExecuteR MarkdownFiles.py” script,

which installs dependencies by utilizing the relevant package management and renders each

markdown file before saving the result.

Run AutomaticallyExecuteR_MarkdownFiles.py to render R Markdown files
using python

Figure A.6: An example of executing the script to process R Markdown files.

The example which is given below illustrates the output generated during the rendering

of the R Markdown file. In this instance, the rendering process was terminated due to the

inability to specify the working directory. This occurred because the selected path in the

code is only accessible on the file developer’s computer, not on our machine.

61

Couldn't execute the file because of "Error in setwd()"

Figure A.7: An example of rendering output while automatically executing an R Markdown
file.

The output of the dependency installation is kept in the “RProjectsOutput dependency new”

directory and is arranged in the following file structure. It’s crucial to emphasize that our

method processes projects in chunks, with the output files labeled with the project number

and the chunk number for easy identification.

Table A.2: File list generated from automatic execution

Name File name with extension Description

Dependency output
“logfile Chunk”+ chunkNumber+

“item”+ projectNumber +“.txt”

This specified filename is where our

script will save the unique dependency

installation results for every project.

Render output
“outputRun Chunk”+ chunkNumber+

“item”+ projectNumber +“.json”

This specified filename is where our

script will save the render results of

R Markdown files for every project.

62

Figure A.8: An example of installing dependencies.

When the program processes each R Markdown file, it will collect data like “FilePath”,

“ProjectFolder”, “ProjectName”, “Output”, “Error”, and “ExecutionTime”. After that,

this information will be kept in the outputRun folder. The following file structure is

offered as an illustration.

Figure A.9: An example of output obtained by executing an R Markdown file.

Then, we merge all the files and check for errors. Any output that contains the words

“Error in” implies that something went wrong during execution. With the use of this data,

we generate a dataset that divides R Markdown files into executable and non-executable

categories. When “error in” is absent in the output of the files, it means that the files have

been successfully re-executed.

63

Execution Overview:

• Obtain every project listing located in the root directory.

• Divide the list into digestible sections for faster processing.

• Carry out tasks on every project segment one after the other.

• The first step is to copy the project into a new directory called RProjects new.

• Locate and gather all of the R Markdown files in each project, keeping out package

management folders (packrat, renv, and .checkpoint, for example).

• Check to see if the project has a package management system.

• Restore dependencies appropriately if a package management system is found and

version information is provided.

• If you use a package management system but version information is missing, get the

most recent version.

• Use renv to install the dependencies if no package management is being used.

• Process-wise, render every R Markdown file.

• The execution will end if processing the file takes more than ten minutes.

• Archive all R Markdown files automatically, including errors and output.

• If you have any further projects to process, delete the processed project and move on

to step 5.

After that, we combine the files and carefully review them to look for any errors. Any

output that contains the words “Error in” indicates that something went wrong during

execution. We use this data to construct a dataset that divides R Markdown files into

executable and non-executable categories. If there is no “Error in” message in a file’s

output, re-execution was successful.

64

Bibliography

[1] D. E. Knuth, “Literate programming,” in Proceedings of the The Computer Journal,

1984, pp. 97–111.

[2] “Knitr,” 2023. [Online]. Available: https://cran.r-project.org/web/packages/knitr/

index.html

[3] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Proceedings of the

International Conference on Tools and Algorithms for the Construction and Analysis

of Systems. Springer Berlin Heidelberg, March 2008, pp. 337–340.

[4] “Cran,” 2023. [Online]. Available: https://cran.r-project.org/web/packages/available

packages by name.html

[5] D. Yang, A. Hussain, and C. V. Lopes, “From query to usable code: an analysis of

stack overflow code snippets,” in Proceedings of the 13th International Conference on

Mining Software Repositories, 2016, pp. 391–402.

[6] E. Horton and C. Parnin, “Gistable: Evaluating the executability of python code

snippets on github,” in Proceedings of the IEEE International Conference on Software

Maintenance and Evolution (ICSME), 2018, pp. 217–227.

[7] “Renv,” 2023. [Online]. Available: https://cran.r-project.org/web/packages/renv/

index.html

[8] S. Mirhosseini and C. Parnin, “Docable: Evaluating the executability of software tuto-

rials,” in Proceedings of the 28th ACM Joint Meeting on European Software Engineer-

ing Conference and Symposium on the Foundations of Software Engineering, 2020, pp.

375–385.

[9] M. M. Hossain, N. Mahmoudi, C. Lin, H. Khazaei, and A. Hindle, “Executability of

python snippets in stack overflow,” arXiv preprint arXiv:1907.04908, 2019.

https://cran.r-project.org/web/packages/knitr/index.html
https://cran.r-project.org/web/packages/knitr/index.html
https://cran.r-project.org/web/packages/available_packages_by_name.html
https://cran.r-project.org/web/packages/available_packages_by_name.html
https://cran.r-project.org/web/packages/renv/index.html
https://cran.r-project.org/web/packages/renv/index.html

65

[10] E. Horton and C. Parnin, “Dockerizeme: Automatic inference of environment depen-

dencies for python code snippets,” in Proceedings of the IEEE/ACM 41st International

Conference on Software Engineering (ICSE), 2019, pp. 328–338.

