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Abstract 
 

 
 
 

The transfer of energy between systems is a natural process, manifesting in many 
different ways. In engineering transferable energy can be considered wanted or un- 
wanted. Specifically in mechanical systems, energy transfer can occur as unwanted 
vibrations, passing from a source to a receiver. In electrical systems, energy trans- 
fer can be desirable, where energy from a source may be used elsewhere. This 
work proposes a method to combine the two, converting unwanted mechanical ener- 
gy into useable electrical energy. 

 

 

A nonlinear energy sink (NES) is a vibration absorber that passively local- 
izes vibrational energy, removing mechanical energy from a primary system. Con- 
sisting of a mass-spring-damper such that the stiffness is essentially nonlinear, a 
NES can localize vibrational energy from a source and dissipate it through damping. 
Replacing the NES mass with a series of magnets surrounded by coils fixed to the 
primary mass, the dissipated energy can be directly converted to electrical energy. 

 

 

A NES with energy harvesting properties is constructed and introduced. The 
system parameters are identified, with the NES having an essentially cubic nonlinear 
stiffness. A transduction factor is quantified linking the electrical and mechanical 
systems. An analytic analysis is carried out studying the transient and harmonically 
excited response of the system. It is found that the energy harvesting does not 
reduce the vibrational absorption capabilities of the NES. The performance of the 
system in both transient and harmonically excited responses is found to be heavily 
influenced by input energies. The system is tested, with good match to analytic re- 
sults. 
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Chapter 1 
 
 

 

Introduction 
 
 

 
1.1     Motivation  of the Research 

 
The presence of undesirable vibrations in structures is a problem that has been 
studied for decades in engineering. Vibrations occur in numerous ways in everyday 
life; earthquakes, running motors, or momentary strikes of force can transmit vibra- 
tional energy to structures housing people or fragile items. Researchers and engi- 
neers examine the causes and potential solutions for mitigating vibrations. 

 

 

This work will focus on two vibrational problems that commonly occur in 
structures: 1) the transient response of a system and 2) the harmonic base exci- 
tation. Figure 1.1 shows the schematic for the transient and base harmonically 
forced systems where ��𝑝 (��)   is the absolute displacement of the primary 

structure,
 

𝑘𝑝    and ��𝑝    are the stiffness and the damping coefficients for the primary 
system

 respectively. In both of the cases the main goal is the vibration attenuation of the 
primary mass. 
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Figure 1.1: Common vibrational problems: a) transient fixed based; b) harmonic base excitation 
 

 

In the case of the transient response of a system shown in Fig. 1.1(a), 
the primary mass is set into vibrations by an initial disturbance. The initial disturb- 
ance can be realized by either a momentary strike, initial velocity or initial dis- 
placement. The equation of motion for this system is described in Eqn.(1.1). The 
natural frequency of the system can be determined by Eqn.(1.2). 

𝑚𝑝 �� 𝑝 + ��𝑝 �� 𝑝 + ��𝑝 ��𝑝 = 0, ��𝑝 

(0), �� 𝑝 (0) (1.1) 
 

 

ωp  = � ��

𝑝 

 

(1.2) 

𝑚𝑝 

 
 

Figure 1.2 highlights the main problem in the transient response for a system 
with a low damping coefficient. The primary system is set into free vibration by an 
initial displacement and released, oscillating for an extended period of time at the 
natural frequency ��𝑝 . The sustained vibrations in the system are unwanted, and the goal is to absorb these vibrations and to reduce the amount of time they are pre- 
sent. 
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Figure 1.2: Transient response of the primary system to an initial displacement of 0.002 m. Long 
sustain of vibration due to low damping coefficient. ��𝑝 = 0.917 (𝑘��), 𝑘𝑝  = 4970 

(��/��),
 

��𝑝 = 0.36 (𝑘��/��)  and ��𝑝 (0) = 3 

(𝑚��).

 
Figure 1.3 presents the other common problem found in vibrations, where a 

primary system is excited by harmonic base displacement ��(��) . Equations 

(1.3)-
 (1.4) describe the equations of motion for this system. 

𝑚𝑝 �� 𝑝 + ��𝑝 �� 𝑝 + ��𝑝 ��𝑝 = ��𝑝 𝑦 + ��𝑝 ��  (1.3)
 

𝑦 = 𝑌 cos(Ω��) (1.4)

 
where Ω is the frequency and 𝑌   is the magnitude of base excitation. Here the

 displacement and velocity of the base transmitted to the primary system through the 
system spring and damper, generating an applied force to the mass causing it to 
oscillate. Depending on the frequency of the base excitation, the oscillating ampli- 
tude of the primary mass can either be amplified, or in some regions attenuated. 
Figure 1.3 shows the displacement transmissibility ratio (amplitude of ��𝑝    over base motion amplitude ��) for a system with the natural frequency at ��𝑛  = 11.72 (𝐻��). 
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Figure 1.3: Displacement ratio of system: ��𝑛 = 11.72 (𝐻��)

 

It can be seen that when the base frequency is equal to that of the primary 
system, there is a large amplification of the base motion. This condition is known 
as resonance, and can cause major problems in areas such as buildings and 
bridges. Addressing the problem of harmonic excitation will be one of the main fo- 
cuses in this work. 

 

 

With the basic problems of vibration identified, it is interesting to take a dif- 
ferent view and look for benefits. In both the transient and harmonically force sce- 
narios one fact stands out; the cause of any vibration is due to energy added to 
the system. The unwanted energy present in the system could be made useful, if 
harvested in an effective manner. Combining vibration absorption and vibrational en- 
ergy harvesting, this work will try to address both topics, exploring the possibility 
for a way to minimize vibration and collect the energy for use elsewhere. 

 
1.2     Literature Review 

 

1.2.1      Active and Semi Active vibration Control 
 
A large area of research in the control and attenuation of vibrations in primary 
structures is in active and semi active control. For both active and semi active vi- 
bration controls, unlike passive vibration control, there is need of additional compo- 
nents. Sensors, control systems and actuators are required to provide the necessary 
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components to control the vibrations. Figure 1.4 depicts a typical arrangement for 
an active control scheme. Sensors are used to monitor the motion of either primary 
structure or base and inputted to a controller that drives an actuator to apply a 
force to the structure to minimize vibration. Active control has a versatile and 
adaptable structure though the main drawbacks are power consumption and the 
possibility of instability if controller or model parameters are ill fitted. A thorough 
review of this subject is found in [1]. Some examples of active control schemes 
include active tuned mass dampers (ATMD) and distributed actuator systems. 

 

 

 
 

Figure 1.4: A typical arrangement for an active vibration controller scheme 
 

 

Active control systems have been applied to a variety of vibration problems 
and structures. Minimizing the vibrations transmitted to a person in a vehicle, a 
dual controller for active seat suspension in [2] is investigated experimentally, while 
in [3] an active seat suspension is aimed to reduce the vibrational frequencies that 
match the characteristic frequencies of the human body. 

 

 

Semi active vibration control is very similar to active control, the main differ- 
ence being that no force is applied to the primary structure, control is instead 
gained through the change of system parameters such as stiffness and damping. 
Some examples of semi active control include stiffness control devices, electrorheo- 
logical (ER) dampers, magnetorheological (MR) dampers and friction control de- 
vices. In [4] an encapsulated MR fluid is studied. Changing the magnetic field 
through the fluid, the stiffness and damping properties are altered as well resulting 
in good broadband vibration control. Employing an ER damper to torsional vibra- 
tions, the work reported in [5] demonstrates the fast reversible physical changes 
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that can occur when an electric field is applied to an ER fluid, resulting in good 
vibration damping. 

 
1.2.2      Passive Vibration Absorption 

 
The traditional means of vibration absorption is through the use of a linear vibration 
absorber. An absorber consists of a second mass-spring-damper system attached to 
the primary structure to protect it from vibrating. By adding the mass-spring-damper 
system, the overall system has two degrees of freedom, thus two natural frequen- 
cies [6]. Through careful tuning of the absorber parameters, good vibration sup- 
pression can be achieved. This arrangement is also known as the so-called tuned 
mass damper (TMD). 

 

 

The limitation of the TMD is that it needs to be tuned for specific exciting 
frequency to be effective, outlined in the classic work [7]. In the transient regime, 
when properly tuned the TMD is a very effective vibration absorber, though changes 
in system parameters of mass or stiffness in the primary system can drastically 
change performance. Applied harmonic force to the system makes this especially 
true. The TMD is effective for a very small frequency region, if the excitation fre- 
quency changes, vibrations of the primary system will undergo amplification at the 
two natural frequencies. The study of the TMD will not be a focus in this work. 

 
 
 

1.2.3      Nonlinear Energy Sinks 
 
In the last two decades the study of nonlinear energy sinks (NES) has received 
much attention. A NES consists of a small mass and a spring with an essential 
nonlinearity and linear damper attached to a primary system, with the general 
schematic given in Fig. 1.5. 
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Figure 1.5: General schematic of a NES with base excitation. 
 

 

The critical difference between a NES and the more general nonlinear vibra- 
tion absorber as discussed by [8], is the lack of linear stiffness in the absorber. 
The equations of motion for a base excited linear oscillator are given in 
Eqns.(1.5)-(1.6), noting no linear stiffness 𝑘𝑎 present for the absorber system.

 In below system and the majority of studied works, the nonlinear restoring force is 
realized as cubic, providing a smooth but strong nonlinearity. 

 

 
3 𝑚𝑝 �� 𝑝 + ��𝑝 �� 𝑝 + ��𝑝 ��𝑝 − ��𝑎 ��� 𝑎 − �� 𝑝 � − ��𝑛 ���𝑎 − ��𝑝 � 

= ��𝑝 𝑦 + ��𝑝 ��  (1.5) 
 

 
3 𝑚𝑎 �� 𝑎 + ��𝑎 ��� 𝑎 − �� 𝑝 � + ��𝑛 ���𝑎 − ��𝑝 � = 0 (1.6) 

 
 

The descriptions of the phenomenon produced vary depending on the goal of 
system being analyzed. In [9, 10] the authors examine the underlying Hamiltonian 
systems of an essentially nonlinear system attached to a linear oscillator in the 
transient regime. The authors show the effectiveness of such a system to passively 
absorb vibrational energy from the linear oscillator, and designate the phenomenon 
as energy pumping. The effectiveness of the absorber is attributed to internal a 1:1 
resonance condition, where the nonlinear oscillator will always match the frequency 
of the linear oscillator. The phenomenon of energy pumping is explained as the 
controlled one way channeling of vibrational energy to a passive nonlinear “sink” 
where it localizes and diminishes in time due to damping dissipation. This is where 
the NES gains its full name. A detailed analysis of energy pumping is studied in 
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[11]. The authors present a comparison of the NES to the traditional TMD, and 
show that the NES has greater efficiency and robustness compared to the TMD. 

 

 

In later works [12, 13], the phenomenon of energy pumping is replaced with 
the more meaningful designation of targeted energy transfer (TET). The significance 
is that with the attachment of an essentially nonlinear oscillator to a linear oscillator, 
the intent is to intentionally transfer vibrational energy to the nonlinear oscillator in a 
targeted way to reduce vibration in the linear system. Attributing TET again to the 
1:1 internal resonance, the authors explain that the robustness of a NES is due to 
the fact of not having a preferential natural frequency in absence of linear stiffness, 
and that the frequency of the NES is generated by the nonlinear term. A conse- 
quence of this is that there is an energy threshold for the effectiveness of the NES 
in the transient regime in order to engage the nonlinearity. In [14], the authors 
present a detailed study of the transient response for TET. Three initial energy re- 
gions are defined that determine the effectiveness and potential for TET. It is 
shown that for low energies no significant energy dissipation in the NES is present, 
and that TET is not achieved. Increasing the initial energy levels to a defined in- 
termediate level engages the nonlinear stiffness and TET is realized, the NES dis- 
sipating from 90-95% of the total vibrational energy within the system. Increasing 
the initial energy to the defined high energy region, TET is still realized but the 
effectiveness decreases, although the NES is still capable of dissipating a significant 
percentage of the energy. In the study provided by [14], a very interesting feature 
is noted; that the design of the NES was not pre-tuned, with no a-priori 
knowledge. The design of the NES has only the criteria of a small mass, zero 
linear stiffness and cubic stiffness. Compared to other vibration control schemes 
such as active, semi-active and traditional passive methods which require fine tun- 
ing for good performance, the NES is amazingly simple to design while still obtain- 
ing good results. Optimal results can still be achieved, by varying the mass, non- 
linear stiffness and damping of the NES when the input energies are known [15]. 

 

 

For a harmonically forced system shown in Fig. 1.5, the NES has also 
shown to be very effective at absorbing vibrations. In papers [16-18], the response 
of a linear oscillator with an attached NES is analytically derived. It is shown that 
the primary system and NES can exhibit three types of response; common steady 
state response, weakly modulated response and the very interesting strongly modu- 
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lated response (SMR). The analysis of these systems is employed through a 
complexification-averaging method [14], where the dynamics are partitioned into 
slow and fast components, and then the averaging of the response at the forcing 
frequency. As previously discussed, the assumption of 1:1 resonance applied in this 
averaging for both the primary and NES systems. The resulting equations are then 
expressed in terms of saddle node and Hopf bifurcations [14].A frequency response 
plot (FRP) of the system is generated for the system for a broad region of forc- 
ing frequencies. The saddle node bifurcation points on the FRP generally indicate 
areas the existence of multiple periodic solutions, two being stable and the third 
unstable. Regions of Hopf bifurcation characterize a SMR response, which is shown 
to be related to the relaxation of the slow flow dynamics. It is shown that under 
certain conditions the efficiency of the NES as a vibration absorber is exceptional, 
and far exceeds that of a TMD. Regions with SMR responses are of particular in- 
terest, where the SMRs are regarded as repetitive TETs, and should be the aim of 
NES design. 

 

 

Employing the theoretical and analytic theories, the NES has also been 
proven experimentally, though generating an essentially nonlinear stiffness proves to 
be difficult. In [19] the essentially nonlinear stiffness is generated by two coil 
springs attached to a mass on a linear rail, the springs are able to pivot at both 
ends. At the center position the springs are not under any pretension or compres- 
sion resulting in a low linear stiffness. It is demonstrated that the experiment per- 
forms very well and produces a good match with the theoretical predictions, obtain- 
ing the 1:1 resonance and exhibiting TET. The authors also subject the system to 
a various earthquake type forcings. Here the ability of the NES to dynamically 
change frequency results in excellent vibration mitigation in the primary structure. 
Achieving the essential nonlinearity through thin steel wires with very little preten- 
sion, papers [20-22] illustrate the success of experimentally implementing a NES, 
with good matching to theoretical theory. The systems demonstrated the initial ener- 
gy threshold as well as the optimal intermediate energy of TET. Using the same 
device, [23] examines the system under harmonic excitation. In this work the ex- 
periment differs from the ideal theoretical results, the system consisting of periodic 
solutions with saddle node bifurcations, but lacking the ideal Hopf and SMR. The 
results still demonstrate the regions of good performance for vibration suppression 
but still have amplification near primary resonance. The authors also report some 
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inconsistences between the experiment and the theoretical predictions, citing difficulty 
with modeling the cubic stiffness, resulting in a disagreement in the magnitude of 
the response. 

 
1.2.4      Energy Harvesting 

 
Energy harvesting devices gather energy from the environment. Energy harvesting 
has seen growth in many fields, scavenging energy from excess heat, electromag- 
netic waves and ambient vibrational energy. This energy can be used in various 
means, but are extremely useful in the area of wireless or remote networks [24], 
where getting power to sensor networks would be difficult or prohibitive. Continuing 
the theme of vibration this work will focus on the harvesting of vibrational energy. 

 

 

Vibration energy harvesters use the principles of a single degree of freedom 
spring-mass-damper system that is excited by the external environment. This is 
very similar to Fig. 1.1(b). The external vibration causes the mass to oscillate 
generating mechanical energy. Transduction methods are employed to couple the 
oscillating mass to an electrical circuit for conversion of mechanical energy to elec- 
trical energy. Electromagnetic inductance, capacitance and piezoelectric elements are 
some of the most common transduction methods. 

 

 

Piezoelectric energy harvesters generally consist of a cantilevered beam with 
an inertia mass placed on the end of the beam. A piezo-ceramic material is lay- 
ered on the cantilevered beam which is stressed as the mass oscillates which con- 
verts the mechanical energy to an electric one. A review of current piezoelectric 
technologies can be found in [25-29], and will not be further discussed in this 
work. 

 

 

Electromagnetic vibration energy harvesters are of particular interest, as they 
are easy to implement in existing mass-spring-damper systems, one of the goals 
of this work. The concept is that a housing is created with a spring-mass-damper 
system contained within, in a way that the mass can move relative to the housing. 
The mass will consist of a magnet with a strong magnetic field, and will be sur- 
rounded by a coil which is fixed to the housing, a simplified schematic is shown in 
Fig. 1.6. 
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Figure 1.6: General schematic of an electromagnetic energy harvester 
 

 

The housing is then rigidly attached to a vibration source generally of a 
harmonic forcing nature. The vibrational energy is transferred to the mass causing it 
to vibrate within the coil changing the magnetic field through the coil, inducing a 
voltage in the coil wire. The voltage generated is directly related to the relative ve- 
locity between the coil and magnet, where greater velocities will induce greater 
voltages [30, 31]. To ensure the highest velocities the system requires tuning to 
generate a resonance condition, matching the natural frequency of the generator to 
the frequency of the energy source. This leads to the main difficulty in linear vi- 
brational energy harvesters, the effectiveness is limited to a small region of fre- 
quencies. 

 

 

To address this problem nonlinear features are integrated into electromagnetic 
energy harvesters, in an attempt to increase the frequency range and gain wide- 
band energy harvesting. Employing a levitating magnet for nonlinear stiffness [32], 
the authors achieved a moderate increase in frequency range. In [33], the same 
concept of a levitating magnetic mass is proposed where theoretical analysis predicts 
a good increase in frequency range. In both examples the systems are subject to 
jump phenomenon. 

 
1.3     Objectives and Contributions 

 
 
 

From the literature review it emerges that the NES is an excellent device perform- 
ing well in both the transient and harmonically forced regimes. It is worthwhile to 
point out a very interesting aspect of the NES, mainly the description given for en- 
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ergy pumping by [10], namely that energy pumping is the controlled one way 
channeling of vibrational energy to a passive nonlinear “sink” where it localizes and 
diminishes in time due to damping dissipation. This work proposes that a NES be 
designed in a manner where the dissipated energy would be converted to a useful 
electrical power. The aim is to design and construct a nonlinear energy sink capa- 
ble of energy harvesting 

 

 

From a broad perspective this implies that a device could be manufactured 
that would have some very interesting complimenting features. The first feature is 
that the device would be a capable vibration absorber in the transient regime that 
would provide useable electrical energy. The second more intriguing feature would 
be broad band vibration absorption with broad band energy harvesting, a difficult 
feature to implement. 

 

 

In order to achieve these goals, several objectives have been defined: 
 

 

1. Design and build a test apparatus that consists of a primary system that 
acts as a linear oscillator, and allows for the testing of the transient re- 
sponse as well as a harmonically forced response. 

 

 

2. Propose and construct a nonlinear energy sink that is capable of energy 
harvesting. The NES must have a low mechanical damping component and 
energy harvesting mass. 

 

 

3. Identify the system parameters with main focus on the essentially nonlinear 
stiffness of the NES. 

 

 

4. Perform an analytical analysis of the performance of the NES, and identify 
the key characteristics of the dynamical system. 

 
 

5. Test the performance of the designed NES with energy harvesting. 



13  

1.4  Thesis Outline 
 

This thesis will outline the development and study of a proposed NES with 
energy harvesting. Chapter 2 will provided an overview of the apparatus including of 
the essential nonlinearity was achieved. Basic equations of motion for the system 
will be identified in terms of general stiffness. A derivation of the electromagnetic 
induction will result in the development of a transduction factor which will link the 
mechanical and electrical systems. Chapter 3 will focus on the identification of sys- 
tem parameters. The transduction factor will be found through the use of a finite 
element model. The stiffness of the NES and primary systems will be found using 
the restoring force surface method, with the NES stiffness having an essentially cu- 
bic nonlinearity. An analytic study of the system will be conducted for transient and 
harmonically excited regimes in Chapter 4. Chapter 5 will verify the performance of 
the apparatus through testing. Chapter 6 summarizes the main findings of the re- 
search. 
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Chapter 2 
 
 

 

Energy Harvesting Nonlinear Energy Sink 
 
 

 
2.1     Test Apparatus Overview 

 
One of the main objectives of this research was the design and construction of a 
test apparatus. Design goals were to create an apparatus to test the effectiveness 
of using a nonlinear energy sink for energy harvest. The apparatus should be 
readily constructed in house and suitable for the use of the equipment available. 

 

 

Figure 2.1 shows the schematic of the developed system. The apparatus 
consists of three main parts: the base, the primary system, and the NES. The 
primary system is a platform supported by two steel plates. The lower ends of the 
steel plates are fastened to the base which can translate freely along a linear track 
through a linear bearing. The NES is made up of a mass attached to a thin steel 
beam. ��𝑝 (��)   and ��𝑎 (��)   represent the absolute displacement of the primary system mass and of the NES  mass respectively, while ��(��)   is the displacement of the 
base. The base is rigidly attached to a Brüel & Kjær  type 2809 shaker fixed to 
ground, driven by a Brüel  &  Kjær  type 2718 power amplifier. Three Wenglor 
CP24MHT80 reflex sensors are used to measure base displacement, the primary 
mass displacement, and the NES mass displacement, respectively. For analysis of 
the transient response of the system, the base can be rigidly fixed. 
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Figure 2.1: Schematic of the physical apparatus. 
 

 

Figure 2.2 illustrates the data collection configuration of the entire system in- 
cluding all sensory data and analog lines. Analog input data is collected by the 
dSpace dS1104 data acquisition board, which also provides the output driving signal 
to the power amplifier. The control and sensing programming is produced using 
Matlab®  Simulink®  environment and the programming is directed by the dSpace 
Control Desktop software to the dS1104. 

 
 

Figure 2.2: Schematic of the entire system. 
 

 

An important feature of the system is the monitoring of the amplifier amper- 
age being delivered to the shaker. With a constant applied voltage to the shaker 
the amperage delivered to the shaker will change according to the dynamics of the 
system vibration system. The output amperage is monitored in real-time and is dy- 
namically changed to maintain a constant current to the shaker, this insures that 
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𝑎 

the force applied to the system will remain approximately constant regardless of 
system dynamics. 

 
2.2     Nonlinear Energy Sink 

 
In section 1.2.3, the NES has been shown to be a very effective vibration absorb- 
er for different forcing and transient regimes. To achieve this desired performance 
the absorber must be constructed to meet certain criteria. 