[11] J. Pimentel, L. Murta, V. Braganholo, and J. Freire, “A large-scale study about qual-

ity and reproducibility of jupyter notebooks,” in Proceedings of the IEEE/ACM 16th

International Conference on Mining Software Repositories (MSR), 2019, pp. 507–517.

[12] R. Mayer and A. Rauber, “A quantitative study on the re-executability of publicly

shared scientific workflows,” in Proceedings of the IEEE 11th International Conference

on e-Science, 2015, pp. 312–321.

[13] C. Goble, J. Bhagat, S. Aleksejevs, D. Cruickshank, D. Michaelides, D. Newman,

M. Borkum, S. Bechhofer, M. Roos, P. Li, and D. De Roure, “myexperiment: a repos-

itory and social network for the sharing of bioinformatics workflows,” Nucleic Acids

Research, pp. W677–W682, 2010.

[14] S. Mondal, M. M. Rahman, and C. K. Roy, “Can issues reported at Stack Overflow

questions be reproduced? an exploratory study,” in Proceedings of the IEEE/ACM 16th

International Conference on Mining Software Repositories (MSR), 2019, pp. 479–489.

[15] A. large-scale study on research code quality and execution, “Trisovic, aleksandar and

lau, michael k. and pasquier, thomas and crosas, mercè,” in Proceedings of the Scientific

Data, 2022, p. 60.

[16] D. M. German, J. M. Gonzalez-Barahona, and G. Robles, “A model to understand

the building and running inter-dependencies of software,” in Proceedings of the 14th

Working Conference on Reverse Engineering (WCRE 2007), 2007, pp. 140–149.

[17] E. Horton and C. Parnin, “V2: Fast detection of configuration drift in python,” in Pro-

ceedings of the 2019 34th IEEE/ACM International Conference on Automated Software

Engineering (ASE), 2019, pp. 477–488.

[18] C. Wang, R. Wu, H. Song, J. Shu, and G. Li, “smartpip: A smart approach to re-

solving python dependency conflict issues,” in Proceedings of the 37th IEEE/ACM

International Conference on Automated Software Engineering, 2022, pp. 1–12.

[19] M. Lungu, R. Robbes, and M. Lanza, “Recovering inter-project dependencies in soft-

ware ecosystems,” in Proceedings of the 25th IEEE/ACM International Conference on

Automated Software Engineering, 2010, pp. 309–312.

[20] “Packrat,” 2023. [Online]. Available: https://rstudio.github.io/packrat/

[21] “Devtools,” 2023. [Online]. Available: https://devtools.r-lib.org/

https://rstudio.github.io/packrat/
https://devtools.r-lib.org/

66

[22] “Checkpoint,” 2023. [Online]. Available: https://cran.r-project.org/web/packages/

checkpoint

[23] “Packman,” 2023. [Online]. Available: https://cran.r-project.org/web/packages/

pacman/index.html

[24] J. Wang, T. Kuo, L. Li, and A. Zeller, “Assessing and restoring reproducibility of

jupyter notebooks,” in Proceedings of the 35th IEEE/ACM International Conference

on Automated Software Engineering, 2020, pp. 138–149.

[25] J. Wang, L. Li, and A. Zeller, “Restoring execution environments of jupyter note-

books,” in Proceedings of the IEEE/ACM 43rd International Conference on Software

Engineering (ICSE), 2021, pp. 1622–1633.

[26] C. Zhu, R. Saha, M. Prasad, and S. Khurshid, “Restoring the executability of jupyter

notebooks by automatic upgrade of deprecated apis,” in Proceedings of the 2021

36th IEEE/ACM International Conference on Automated Software Engineering (ASE),

2021, pp. 240–252.

[27] “Automagic,” 2023. [Online]. Available: https://github.com/cole-brokamp/automagic

[28] “Jetpack,” 2023. [Online]. Available: https://github.com/ankane/jetpack

[29] “Github rest api documentation,” 2023. [Online]. Available: https://docs.github.com/

en/rest?apiVersion=2022-11-28

[30] “Libraries.io,” 2023. [Online]. Available: https://libraries.io/data

[31] W. M. Ibrahim, N. Bettenburg, E. Shihab, B. Adams, and A. E. Hassan, “Should i

contribute to this discussion?” in Proceedings of the 7th IEEE Working Conference on

Mining Software Repositories (MSR), 2010, pp. 181–190.

[32] “Lintr,” 2023. [Online]. Available: https://lintr.r-lib.org/

[33] “Cloc,” 2023. [Online]. Available: https://github.com/hrbrmstr/cloc

[34] J. P. Kincaid, R. P. F. Jr, R. L. Rogers, and B. S. Chissom, “Derivation of new

readability formulas (automated readability index, fog count and flesch reading ease

formula) for navy enlisted personnel,” US Naval Air Station, Tech. Rep. Research

Branch 8–75, 1975.