𝑚𝑎 �� 𝑎 + ��𝑎 ��  𝑎 + ��𝑛 ��
3  = 0 (2.1)

 

An ideal NES has the form of Eqn.(2.1). Two main features of the NES 
are worth repeating for the design; 1) the ideal NES has no linear stiffness 𝑘𝑎

 and 2) the cubic term is strongly nonlinear. For the experiment design these two 
features will be implemented, as well as a third. In section 1.3 it was identified 
that to have a good performance in terms of energy harvesting, the mechanical 
damping should be kept to a minimum, or from Eqn.(2.1) kept ��𝑎     as low 

as
 possible. 

 
2.2.1      Experimental Setup  of the NES 

 
The experimental NES consists of two main parts that make up the nonlinear re- 
storing force while having a low mechanical damping. The first is a steel beam that 
is fixed at the ends with a set of two neodymium (NdFeB) permanent magnets 
fixed at the center position of the beam. The beam ends are fixed to a rigid cage 
surrounding the beam, which is attached to the primary mass. The two magnets 
act as the mass of the NES. The second component is a set of collinear NdFeB 
magnets that are placed in a repulsive orientation to that of the NES mass mag- 
nets. The fixed repelling magnets are mounted on brackets that can be moved to 
change the distance between the NES mass magnets and the fixed magnets. Figure 
2.3 depicts the actual setup of the NES. 
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Figure 2.3: Image of the NES setup. 
 

 

The selection of a steel beam for a spring was due to a few design fac- 
tors. The main determining factor was to have low mechanical damping, while 
providing linear motion. Using a clamped beam removes the presence of any 
damping due to friction of mating parts, as with a linear rail system. A long thin 
steel beam with sufficient width would provide a good range of lateral motion, while 
remaining rotationally stiff. The employment of thin beams as restoring force springs 
has been extensively used [34, 35], as they are reliable, easily characterized and 
constructed. 

 

 

The beam has a linear restoring force for small oscillations as well as a 
nonlinear component for larger oscillations. To reduce the linear component the 
beam was preloaded. Fixing one end of the beam in a holder, the beam was 
compressed slightly and then fixed in place. This task required delicate adjustments 
to achieve a good balance of low linear stiffness while not deforming the beam to 
an extent that would impede performance. 

 

 

Performing a few loading trials, the optimal setup for the beam was when 
the spring favored one side but did not deform greatly. Figure 2.4 depicts a beam 
normally clamped and a slightly preloaded shape. With the slight bending, the beam 
could oscillate freely with low damping, but with an unsymmetric restoring force. An 



18  

offset from the equilibrium position of more than 0.5 (mm) would cause beam to 
move in an unsmooth manner, generating a highly nonlinear force but difficult to 
analyze. 

 
 
 
 
 

Figure 2.4: Effects of beam preloading; a) normally clamped beam with equilibrium at ��𝑎  = 0, 

b) 
a preloaded beam with equilibrium point at ��𝑎  ≠ 

0.

 
The fixed repelling magnets provide an additional source of stiffness to the 

NES. By changing the spacing between the fixed magnets and the oscillating ones 
the restoring force could be dramatically changed, allowing for a variety of potential 
stiffness. The magnetic force generated between two magnets is given by [36] 

��   = 
��𝑚 (2.2) 𝑚

 
��2 

 

 

where 𝑑  is the distance separating two magnets, and ��𝑚    is the magnetic constant that depends on the strength of the magnets and the medium in which they oper- 
ate. From Eqn.(2.2) it can be seen that the force generated is nonlinear with 
respect to separating distance. The restoring force 𝐹𝑚    can also be used to correct for the favoring of the steel beam to one side. Figure 2.5 shows the schematic 
for the placement of the repelling magnets. Changing distances ��1     and 𝑑2 , the force can be altered and the overall stiffness can be balanced and the beam cen- 
tered. 

 

 

To balance the forces the following steps was taken. Once the beam was 
preloaded giving way to an offset in the negative (left) direction, the right magnet 
was placed at a desired distance 𝑑2 . The left magnet was then incrementally moved towards the oscillating magnet reducing distance ��1 , until the beam reached a settling equilibrium point of ��𝑎  = 0. In this manner the forces from the preloaded

 beam and repelling magnets may be balanced to give symmetric stiffness. 
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Figure 2.5: Repelling magnet configuration for the NES. 
 

 

To demonstrate the effectiveness of the design a test was conducted. The 
repelling magnets were placed at a distance of ��1  = 30 (𝑚��)  and 𝑑2  = 25.7(𝑚��), with the beam resting at a balanced ��𝑎  = 0 . The beam was struck and the 
oscillations recorded. Figure 2.6 depicts the recorded response and a Wavelet 
Transform (WT) of the response when the NES was struck with an arbitrary force. 
Examination of Fig. 2.6(a) reveals two features defined in Section 1.3 as the 
primary design objectives: 1) the NES has extremely low mechanical damping, 
having long sustained oscillations and 2) the NES exhibits an essentially nonlinear 
stiffness, the displacement having a changing frequency. It was also apparent that 
the restoring forces have been balanced, the system oscillating evenly about the 
equilibrium point. A WT was applied to the displacement of the signal, Fig. 
2.6(b) exposes the essential nonlinearity of the system. For large displacements 
the system has a high frequency of approximately 11-12 Hz. As the oscillation am- 
plitude decreases the frequency also decreases to approximately 3-4 Hz. 
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Figure 2.6: Transient response of the NES after being struck; a) displacement b) WT Morlet 

spectra of response. 
 

 

From Fig. 2.6 some assumptions about the dynamics performance of a NES 
can be made. The larger amplitudes at the beginning of the test correspond to the 
larger amounts of energy present in the system and higher frequencies achieved. 
As the energy is dissipated through mechanical damping the frequencies likewise 
decrease. In the region of 0 ≤ 𝑡 ≤ 0.75   seconds there was a sharp decrease in

 the frequency, whereas for the remainder of the response there was a more 
gradual decrease in frequency. This change in threshold indicates that there was a 
dependence on energy level to engage the nonlinear part of the NES, and that 
performance may depend on the energy present in the system. 

 
2.2.2      Preliminary Equations of Motion 

 
From the previous section it is possible to construct the governing equations of 
motion for the system. In summary there is a linear base, attached to it is a line- 
ar oscillator having a spring-mass-damper configuration. Attached to the primary 
system is a nonlinear oscillator with low mechanical damping and undetermined re- 
storing forces. The free body diagrams are shown in Fig. 2.7. 
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Figure 2.7: Free body diagram of the generalized system. 
 

 

Using Newton’s second law, the equations of motion can be summarized for 
the combined system: 

𝑚𝑝 �� 𝑝 + ��𝑝 (�� 𝑝 − ��  ) + ��𝑝 (��𝑝 − ��) − ��(��𝑎 − ��𝑝 ) − ��𝑎 (�� 𝑎 − �� 𝑝 

) = 0 (2.3)
 

𝑚𝑎 �� 𝑎 + �����𝑎 − ��𝑝 � + ��𝑎 (�� 𝑎  − �� 𝑝 ) = 0 (2.4)

 
where 𝑚   is mass, 𝑐   damping, 𝑘   linear stiffness and the subscripts p and a de-

 note the primary system and NES system respectively. The term ��(��𝑎 − ��𝑝 )  

repre-
 sents the restoring force to be quantified. The physical parameters of the NES are 

listed in Table 2.1. 
 
Table 2.1: Physical parameters of beam and magnets. 

 
 

Beam 
Length 480 (mm) 
Width 30 (mm) 
Thickness 0.52 (mm) 

Oscillating magnet 
Mass 0.0305 (kg) 
Length 25.4 (mm) 
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Radius 7.5 (mm) 
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Type N40 
Fixed magnet 

Length 3 (mm) 
Radius 7.5 (mm) 
Type N40 

 
 
 

2.3     Energy Harvesting  System 
 
The presence of an oscillating mass consisting of magnets opens up the possibilities 
for energy harvesting. During vibration the magnets will generate a changing mag- 
netic field with respect to a fixed plane, the addition of a fixed coil within the 
changing field will allow a voltage to be induced in the coil. The proposed energy 
harvesting method for this thesis is a set of coils consisting of inner and outer ra- 
dii that will surround the magnets which do not physically touch them as shown in 
Fig. 2.8. The coils will be connected in series such that the induced voltages will 
be summed. 

 
 

Figure 2.8 Schematic of the proposed energy harvesting configuration. 
 

 

To determine the effects of the electrical system, and develop an overall 
model of the NES and energy harvesting, a physical derivation is required to ex- 
tract the governing coefficients. A simplified model of a single coil and magnet are 
shown in Fig 2.9. The equation of motion for the system can be expressed by 
Eqn. (2.5) where 𝐻 = ��𝑎 − ��𝑝    is the relative displacement between the coil 
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(fixed
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to the primary mass) and the oscillating magnet. The coefficient ��𝑚    is the me- chanical damping and the function ��(��)   is the spring restoring force that includes linear and nonlinear terms shown as 𝑘  in Fig. 2.9. 

𝑚𝑎 �� 𝑎 + ��𝑚 ��  + ��(��) = 0 (2.5)
 

 

 
 

Figure 2.9: Simplified model of an energy harvester 
 

 

The coils were constructed of enamel coated AWG 30 copper wire tightly 
wrapped around a High Density Polyethylene (HDPE) spool. The inner diameter of 
the spool was made large enough to avoid hitting the oscillating magnet. Each coil 
consisted of 256 turns of wire with a measured resistance of 6 (Ω). The wire was measured to have a 0.3482 (Ω/��)  resistance, and the length calculated as 17.23 
(m). The physical dimensions of the coil are listed in Table 2.2. 

 
Table 2.2: Coil physical properties 

 

 

Coil 
Inner radius (𝑟1)                           9.398 (mm) Outer radius (𝑟2)                          12.7 (mm) Height (ℎ𝑐��𝑐𝑙 )                                 7.493 (mm) Resistance (��𝑐��𝑐𝑙 )                        6 (Ω) 
Resistance per meter (��′)       0.3482 

(Ω/��)
 Turns (��)                                        

256
 Wire length (��𝑤𝑐𝑤�� )                       17.23 

(m)

 



26  

The constructed coils were mounted on post so that they are in line with 
the magnets and fixed to the primary system as shown in Fig. 2.10. In this con- 
figuration the setup will act as an electromagnetic vibration transducer. 

 

 

 
 

Figure 2.10: Image showing the coil arrangement. 
 

 

To analyze the effects of the electric and mechanical components, a simpli- 
fied approach was used based on Faraday’s law of induction. The law states that 
any change in magnetic flux through a conductive loop of wire will cause a voltage 
to be induced in the wire. This induced voltage is the so-called electromotive force 
(EMF) which is given by: 

 

 
 

𝜀 = �   (𝑣 × ��) ∙ ��𝑙 
��𝑤 

(2.6) 

 

 where 𝑣   is the relative velocity between the coil and the oscillating magnet, 𝐵   is the magnetic flux density generated by the magnet, ��𝑤    is length of the wire com- prising the coil and 𝑑𝑙   is a differential vector length pointing tangentially to the wire. The operator ×  signifies the cross product, while the operator • denotes the 
dot product. Figure 2.11 depicts the single wire coil and magnet and the coordi- 
nates used to describe the velocity and magnetic field. The unit vectors in cylindri- 
cal coordinates are �� , 𝑎�,  and 𝛽    and point in the positive direction. In the 

diagram
 the coil is considered to be moving towards the magnet and having a negative ve- 

locity, which is equivalent to the magnet moving towards a fixed coil. The radius of 
the coil is 𝑟   and the distance separating the center of the magnet to the coil is

 
𝐻 . The angle β   is used later in an integration step and is used as an arbitrary

 reference frame. 
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Figure 2.11: Diagram of single coil and magnet. 
 

 

Due to the symmetry of the cylindrical magnet, only two components of the 
magnetic flux density are applied, 𝐵𝑎    in the a-direction (radial component) and 𝐵𝑧

 in the z-direction (axial component). Using Fig.2.1 the velocity and magnetic field 
can be broken down into the directional components and combined into Faraday’s 
law. 

𝑣 = −�� 𝐻� (2.7)
 

𝐵 = 𝐵𝑧 ��  + 𝐵𝑎 𝑎� (2.8) 
 

 
 

𝜀 = �   (−�� �� ) × (𝐵𝑧 ��  + 𝐵𝑎 𝑎�) ∙ ��𝑙 𝛽  = −��  

�   𝐵𝑎 ��𝑙 

(2.9) 

��𝑤 ��𝑤 

 

 

Apparent from Eqn.(2.9), the only magnetic field component responsible for 
inducing a voltage is the radial component 𝐵𝑎 . The magnitude of 𝐵𝑎    at a point of interest is dependent on the strength of the magnetic material and the location in 
the z-a plane. The radial magnetic field can then be written as a function of dis- 
tances: 

 
 
 

𝜀 = −��  �   𝐵𝑎 (��, 

��)��𝑙 
��𝑤

 

(2.10) 
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The integral term in Eqn.(2.10) is the so-called transduction factor. This 
term is direct coupling between the mechanical and the electrical systems. This 
term will be used throughout this work and will be designated for one coil as: 

 

 
 

����1 (��, ��) = − �   𝐵𝑎 

(��, ��)��𝑙 
��𝑤 

(2.11) 

 

 

One can then rewrite the coupling factor such that: 
 
 

����1(��, ��) = − �   𝐵𝑎 (��, 

��)��𝑙 = − � 
��𝑤 

1
 

𝑙𝑤 

�   𝐵𝑎 (��, ��)����� 𝑙𝑤 (2.12) 
��𝑤 

 

 

It can be seen that the parenthesized term is an average of the radial flux density 
over the length of the loop coil. For a coil consisting of multiple loops which are 
perfectly wound, the average can be approximated as the average of 𝐵𝑎    over the area of the coil [37]. 

 
 

1 ����1(��, ��) = − �
𝑙 

1 �   𝐵𝑎 (��, ��)����� 𝑙𝑤  = − �
𝐴 � 𝐵𝑎 (��, ��, )����� 𝑙𝑤 

(2.13) 𝑤    ��𝑤 
𝑐����𝑙 ��𝑐𝑐��𝑐 

 
 
 

����1(��, ��) = −𝐵�𝑎 (��, ��)𝑙𝑤 (2.14) 
 

 

where ��𝑐��𝑐𝑙  = (𝑟2 − 𝑟1)ℎ𝑐��𝑐𝑙

 

The transduction factor can be then shown in reduced form where 𝐵�𝑎    repre- sents the average radial flux density through the cross section of coil. The magnet 
and the coil will consist of fixed physical parameters, because the coil will only 
change in the z direction the transduction factor can be reduced in terms of rela- 
tive displacement: 

����1(��) = −𝐵�𝑎 (��)𝑙𝑤 (2.15)
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Illustrated in Fig. 2.8, the system is comprised of two magnets and two 
coils, and they are connected in such that the induced voltages are summed. The 
different coupling factors will be noted by the subscripts 1 and 2. The two coils 
will be placed in series with a potentiometer that will act as a load. The circuit is 

shown in Fig. 2.12. ��𝑐��𝑐𝑙    is the resistance in a single coil, 𝐿𝑐��𝑐𝑙    is the 

inductance
 of a coil, ��(��)  is the time varying current in the circuit, ��𝑙����𝑙    is the load 

resistor
 and 𝑘��1,2    are the transduction factors from each coil respectively.

 
 
 
 
 
 
 
 
 

 
Figure 2.12: Electrical system 

 

 

With an induced voltage in the electrical circuit, current will flow. For this 
system the inductance and resistance form the coils can be summed and Kirchoff’s 
law applied to derive the electrical system equations: 

 

 

��

𝑖 2𝐿𝑐����𝑙 ��𝑡 
+ (2��𝑐����𝑙 + ������𝑎𝑙 )𝑖 = ��𝑡 ��  (2.16)

 
��𝑡  = ����1 + ����2  (2.17)

 
where the transduction factor 𝑘𝑡    is the total transduction factor for the two coils 𝑘��1

 and 𝑘��2 .
 Generally for an AC electrical circuit the inductance of the coil will play a 

significant role. The alternating current will cause the coil to have a reactance, 
along with the static resistance generating an impedance. The impedance of the coil 
can be defined by the complex equation: 

��𝑐����𝑙  = ��𝑐����𝑙 + 𝑗��𝐿𝑐����𝑙 (2.18)
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𝑚 

𝑚 

The inductance of the considered coils can be estimated according to the 
Wheeler approximations given by [38]: 

 

 

3.15 ∙ 10−5��2  

𝑁 
𝐿𝑐����𝑙  = 

6𝑅 + 

9ℎ𝑐����𝑙 

+ 10(𝑟2 
(2.19) 

− 𝑟1 ) 

 
1 ��𝑚  = 

2 
(𝑟2 + 𝑟1 ) (2.20)

 
where 𝑁  is the number of turns of the coil, 𝑟1,2    are the inner and outer coil radii and ℎ𝑐��𝑐𝑙    is the height of the coil. The approximated inductance for a single coil was 1.52 𝑚𝐻 . For the test apparatus the maximum driving frequency will be 25

 Hz. Using this upper frequency limit the total reactance can be determined: 

����������𝑙  = 2��(25)(2𝐿𝑐����𝑙 ) = 0.477 Ω (2.21)
 

The reactance accounts for less than 5% of the total resistance in the coils. 
For simplification of the electrical equations, the coil inductance will be neglected by 
setting 𝐿𝑐��𝑐𝑙  = 0 . Rearranging Eqn.(2.16) the equation for current can be deter-

 mined and expressed: 
 

 

𝑖 = 
��

𝑡
 

2��𝑐����𝑙  + 
������𝑎𝑙 

��  (2.22) 

 

 

The final step in the derivation is to apply Lenz’s law. The law states that 
for a closed circuit condition the EMF voltage produced in the coil will cause a 
current to flow. This current will create a magnetic field which opposes the mag- 
netic field that caused the current. This interaction causes a feedback electrome- 
chanical force which is given by: 

𝐹𝑤  = ��𝑡 𝑖 (2.23)
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𝑘 

2𝑅 

𝑘 

 

 
 

Figure 2.13: Free body diagram of all forces acting on the oscillating magnet. 
 

 

Figure 2.13 depicts all of the forces acting on the vibrating magnets, and 
applying Newton’s 2nd law of motion the equation of motion can be defined as: 

𝑚𝑎 ��  𝑎 + ��𝑚 ��  + ��(��) + 𝐹𝑤  = 0 (2.24)
 

Combining Eqns.(2.22)-(2.24) the equation of motion for the relative dis- 
placement of the absorber can be described in terms of the mechanical restoring 
forces as well as the electrical restoring forces: 

 

 

𝑚𝑎 �� 𝑎 + ��𝑚 ��  + 

��(��) + 
2𝑅

 

2 
𝑡
 

+ 𝑅 

��  = 0 (2.25) 

𝑐����𝑙 ����𝑎𝑙 It is clear from Eqn.(2.25) that there are two velocity coefficients, resulting in two damping parameters. The first, ��𝑚    is the mechanical damping and the sec- ond ��𝑤    is the electrical damping. The value of the electrical damping coefficient is dictated by the transduction factor as well as the total resistance in the coil and 
load. 

 

 

��𝑤  = 
𝑐����𝑙 

2 
𝑡
 + 
������
𝑎𝑙 

 

(2.26) 

 

 

𝑚𝑎 �� 𝑎 + (��𝑚 + ��𝑤 )��  + ��(��) = 0 (2.27)

 
The voltage and the power across the resistor can be found by again ap- 

plying Kirchoff’s Laws to Fig.2.1 such that: 
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𝑘  𝑅 

𝑘 

2𝑅 

𝑘 

𝑉����𝑎𝑙  = 

��������𝑎𝑙  = 
2𝑅

 

��𝑡 

������

𝑎𝑙
 

+ 𝑅 

��  (2.28) 

𝑐����𝑙 ����𝑎𝑙 

𝑃����𝑎𝑙  = ��2 

������𝑎𝑙  = 

2 𝑡     ����𝑎𝑙
 (2��𝑐����𝑙  + 

������𝑎𝑙 )
2

 

��  2  (2.29)
 

 

 
 
 
 

2.4     Conclusion 
 
The overall system has been described in terms of the mechanical system as well 
as the electrical one. From the derivation of the energy harvesting system it was 
seen that the coupling factor 𝑘𝑡    is the direct link between the two systems. The transduction factor is also the method used to determine the electrical damping for 
the NES, and can be used to determine the current voltage and the power gener- 
ated. Combining Eqns.(2.3),(2.4),(2.22)and (2.26) a complete model of the 
system can be defined. 

 
 

 
𝑚𝑝 �� 𝑝 + ��𝑝 (�� 𝑝 − ��  ) + ��𝑝 (��𝑝 − ��) − ��(��𝑎 − 

��𝑝 ) − ��𝑚 (�� 𝑎 − �� 𝑝 ) 
2 
𝑡 

 

 

(2.30) 

− 

2��𝑐����𝑙 + ������𝑎𝑙 

(�� 𝑎 − �� 𝑝 ) = 0 

𝑚𝑎 �� 𝑎 + �����𝑎 − ��𝑝 � + ��𝑎 (�� 𝑎 − 

�� 𝑝 )) − 
𝑐����𝑙 

2 𝑡
 + 
������
𝑎𝑙 

(�� 𝑎 − �� 𝑝 ) = 0 (2.31) 

 

 

𝑖 =

 

��

𝑡
 

2��𝑐����𝑙  + 

������𝑎𝑙

 

��  (2.32)
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Chapter 3 
 
 

 

System  Parameter Identification 
 
 

 
3.1     Primary System Parameters 

 
To determine the parameters of the primary system a traditional method was em- 
ployed. The magnets and primary mass were removed from the system and 
weighed individually. The mass of the primary system was determined to be 
𝑚𝑝  = 0.917 (����) . The structure was reassembled without the NES mass and 

the
 base locked. The primary structure was then struck and set into free vibration. The 

response was recorded and a Fast Fourier transform (FFT) applied. Figure 3.1(b) 
shows the response and the FFT. The natural frequency of the system was deter- 
mined to be 11.6 (Hz). For a linear system the stiffness of the spring can be 
determined by: 

��𝑝  = ��2 𝑚 (3.1)
 

This results in a stiffness of 𝑘𝑝  = 4870 (��/��) . To determine the 

damping
 coefficient, the positive peaks from the recorded response were determined and the 

logarithmic decrement method used [6]. 
 