[35] R. J. Senter and E. A. Smith, “Automated readability index,” 1967.

[36] R. Flesch, “A new readability yardstick,” in Journal of Applied Psychology, 1948, p.

221.

https://cran.r-project.org/web/packages/checkpoint
https://cran.r-project.org/web/packages/checkpoint
https://cran.r-project.org/web/packages/pacman/index.html
https://cran.r-project.org/web/packages/pacman/index.html
https://github.com/cole-brokamp/automagic
https://github.com/ankane/jetpack
https://docs.github.com/en/rest?apiVersion=2022-11-28
https://docs.github.com/en/rest?apiVersion=2022-11-28
https://libraries.io/data
https://lintr.r-lib.org/
https://github.com/hrbrmstr/cloc

67

[37] R. Gunning, The Technique of Clear Writing. New York: McGraw-Hill, 1952.

[38] J. Anderson, “Lix and rix: Variations on a little-known readability index,” in Journal

of Reading, 1983, pp. 490–496.

[39] G. H. McLaughlin, “Smog grading—a new readability formula,” in Proceedings of the

J. Reading, 1969, pp. 639–646.

[40] “Readability,” 2023. [Online]. Available: https://pypi.org/project/readability/

[41] “Scikit-learn,” 2023. [Online]. Available: https://scikit-learn.org/

[42] H. Mann and D. Whitney, “On a test of whether one of two random variables is

stochastically larger than the other,” in Annals of Mathematical Statistics, 1947, pp.

50–60.

[43] K. Kelley and K. J. Preacher, “On effect size,” in Psychological Methods, 2012, p. 137.

[44] “pandas.dataframe,” 2023. [Online]. Available: https://pandas.pydata.org/docs/

reference/api/pandas.DataFrame.sample.html

[45] J. Cohen, “A coefficient of agreement for nominal scales,” in Proceedings of the Edu-

cational and Psychological Measurement, 1960, p. 37.

[46] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. Hoboken: Wiley,

2000.

[47] D. W. H. Jr., S. Lemeshow, and R. X. Sturdivant, Applied Logistic Regression. John

Wiley & Sons, 2013, vol. 398.

[48] J. R. Quinlan, “Induction of decision trees,” in Machine Learning, 1986, pp. 81–106.

[49] L. Breiman, “Random forests,” in Proceedings of the Machine Learning, 2001, pp. 5–32.

[50] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, 2016, pp. 785–794.

[51] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: Synthetic

minority over-sampling technique,” in Journal of Artificial Intelligence Research, 2002,

pp. 321–357.

[52] A. Morgado, F. Heras, M. Liffiton, J. Planes, and J. Marques-Silva, “Iterative and

core-guided maxsat solving: A survey and assessment,” 2013, pp. 478–534.

[53] “antlr,” 2023. [Online]. Available: https://www.antlr.org/download.html

https://pypi.org/project/readability/
https://scikit-learn.org/
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sample.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sample.html
https://www.antlr.org/download.html

68

[54] “pypandoc,” 2023. [Online]. Available: https://pypi.org/project/pypandoc/

[55] “Github,” 2023. [Online]. Available: https://github.com/

[56] “Bioconductor,” 2023. [Online]. Available: https://www.bioconductor.org/

https://pypi.org/project/pypandoc/
https://github.com/
https://www.bioconductor.org/

	Abstract
	Acknowledgements
	Publications
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Research objectives and significance
	Contributions of the Thesis
	Outline of the Thesis

	Related Work
	Executability
	Reproducibility
	Dependency Conflict
	Dependency Management
	Restoring Executability
	Conclusion

	On the Executability of R Markdown Files
	Introduction
	Data Collection
	Data Labelling
	Features Collection

	RQ1: How executable are R Markdown files? Are there differences between the executable and non-executable file groups?
	RQ2: What are the reasons that hinder the executability of R Markdown files?
	Missing libraries
	Dependency not installed
	Library not installed
	Outdated library
	Deleted Library

	Missing data
	Local directory missing
	File missing

	Erroneous Code
	Syntax error
	Semantic error

	RQ3: Can we predict whether an R Markdown file is not executable?
	Discussion
	Implications of our findings
	Threats to Validity

	Conclusion

	RFT: A Smart Tool To Fix R Markdown Issues To Restore Executability
	Introduction
	Approach
	Knowledge Base Creation
	Collect Dependency Information
	Solving Dependency Constraint
	SMT Expression Construction
	 Optimization of Dependency Constraint

	Handling the Installation of Libraries
	Identifying Erroneous Code (SyntaxChecker)
	Checking Missing Data (FilePathChecker & DirectoryChecker)
	Identifying Deleted and Outdated Libraries (DeprecatedLibraryChecker & DeletedLibraryChecker)
	Identifying System Requirements (SystemRequirementsChecker)

	Experimental Setup
	Can our process resolve the DC issues successfully?

	Usage Scenario
	Threats to Validity
	Conclusion

	Conclusion
	Summary
	Future Work

	Automatically Execute R Markdown Files
	Bibliography