 

𝛿 = 1 
ln � 

��(

��) 
� (3.2) 

𝑛 ��(𝑡 + 
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𝑛��)
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𝛿 
𝜉 =    

√4𝜋 2 + 𝛿 2 

 

(3.3) 
 

 
where ��(��)   is a positive peak, ��(𝑡 + 𝑛��)   is any integer number of successive peaks and 𝜉  is the damping ratio. The damping ration for the primary system was 
found to be approximately 1.03 percent. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1: a) recorded free response of primary system with fitted damping curve, b) FFT plot of 

response with ��𝑝 = 11.74 

(𝐻��)

 

The damping coefficient is then determined using Eqn.(3.4), is approximate- 
ly ��𝑝  = 1.3747 (𝑁��/��). All of the determined primary system parameters are 

listed
 in Table 3.1. 

 
��𝑝  = 2����𝑝 𝑚𝑝 (3.4) 
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Table 3.1: Estimated primary system parameters 
 

 

Parameter Estimated value 
𝑚𝑝 0.917 (𝑘��)

 
𝑘𝑝 4870 (����−1)

 
��𝑝 1.3747 (𝑁����−1)

 
��𝑝 11.6 (𝐻��)

 
3.2     Transduction Factor  – Electrical Damping Coefficient 
In Section 2.3 the transduction factor 𝑘𝑡    which couples the mechanical and electri- cal systems was derived. The remaining component is to calculate the radial mag- 
netic flux average over the area of the cross sectional area of coil. To perform this 
calculation the finite element method is used to determine the radial magnetic flux 
for the magnet. 

 
 

1 𝐵�𝑎  = 
𝐴 � 𝐵𝑎 (��, ��) ∙ 

��𝐴 

 

(3.5) 

𝑐����𝑙 ��𝑐𝑐��𝑐 

 

 

Illustrated in Fig. 2.9, the system has two magnets in line attached to the 
beam in attractions. This model can be simplified by considering a single magnet of 
length 2������𝑚 . The magnet was modeled using the free commercially available 

soft-
 ware FEMM [39], using the axis symmetric orientation for models in cylindrical co- 

ordinates. The results were imported to Matlab for analysis. Figure 3.2 shows the 
results of the FEMM results for the magnets. 
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Figure 3.2: FEMM analysis results: a) magnitude of flux density b) axial component of the flux 
density c) radial component of the flux density. Black boxes signify the outer dimension of the 

magnets. 
 

 

To evaluate the average radial flux density through a single coil, a separa- 
tion distance 𝑆   was defined as the distances from the center of the two magnets

 to the center of a coil shown in Fig. 3.3(a). The only magnetic field components 
of concern are the radial components shown in Fig. 3.2(c). From this data, the 
only portions that will induce a voltage in the coil lie within the area of the coil 
��𝑐��𝑐𝑙 . To simplify the processing, a strip of the radial magnetic flux density for the entire length of 𝐻  was created lying within the bounds of 𝑟1    and 𝑟2    and are shown 
in Fig. 3.3(b). It can be seen that there are two peaks (maxima and minima) 
that occur over the length of ��, corresponding to the ends of the magnets.
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a) b) 

Figure 3.3: a) diagram of coil and magnet, b) ��𝑎    data within the region of 𝑟1 − 𝑟2    over the length of magnet. 
 
 

The magnetic flux was numerically integrated over the area of the coil at 
discrete distances of 𝑆  over the entire length of ��. Averaging of the discrete 

areas
 and multiplying by length of the wire gives the transduction factor for separation 

distance ��. 
 

 

𝑙𝑤��𝑤𝑤
 ��

2 

��2 

����1 (��) = − 
𝐴

 �   �   𝐵𝑎 (��, ��) ∙ 
������𝑟 

(3.6) 

𝑐����𝑙 ��

1 

��1 

 

 

��1  = 𝑆 − 
ℎ𝑐����𝑙 

, 𝐻   

= 𝑆 + 
2 2

 

ℎ𝑐����𝑙 (3.7) 
2 

 

 

The results of the numerical integration for the entire length of the two 
magnets are presented in Fig. 3.4(a). The transduction factor reaches a maximum 
at two locations 𝑆 = ±25.4 (𝑚��)  corresponding to the ends of the magnet. For a maximum 𝑘��1    the coil center should be in line with the end of the magnet for a value of approximately 𝑘𝑡  = 2.5154 (𝑛 ∙ ��). Placing the coils at these positions re- late to the general coordinate system at equilibrium of 𝐻 = 0. As mentioned previ- 
ously, the coils will be connected such that the induced voltages will be summed, 
and due to the symmetry of the curves the value for 𝑘𝑡  = 𝑘��1 + 𝑘��2  = 2𝑘��1 , depict- ed in Fig. 3.4(b) for the full range of motion of ��. 
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2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.4: a) transduction factor ����1    for a single coil. b) total transduction factor ��𝑡    and the 

fit-
 

ted data of for the data. 
 

The data for 𝑘𝑡    was fitted using an exponential function and was overlaid the in Fig. 3.4(b) with good agreement and can be expressed as Eqn.(3.8) 
with a maximum of 𝑘𝑡  = 5.03(𝑛 ∙ ��). 

 

 

��𝑡 (��) = ��𝑒 ��𝑧 (3.8) 
 

 

𝑎 = 5.029 
𝑏 = −1.474 × 104  (3.9)

 
 

3.3     Nonlinear Stiffness  and Damping 
 
As discussed in the previous sections, there were two components generating the 
restoring force for the NES: 1) the preloaded beam and 2) the collinear repelling 
magnets. The reasoning behind this configuration was to be able to change the 
nonlinear stiffness of the absorber by changing the distance between the fixed and 
oscillating magnets. This concept was used by [32], where repelling magnets were 
used to generate all of the restoring force. The effects of the magnets and beam 
will be examined individually. 
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3.3.1      Effect  of Repelling Magnets. 
 
To understand the effects of the restoring force created by the magnets, a series 
of static tests measuring the force generated between the magnets were conducted. 
One oscillating magnet was placed in a holder connected to a S-type load cell 
which was fixed rigidly to ground. One repelling magnet was place inline separated 
by distance 𝑑0, shown in Fig. 3.5.

 
 

 
 
 
 
 
 

a) 
 
 
 
 
 
 
 
 

b) 
 

Figure 3.5: a) static test arrangement for determining force displacement relationship, b) force dia- 
gram of magnet arrangement. 

 
 

The force and displacement measurements were recorded and fitted to the 
exponential function Eqn.(3.10) and is shown in Fig. 3.6(a). The nonlinear force 
generated by the magnets can be clearly seen, becoming more pronounced as 𝑑0

 decreases. Considering Fig. 3.5, the total magnetic restoring force 𝐹𝑚    for symmetric
 magnet spacing can be expressed as the sum of forces. The total force for differ- 

ent magnet spacings are shown in Fig. 3.6(b). 

����𝑎𝑚 (��) = ����𝑙 (3.10)
 

𝑐 = 0.0001647 
𝑑 = −2.174 

(3.11)

 
𝐹𝑚 (��) = 𝐹��2(��) − 𝐹��1 (��) = ��(𝑑𝑙 − ��)𝑙 − ��(𝑑𝑙 + ��)𝑙

 (3.12)
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Figure 3.6: a) magnetic force displacement measurements and fitted data, b) total force displace- 

ment relationship for different magnet spacings. 
 

 

Recalling the definition for an effective NES, the design goal was to reduce 
or eliminate the presence of a linear restoring force, Fig. 3.6(b) shows that for 
the displacement range in 𝐻 , the main contributing component of the magnetic re-

 
storing force is linear. Although the force is nonlinear over large displacement rang- 
es, for this design reducing the distance 𝑑0    to increase the nonlinearity results in a significant linear stiffness component. Therefore the magnets will be used solely to 
balance the forces from the preloaded beam, and will be placed at the furthest 
distance possible from the oscillating magnets. The optimal distance was found to 
be approximately 𝑑0  = 40 (𝑚��).

 
3.3.2  Beam Nonlinear Stiffness and Damping 

 
The identification of the stiffness and damping of the NES system will use 

the commonly employed restoring force method [40, 41]. The restoring force meth- 
od is an application of Newton’s second law from the force diagram of Fig. 2.7 
for the NES such that 

𝑚𝑎 �� 𝑎 + �����𝑎 − ��𝑝 , �� 𝑎 − �� 𝑝 � = 0 (3.13)
 

��(��, �� ) = −𝑚𝑎 �� 𝑎 (3.14)

 



42  

 

 

Recalling the relative displacement as 𝐻 = ��𝑎 − ��𝑝 , the force can be 

equated
 in terms of relative displacement and velocity and NES acceleration with the 

knowledge of absorber mass. The system can be excited and the time histories for 
displacement recorded to determine velocity and acceleration in ��𝑎    and 𝐻  at regular sampled intervals, spaced ∆𝑡 . Denoting the sampled displacements, velocities and 
accelerations as ��𝑘  = 
��(��𝑘 ), ��𝑘  

= �� (��𝑘 )… where ��𝑘    is the ��th sampling 
instant such 

that ��𝑘  = (𝑘 − 1)∆��. Thus one can find the restoring force at each time sample 

��𝑘 .
 

��(��𝑘 , �� 𝑘 ) = −𝑚𝑎 ��  𝑎 𝑘 
(3.15)

 
For each of the sampled points ��𝑘    there now is a triplet of data of 

forces
 for the NES system. Using a simple method outlined by [42], the force data can 

be mapped to the phase plane. The phase plan is then divided into small grid 
squares, and the forces lying within the square are averaged to give a force at the 
center of the grid square. If a grid square has no force values but has three or 
more neighboring force values, the average of the neighbors are used for the emp- 
ty grid square. The process is repeated until no new grid squares are produced. 
This produced an average force map in the phase plane for the NES, which can 
be fitted using least squares procedures. 

 

 

There are two critical requirements for the accuracy of this method, the se- 
lection of a way to excite the system and the calculation of the velocity and ac- 
celeration data. The excitation signal should be selected such that the phase plane 
has very good coverage [43]. Also being aware of the system general dynamics, 
one should select the excitation such that it forces the expected nonlinear phenom- 
enon. Knowing that a NES can exhibit a strongly modulated response, a slowly 
modulated periodic signal will be used to excite the base. The frequency of the 
periodic signal was selected to be 14 Hz, close to the natural frequency of the 
primary system, but increased enough so as to not be dominated by the primary 
response. The slowly modulated response will ensure that the phase plane will have 
excellent coverage. The selected excitation signal is: 
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��(��) = 𝑌 cos(0.1����) ∙ cos(14 ∙ (2����)) (3.16)
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The displacements of the system were recorded through the laser reflex sen- 
sors, meaning that the velocity and accelerations must be differentiated from the 
time data. The differentiation of recorded displacement signals are very susceptible 
to noise, being amplified with each differentiation. To filter the signals, the dis- 
placement responses are interpolated using cubic spline approximations for simplicity 
in Matlab®. Cubic spline interpolation was selected to make the data points contin- 
uous, allowing for good differentiation. The energy harvesting system allows for 
verification of the filtering, since the recorded voltage data is directly related to the 
relative velocity. The differentiated velocities are compared to the recorded voltage, 
and the degree of cubic smoothing adjusted for a good fit. 

 

 

To identify the nonlinear stiffness and the mechanical damping of the NES 
system, the coils are removed from the range of motion of the oscillating magnets. 
The system was excited for 200 seconds to insure a good representation of the 
force and to provide good coverage in the phase plane. Figure 3.7 shows the re- 
sults from the surface force mapping. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7: Surface force map for the NES in the phase plane. 
 

 

The results of the force surface map reveal the nature of the nonlinear stiff- 
ness generated by the beam. It can be seen that the choice of the exciting signal 
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provided a representation in the phase plane. It is clear that the beam provides a 
nonlinear stiffness, the force increasing dramatically as displacement increases. The 
NES also exhibits low mechanical damping, the force along the velocity axis being 
generally flat. To have a better understanding of the force displacement-velocity re- 
lationships, the curves are examined at ��(��, 0)  for displacement and ��(0, �� )  

for the
 velocity. At these points the force will be purely due to either displacement or ve- 

locity. 
 
 
 
 
 
 

 
 

 
 
 
 
 

Figure 3.8: a) NES: force-displacement relationship at ��(��, 0), b) NES: force-velocity 

relationship 
at ��(0, 

�� )

 

Figure 3.8(a) depicts the force-displacement relationship for the NES at 
��  = 0.   It can be seen here that the constructed NES exhibits the desired 

design
 goals; that the NES stiffness would be essentially nonlinear. Within the region of 

𝐻 = ±1.5 (𝑚��)  the curve is almost flat, indicating a very low linear stiffness, 

criti-
 cal component for an effective vibration absorption. For larger displacements the re- 

storing force increases quickly exhibiting a high degree of nonlinearity. Figure 
3.8(b) illustrates that the NES has an extremely low damping coefficient, another 
critical design goal. 

 



46  

 

The nonlinear restoring force and damping were estimated using least squares 
parameter estimation. The restoring force was related to Eqn.(3.17), to provide for 
greater fit flexibility [44], where 𝑘𝑎    is the NES linear stiffness, 𝑘𝑛    is the nonlinear stiffness and 𝛼   is the degree of nonlinearity. The damping related to Eqn.(3.18) where ����𝑚    is the mechanical damping of the NES. 
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��(��, 0) = ��𝑎 𝐻 + ��𝑛 ∙ sign(��) ∙ |��|𝛼 (3.17)

 
��(0, �� ) = ����𝑚 ��  (3.18)

 
The obtained values from the curve fitting are listed in Table 3.2. The re- 

sults of the parameter estimation fit are overlaid in Fig. 3.8, and show good cor- 
relation. It is interesting to note that the NES contains a linear component. Alt- 
hough it is an undesirable for a NES, the low value such that 𝑘𝑎  ≪ 𝑘𝑝     indicates that the NES and the primary system will be weakly coupled. The linear natural 
frequency for the NES can be calculated as ��𝑎 𝑙𝑐𝑛��𝑎��  

= �𝑘𝑎 /𝑚𝑎 , 

approximately
 

4.59(Hz). This value corresponds to the frequency displayed in the WT plot of 
the NES free response in Fig. 2.6 for small displacements. The degree of nonline- 
arity ��, is also very close to a cubic approximation, an aim of the overall design.

 

Table 3.2 Estimated parameters of NES identified using restoring force surface method 
 
 

Parameter Estimated Value 
𝑚𝑎 0.061 (𝑘��)

 
𝑘𝑎 50.81 (��/��)

 
𝑘𝑛 9.539 × 107 (��/��3.027 )

 
𝛼 3.027

 
����𝑚 0.017 (𝑁��/��)

 
The restoring force surface method can be extended to multiple degrees of 

freedom systems [45]. Applying this extension to the primary system will allow for 
verification of the method. Applying Newton’s second law to the primary system and 
noting 𝑤 = ��𝑝 − 𝑦 as the relative displacement between the base and primary

 mass, the same procedure can be applied. 

𝑚𝑝 �� 𝑝 + �����𝑝 − ��, �� 𝑝 − ��  � − �����𝑎 − ��𝑝 , �� 𝑎 − �� 𝑝 � = 0

 (3.19)
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��(��, 𝑤  ) = −𝑚𝑝 �� 𝑝 + ��(��, �� ) (3.20)
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Evident in Fig. 3.9, the restoring force surface method produced a very 
linear stiffness and damping for the primary system, generating a flat disc shape 
surface. As with the NES the stiffness is fitted with least squares parameters, with 
an estimated linear stiffness of 𝑘𝑎  = 4910(��/��) . The estimated

 value has a
 0.82% error from the previously calculated value from section 3.1, evidence of the 

accuracy for the restoring force surface method. 
 

 

 

   

  
 

 
Figure 3.9: Primary system: a) Surface force map of the primary in the phase plane, b) force- 

displacement relationship at ��(��, 

0).
 

3.3.3  Electrical Damping 
 

The above method can also be used to determine the validity of the esti- 
mation of the transduction factor found through the FEM estimation. Two tests were 
conducted with different load resistances. The first ��𝑙����𝑙  = 10(Ω), will apply a large amount of damping and the second ��𝑙����𝑙  = 50(Ω), a moderate amount of damping. 
The damping coefficient will be found using the restoring force method, and by re- 
arranging Eqn.(2.26), one can find the approximate for the electromechanical cou- 
pling in terms of damping [46]. 

��𝑡  = �(��𝑎 − ��𝑎𝑚 )(2��𝑐����𝑙 + ������𝑎𝑙 ) (3.21)
 

Figure 3.10 shows the results from a load resistance of 10 Ω. The damping
 coefficient was found to be fairly linear with an approximate value of ��𝑎  
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=
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1.136 (𝑁��/��)  . Using Eqn.(3.21) the

 approximate transduction factor is
 

𝑘𝑡  = 4.9617 (𝑛 ∙ ��), very close to the predicted maximum value of 5.03. The re-
 sults for the load resistance of 50 (Ω) , shown in Fig. 3.11, have a calculated
 damping of ��𝑎  = 0.4231 (𝑁��/��) . The approximate transduction factor

 is 𝑘𝑡  =
 

5.0178 (𝑛 ∙ ��), again very close to predicted value.

 
 

 

 
 

 
 
 
 

 
 

 Figure 3.10: NES with load resistance of 10(Ω): a) Surface force map of the primary in the phase plane, b) force-velocity relationship at ��(0, �� ). 
 
 
 
 
 

 

 
 
 
 

 
 

 

 Figure 3.11: NES with load resistance of 50Ω: a) Surface force map of the primary in the phase plane, b) force-velocity relationship at ��(0, �� ). 
 

 

This analysis makes a large assumption in the verification of the transduction 
factor; that the Lorentz force applied to the system is linear. This is contradictory 
to the nonlinear coupling calculated in Section 3.2, which should be a function to 
the displacement ��. It is important to note that the displacement and velocity of 
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the
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absorber are 90 degrees out of phase from each other. This implies that when the 
displacement magnitude is at a maximum the velocity magnitude is at a minimum. 
The lower values of 𝑘𝑡    corresponding to large displacements, will have little effect due to the low velocity component. Therefore the damping will be dominated by the 
higher values of 𝑘𝑡     where the displacement is small but the velocity is high. It stands to reason then that the transduction factor can be made linear and approxi- 
mately the value of the maximum value of 𝑘𝑡 .

 
To further explore this, the restoring force surface method can be modified 

for the recorded voltage time series. Here instead of Newton’s second law, one 
can apply Kirchoff’s Law from Eqn.(2.28) such that: 

 

 

𝑉����𝑎𝑙 (2��𝑐����𝑙  + 

������𝑎𝑙 )
 

������𝑎𝑙 

= ��(�� ) (3.22) 

 

 

In this way the left hand side of Eqn.(3.22) represents the EMF voltage 
induced within the coil. The voltages are mapped and plotted over the relative ve- 
locity in Fig. 3.12. It is apparent that the relationship is linear, more importantly 
the slope of this line is an approximate value for 𝑘𝑡 .

 
 

 
 
 
 

 
 
 
 

 
 

 
Figure 3.12: Approximate induced voltages 

For a load resistance of 10 (Ω) the slope correspondes to a value of 
𝑘𝑡  = 5.584 (𝑛 ∙ ��)  , and for 50 (Ω) the slope corresponds to a value of
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𝑘 

2𝑅 

𝑘 

𝑘𝑡  = 5.191 (𝑛 ∙ ��). Again these values very close to the predicted maximum value
 

of 𝑘𝑡 .
 

3.4  Conclusion 
 

From this chapter the major components of the system were identified using 
the various techniques. The transduction factor was found through the use of a 
semi-analytic method employing the finite element method. This electromechanical 
coupling was found to act in a linear way, despite the dependence on displace- 
ment. Using the resorting force surface method the stiffness of the NES was found 
to exhibit a cubic nonlinearity with a small linear component. The force contributed 
by the repelling magnets were found to be predominantly linear when place in close 
vicinity to the oscillating magnets. They will be used to balance the beam forces 
but will be kept at a maximum distance from the oscillating magnets. With this in- 
formation the final equations of motion can be written for the system 

 

 
3 𝑚𝑝 �� 𝑝 + ��𝑝 (�� 𝑝 − ��  ) + ��𝑝 (��𝑝 − ��) − ��𝑎 (��𝑎 − ��𝑝 ) − ��𝑛 ���𝑎 − 

��𝑝 � 
2 
𝑡 

 
 

(3.23) 

− ��𝑚 (�� 𝑎 − �� 𝑝 ) − 

𝑐����𝑙 

+ 
������
𝑎𝑙 

(�� 𝑎 − �� 𝑝 ) = 0 

3 𝑚𝑎 �� 𝑎 + ��𝑎 ���𝑎 − ��𝑝 � + ��𝑛 ���𝑎 − ��𝑝 � 
2 
𝑡 

+ ��𝑎 ��� 𝑎 − 

�� 𝑝 �
 

 
(3.24) 

+ 

2��𝑐����𝑙 + ������𝑎𝑙 

(�� 𝑎 − �� 𝑝 ) = 0 

𝑖 =

 

��

𝑡
 

2��𝑐����𝑙  + 

������𝑎𝑙

 

��  (3.25)
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Chapter 4 
 
 

 

System  Analysis 
 
 

 
4.1  Transient Response 

 
Many previous works have found that the NES is an excellent transient vi- 

bration absorber [10, 19, 47-49], both theoretically and experimentally. The main 
phenomenon behind the effectiveness of the NES is attributed to energy pumping or 
targeted energy transfer (TET). During TET, vibrational energy is transferred to a 
passive sink (NES), where the energy is localized and diminished due to damp- 
ing. An essential component of TET is 1:1 resonance capture between the NES 
and the primary system, where the NES passively tunes itself to oscillate close to 
or at the frequency of the primary system, resulting efficient energy transfer. 

 

 

The NES is capable of 1:1 resonance capture due to the lack of linear stiff- 
ness or more importantly a lack of dominant natural frequency. This was briefly 
demonstrated in Fig. 2.6, where the oscillating NES exhibited a wide range of fre- 
quencies. In section 3.3.2, the stiffness of the experimental NES consisted of a 
nonlinear and an unwanted linear component. Many studies [20, 22] have found 
similar results when trying to generate a purely cubic stiffness, that a small linear 
component will exist. It is a common practice to dismiss this term during simula- 
tions; this work will retain this term to examine its effects. 
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𝑝 

𝑝    𝑝 

4.1.1  Vibration Absorption 
 

To analyze the system defined by Eqns.(3.23)-(3.25), it is useful to de- 
fine some parameters that will make clear the performance of the NES and to il- 
lustrate the phenomenon of TET and 1:1 resonance capture. To be comparable to 
the physical apparatus, the system will be set into oscillation by displacing the pri- 
mary mass and releasing it, giving the initial conditions of the system equal to 
��𝑝 (0) = ��, ��𝑎 (0) = ��, �� 𝑝 (0) = 0, �� 𝑎 (0) = 0. The relative displacement in 

this case
 will be zero, and all the initial energy is stored in the primary system. To that 

end it is useful to define system outputs and inputs in terms of energy. The total 
initial input energy to the system is equal to the potential energy stored in the pri- 
mary system: 

 

 

������𝑡  = ������𝑡 (0) = 
𝑘  

��2
 (4.1) 

2 
 

 

The total energy present at time 𝑡   within the NES can be found as the
 sum of potential and kinetic energies: 

 

 

����𝑁𝑅 

(��) = 

𝑚𝑎 �� 𝑎 

(��)2 
+ 2 

2 
��𝑎 ���𝑎 (��) − 

��𝑝 (��)� + 2 

4 
��𝑛 ���𝑎 − 

��𝑝 (��)�
 

4 

 
(4.2) 

 

 

Likewise, the total energy present within the primary system can be written 
as the sum of the potential and kinetic energies: 

 

 

��𝑝 (��) = 
𝑚𝑝 �� 𝑝 

(��)2
 

+ 2 

𝑘  𝑥  

(��)2
 (4.3) 

2 
 

 

A very useful measure to evaluate the effectiveness of the NES and to de- 
termine if TET has been realized is the percentage of the instantaneous total ener- 
gy stored within the NES, which can be written as the energy present within the 
NES over the total system energy at time ��. 
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��(��) =

 

����𝑁𝑅 

(��)
 

��𝑝 (��) + 

����𝑁𝑅 (��)

 

× 100 (4.4)
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To obtain a quantitative view of the vibration absorption, a series of simula- 
tions are presented at different initial energy levels. For each of the simulations the 
load resistance is ��𝑙����𝑙  = 50 (Ω) , which corresponds to a maximum total 

damping
 of ����𝑚��𝑚  

= 0.4249 (𝑁��/��)   when 𝐻 = 0 . The simulations will include the 
changing

 transduction factor from Eqn.(3.8). 
 

 

The first simulation will represent a low level of initial energy, with the initial 
displacement being 𝑋 = 6 × 10−4  (��) or an initial energy value of ��𝑐𝑛𝑡  

= 8.766 × 10−4 (��), with results 
displayed 

in Fig. 4.1. The response for the system 
is dominated by the primary system oscillating at its natural frequency. The NES 
contributes in a minimal way, with most of the energy being remaining in the pri- 
mary system. The most important factor is that the system does not engage in 1:1 
resonance, the primary system and NES being completely out of phase, which pre- 
vents the efficient transfer of energy to the NES. Although the vibration absorption 
is poor, there is still some voltage induced in the coil, due to the systems oscil- 
lating relative to one another. 

 

 

 
Figure 4.1: Simulation results for initial conditions of 𝑋 = 6 × 10−4 (��): (a) displacements (solid 
line: primary system; dashed line: NES); (b) percentage of the instantaneous total energy in the 

NES and (c) voltage across load resistor. 
 

 

In the second simulation the energy level is increased to a mid-level value. 
Here the initial displacement is 𝑋 = 1 × 10−3 (𝑚)   or an initial energy value of 
��𝑐𝑛𝑡  =  2.4−3 (��), with the results shown in Fig. 4.2. It can be seen from the 
re-

 sponse that at this energy level the NES has been engaged, resulting in large 
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amplitudes, and better vibration absorption. The energy of the system becomes lo- 
calized to the NES for a short period, but the energy flows between the primary 
system and NES in a reversible nature. This reversible energy transfer is a result 
of nonlinear beating phenomenon, where the system does not enter into 1:1 reso- 
nance, but is very close. As the energy is exchanged between the systems, it is 
subject to more damping, dissipating more energy and resulting in excellent vibration 
absorption. This is the phenomenon of TET working at its best. The energy be- 
comes quickly localized in the NES or the target, and is then dissipated through 
damping. Repeated successions of this result in good vibration attenuation. The ab- 
sorber also shows a wide range oscillating frequencies, a key characteristic of an 
essentially nonlinear device. With the increase in initial energy, there is an addition- 
al increase in voltage across the load. 

 

 

 
Figure 4.2: Simulation results for initial conditions of 𝑋 = 1 × 10−3 (��): (a) displacements (solid 
line: primary system; dashed line: NES); (b) percentage of the instantaneous total energy in the 

NES and (c) voltage across load resistor. 
 

 

Figure 4.3 shows the response for an increased initial displacement of 
𝑋 = 2 × 10−3 (��), or an initial energy of ��𝑐𝑛𝑡  =  9.7 × 10−3 (��)   for a mid-high 

en-
 ergy. The beginning of the response contains a nonlinear beating phenomenon, less 

dramatic than the previous case. Following this, the system enters into a 1:1 reso- 
nance capture resulting in an irreversible energy localization to the NES. Again this 
is the phenomenon of TET at work. The two systems are synchronized, vibrating 
with the same frequency. The energy then begins to be released back to the pri- 
mary system at approximately 𝑡 = 1.80 (��), but the total energy is minimal at 



60  

this
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point. The voltage across the resistor has also been greatly increased, with the 
additional initial energy. The nonlinear beating and 1:1 resonance regimes can be 
clearly seen in the voltage response being a function of the relative velocity. 

 

 

 
Figure 4.3: Simulation results for initial conditions of 𝑋 = 2 × 10−3 (��): (a) displacements (solid 
line: primary system; dashed line: NES); (b) percentage of the instantaneous total energy in the 

NES and (c) voltage across load resistor. 
 

 

To further see TET in action, a final simulation with high initial energy, 
𝑋 = 5 × 10−3 (��)  is conducted and shown in Fig. 4.4. Here the initial energy cor- responds to ��𝑐𝑛𝑡  =  60.7 × 10−3 (��). One can see the dramatic effects of TET; the 
system having the same overall dynamics as the previous simulation, but with a 
clear indication of the irreversible energy transfer to the NES. 
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𝐸 

 

 
 

Figure 4.4: Simulation results for initial conditions of 𝑋 = 5 × 10−3 (��): (a) displacements (solid
 

line: primary system; dashed line: NES); (b) percentage of the instantaneous total energy in the 
NES and (c) voltage across load resistor. 

 
 

 
Because of the increased amount of initial energy, the system takes a longer 

time to dissipate the energy. The response also contains little nonlinear beating, 
entering into 1:1 resonance very quickly. 

 

 

To better understand the performance of these simulations, a good measure 
is to look at the total percentage of energy that is dissipated by the NES. This 
value is the percentage of the initial energy dissipated through the total NES 
damping for the duration of the response and provides a good reference for perfor- 
mance. The dissipated energy is defined as: 

 

 

��𝑎 
𝑡 2 

��𝐷 ����𝑁  = 
����𝑡 

�  ��� 𝑎 (��) − 

�� 𝑝 (��)� 
0 

��𝑡 × 100 (4.5)
 

 

 

(��𝑎𝑚 + ��𝑤 ) 𝑡 2 

��𝐷 ����𝑁  = ���

���𝑡 

�  ��� 𝑎 (��) − 

�� 𝑝 (��)� 
0 

��𝑡 × 100 (4.6)
 

 

 

The dissipated energy was calculated for all four simulations and shown in 
Table 4.1. An extensive series of simulations were conducted to show the dissipat- 
ed energy as a function of initial displacement in Fig. 4.5, with four simulations 
shown as points. 
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Table 4.1: Calculated results of dissipated energy percentage for four simulations. 
 
 

Level 𝑋 (��) ��𝑐𝑛𝑡  (��) ��𝐷 ����𝑁  

(%) Low (A) 
Mid (B) 

Mid-High (C) 
High (D) 

6 × 10−4

 
1 × 10−3

 
2 × 10−3

 
5 × 10−3

 

8.766 × 10−4

 
2.4 × 10−3

 
9.7 × 10−3

 
60.7 × 10−3

 

42.9
 

80.8
 

61.2
 

29.2 
 
 
 

 
 
 
Figure 4.5: Percentage of the dissipated energy as a function of the initial displacement; points refer 

to four specific simulations. 
 

 

The results from Fig. 4.5 illustrate that there is a region in the mid to mid- 
high initial energy range where the NES performs well as a passive vibration ab- 
sorber. There is a well-defined critical threshold of initial energy before the NES 
will be engaged. Although high energy levels show a decrease in performance, the 
NES nonetheless is capable of targeted energy transfer localizing much of the en- 
ergy. It is important to highlight here that this system required no a priori tuning. 
The essential nonlinearity is able to self-tune to the natural frequency of the pri- 
mary system. 

 

 

For comparison two simulations with varying primary system parameters are 
shown. The first one will have an increase of the primary mass, which will result 
in a lowering of the natural frequency. The second will have an increase of the 
primary stiffness giving a higher natural frequency. Both will be given an initial dis- 
placement of 𝑋 = 1 × 10−3 (𝑚). The parameters are given in Table 4.2.
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Table 4.2: Parameters for comparison simulations: 1) change in primary mass, 2) changing in pri- 
mary stiffness. 

 
 

𝑚𝑝   (𝑘��) 𝑘𝑝   (��/��) ��𝑝  (𝐻��) ��𝑐𝑛𝑡  

(��) 1 2
 

2 0.917 

4870
 

7000 

7.85
 

13.9 

8.7660−4

 
3.5 × 10−3

 
 

 

 
 

Figure 4.6: Simulation results for increase in ��𝑝    with initial conditions of 𝑋 = 1 × 10−3 (��): 

(a)
 

displacements (solid line: primary system; dashed line: NES); (b) percentage of the instantaneous 
total energy in the NES and (c) voltage across load resistor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.7: Simulation results for increase in ��𝑝    with initial conditions of 𝑋 = 1 × 10−3 (��): 

(a) 
displacements (solid line: primary system; dashed line: NES); (b) percentage of the instantaneous 

total energy in the NES and (c) voltage across load resistor. 
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From the results in Figs 4.6-4.7, the robustness as a vibration absorber 
can be seen. Although the system is completely passive, the essential nonlinearity 
performs actively, being able to oscillate at a wide range of frequencies. This ability 
to perform without tuning for a variety of primary system parameters makes it pref- 
erable over the traditional tuned mass damper with linear stiffness. 

 
4.1.2  Frequency Energy Plots 

 
It has been shown that the NES has a threshold of energy before the NES 

will be engaged. This threshold marks the beginning of 1:1 resonance and energy 
transfer. From this one can assume that there is a relationship between frequency 
and energy. To better understand this relationship a brief study in the nonlinear 
normal modes (NNM) and periodic orbits can be used to develop this coupling. It 
begins by look at the underlying Hamiltonian system of Eqns.(3.23)-(3.25): 

 

 
3 𝑚𝑝 �� 𝑝 + ��𝑝 ��𝑝 − ��𝑎 (��𝑎 − ��𝑝 ) − ��𝑛 ���𝑎 − ��𝑝 � = 0 (4.7) 

 

 
3 𝑚𝑎 �� 𝑎 + ��𝑎 ���𝑎 − ��𝑝 � + ��𝑛 ���𝑎 − ��𝑝 � = 0 (4.8) 

 
 

The study is performed by applying the complexification technique [14], 
where the system is broken into fast-slow dynamics through the introduction of 
complex variables 

��1  = �� 𝑝 + 𝑗����𝑝 and ��2  = 

�� 𝑎 + 𝑗����𝑎 (4.9)
 

where 𝜔  will be the dominant frequency and 𝑗 = √−1. The displacements and ac-
 celerations can then be expressed in terms of the new complex variables: 

 

 

��1 − 𝜓�1  1 𝑗𝜔 
��𝑝  = , �� 𝑝  = (��1 + 𝜓�1 ), �� 𝑝  = 𝜓  1 

− 
2𝑗𝜔 2 

(��1 + 𝜓�1 ) (4.10) 
2 

 

 

��2 − 𝜓�2  1 𝑗𝜔 
��𝑎  =

 

, �� 𝑎  = (��2 + 𝜓�2 ), �� 𝑎  = 𝜓  2 

− 

2𝑗𝜔 2
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(��2 + 𝜓�2 ) (4.11) 
2
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where the bar denotes the complex conjugate. Since periodic orbits are sought, the 
assumption can be made that two oscillators will vibrate at the same dominant fre- 
quency, similar to the 1:1 resonance. The oscillation can be expressed in terms of 
��, modulated by slowly varying amplitudes of ��𝑘 , 𝑘 = 

1,2:
 

��1  = ��1 ��
����𝑡 and ��2  = 

𝜙2 ��
����𝑡 (4.12)

 
Equations (4.10)-(4.12) can be inserted into Eqns.(4.7) and (4.8) 

giving the system described in complex (fast and slow) dynamics, yielding: 
 
 

𝑑 
𝑚𝑝 � ���1 

(��)������𝑡 � 

−
 

𝑗 𝜔 
���1 (��)������𝑡 + 𝜙�1(��)𝑒 −����𝑡 ��

 

��𝑡

 ��

��𝑝 
− 2𝜔

 
+ 𝑗��𝑎

 
2𝜔 
𝑗𝑘𝑛 

2

 
���1 (��)������𝑡 − 𝜙�1(��)𝑒 −����𝑡 �

 
�−���1(��)������𝑡 − 𝜙�1 (��)𝑒 −����𝑡 � + �𝜙2 

(��)������𝑡 − 𝜙�2 (��)𝑒 −����𝑡 ��
 
3 

 

 
 
 

(4.13) 

+ 

2𝜔 

�−���1(��)������𝑡 − 𝜙�1 (��)𝑒 −����𝑡 � + �𝜙2 (��)������𝑡 − 𝜙�2 

(��)𝑒 −����𝑡 �� 

= 0 
𝑑 

𝑚𝑎 � �𝜙2 

(��)������𝑡 � 

− 

𝑗 𝜔 �𝜙2 (��)������𝑡 + 𝜙�2 (��)𝑒 −����𝑡 �� 

��𝑡

 + 

𝑗��𝑎 

2𝜔 
𝑗𝑘𝑛 

2

 
�−�𝜙2(��)������𝑡 − 𝜙�2 (��)𝑒 −����𝑡 � + ���1 

(��)������𝑡 − 𝜙�1 (��)𝑒 −����𝑡 ��
 
3 

 

 
(4.14) 

+ 2𝜔 
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�−�𝜙2 (��)������𝑡 − 𝜙�2 (��)𝑒 −����𝑡 � + ���1 (��)������𝑡 − 𝜙�1 (��)𝑒 −����𝑡 �� 

= 0 
The equations are then simplified, averaging them over the dominant fre- 

quency 𝜔 . Ignoring the higher order frequency terms of ����3𝑗��  and ����5𝑗�� ,  and col- lecting the coefficients only of ��𝑗��𝑡 , leads to a set of complex modulated equa- 
tions: 

 

 

3
 
 
���

�𝑛 2
 

2  2  2
 3����𝑛

 

𝑚𝑝 𝜙  1 + 
8��3  

(��1 𝜙�2 + 𝜙�2 ��2 − 𝜙�1 ��1  − 𝜙�1 ��2 ) + 
4��3   

(��1 𝜙�1𝜙2 

− ��1 𝜙2𝜙�2)
 

𝑗 

 
(4.15) 

+ 
2𝜔

 

�−��𝑝 ��1 − ��𝑎 ��1 + ��𝑎 ��2 � + ��𝑚𝑝 ��1 𝜔 = 0
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3
  

����𝑛 2
 

2  2  2
 

𝑚𝑎 𝜙  2 + 
8��3  

(−��1 𝜙�2 − 𝜙�2 ��2 + 𝜙�1 ��1  + 

𝜙�1𝜙2 ) 
3𝑗 𝑗 

 
 

(4.16) 

+ 
4��3 

(−��1𝜙�1 ��2 + ��1 

𝜙2𝜙�2) + 

2𝜔 
(��𝑎 ��1 − ��𝑎 𝜙2)

 

+ ��𝑚𝑎 𝜙2𝜔 = 0 
 
 

where the dot indicates the derivative with respect to time. The polar form of the 
complex amplitudes are introduced as ��1  = ��(��)������(��)    and ��2  = 

��(��)��𝑗��(��) , where 𝑎
 

and 𝑏   are the real amplitudes of the primary mass and NES mass, and 𝛼   and
 

𝛽 are the real phases. Substituting the polar forms in Eqns.(4.15) and (4.16),
 and separating into the real and imaginary parts, four equations expressing the real 

amplitudes and phases of the system are obtained: 
 
 

 

��  =
 

1
 

8𝑚𝑝 

��3

 

(−3��𝑛 ��
3 − 3��𝑛 ��

2 𝑏 − 4��𝑎 ����
2 ) 

sin(𝛼 − ��)
 

3 

 

 
(4.17) 

+ 
8𝑚𝑝 ��

3
 
(��𝑛 ����

2)sin(2𝛼 − 2��)
 

 

 

��  = 
1

 
8��𝑚𝑎 ��3

 

(−9��𝑛 ��
2𝑏 − 4��𝑎 ����

2 − 3��𝑛 ��
3) cos(𝛼 − ��) 

3 
+ 8𝑚𝑝 ��

3
 
(��𝑛 ��

2 )cos(2𝛼 − 

2��) + 

1
 

8��𝑚𝑝 ��3
 

(6��𝑛 

����2
 

(4.18) 

+ 4��𝑝 ����
2 + 4��𝑎 ����

2 − 4𝑚𝑝 ����
4 + 3��𝑛 ��

3 ) 
 
 

𝑏  = 
1

 
8𝑚𝑎 ��

3
 

(3��

𝑛
 

����2  + 

3��𝑛
 

3 

��3 + 

4��𝑎
 

����2 ) sin(𝛼 − 

��)
 

 

 
(4.19) 

− 
8𝑚𝑝 ��

3
 
(��𝑛 ��

2 ��)sin(2𝛼 − 2��)
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��  = 
1

 
8��𝑚𝑎 ��

3
 

(−9��

𝑛
 

����2  − 

4��𝑎
 

3 

��𝑎 − 

3��𝑛
 

��3) cos(𝛼 − ��)
 

1 

+ 

8𝑚𝑝 ��
3 

��𝑛 ��
2 cos(2𝛼 − 

2��) + 

8��𝑚𝑝 

��3 

(4��𝑎 

����2 

(4.20) 

− 4𝑚𝑎 ����
4 + 6��𝑛 ��

2 𝑏 + 3��𝑛 ��
3) 

Since we are looking for the periodic solutions, the solutions to all the 
equations shall be steady state and the derivatives with respect to time are set 
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𝑝 

equal to zero. Equations (4.17) and (4.19) are trivially solved if we assume the 
system oscillates in phase by letting 𝛼 = 𝛽 , resulting in two equations describing

 the amplitudes of the two systems. 
 

 

1 
0 = 8��𝑚𝑎 

��3

 

(−9��𝑛 ��
2 𝑏 − 4��𝑎 ����

2 − 

3��𝑛 ��
3 ) +

 
1 

3
 

8𝑚𝑝 

��3

 

(��𝑛 

��2 )
 

 
 
 
(4.21) 

+ 
8��𝑚𝑝 ��

3
 
(6��𝑛 ����

2 + 4��𝑝 ����
2 + 4��𝑎 ����

2 − 4𝑚𝑝 ����
4

 

+ 3��𝑛 ��
3) 

 

 

1 
0 = 8��𝑚𝑎 

��3

 

(−9��𝑛 ����
2 − 4��𝑎 ��𝑎 − 

3��𝑛 ��
3) +

 
1 

3
 

8𝑚𝑝 

��3

 

��𝑛 

��2

 

 

 
(4.22) 

+ 
8��𝑚𝑝 ��

3
 
(4��𝑎 ����

2 − 4𝑚𝑎 ����
4 + 6��𝑛 ��

2 𝑏 + 3��𝑛 ��
3)

 
 
 

The two equations that describe the amplitudes of the primary and the NES 
at a given frequency, can be solved numerically for a range of frequencies. In 
general the periodic responses can be given by: 

 

 

��1 − 𝜓�1 𝑎
 

��𝑝 (��) ≈ ��𝑝 cos 

𝜔𝑡 =
 

= cos 𝜔��, (4.23) 
2𝑗𝜔 𝜔 

 

 

��2 − 𝜓�2 𝑏
 

��𝑎 (��) ≈ ��𝑎 cos 

𝜔𝑡 =
 

= cos 𝜔��, (4.24) 
2𝑗𝜔 𝜔 

 
 

Recalling that the goal was to define the relationship between energy and 
frequency, the total energy of the system can be defined as the potential energy of 
the system (zero velocity): 

 

 

𝐸 = 
1    ��𝑝 ��

2 

+ 2 

1 2 

2 
��𝑎 ���𝑎 − 
��𝑝 � 

1 4 + 
4 
��𝑛 ���𝑎 − ��𝑝 � (4.25)
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Figure 4.8 shows the results of Eqns.(4.21)-(4.25), for a range of fre- 
quencies, and depict the energies and frequencies of periodic solutions. The two 
curves are the so-called symmetric backbone curves [14], where the ‘+’ indicates 
the system in phase, and the ‘-’ indicates out of phase. At the low energy levels 



73  

the two curves represent the natural frequencies of the two systems, S11- ending 
at the natural frequency of the primary at 11.6 Hz, and S11+ the linear natural 
frequency of the NES approximately 4.5 Hz. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.8: Analytic approximations of frequency energy plot: backbone curves S11± 
 

 

The energy threshold of the system shown in Fig. 4.8, indicates the mini- 
mum energy required for the system to oscillate at the S11+ curve, if any lower 
than that the system will be attracted to the S11- curve. To illustrate this, a WT 
was applied to the relative response ( ��𝑎 − ��𝑝 )   of the four initial energy 

level
 simulations. At each moment in time the total energy level was determined, and 

was matched to the corresponding frequencies at that moment in time determined 
from the WT. The results were combined into a frequency energy plot (FEP) with 
the S11± curves overlaid. For the low energy level in Fig. 4.9(a), it can be seen 
that energy has not passed the threshold, and the system tends to oscillate about 
the S11- curve. The dynamics show that the system is weakly nonlinear, being 
dominated by the linear primary system. Energy is still exchanged and damped 
through the NES, noting the existence of lower frequencies present from the NES. 

Increasing the energy level in Fig. 4.9(b) for 𝑋 = 1 × 10−3 (��), the energy
 has passed the critical threshold. In this case the vibration damping is high, as 

discussed earlier due to the nonlinear beating and high percentage of energy locali- 
zation. The initial frequency is very close to the natural frequency of the primary 
system, which causes the strong beats. After most of the energy has been dissi- 
pated, the system is quickly attracted to the S11+curve, the frequency decreasing to 
the NES linear frequency. 
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The final two simulations in Fig. 4.9(c-d), where the energy levels are 
again increased, the presence of higher frequency components can be seen at the 
higher energy levels. Having a greater difference from the natural frequency of the 
primary system, there is less of the beating phenomenon, causing less damping. 
Both responses result in 1:1 resonance and are attracted to the S11+ backbone 
curve where energy is gradually localized to the NES. 

 

 
 
 
 

 
 
 
 
 

 

a) b) 
 
 
 

 
 
 
 
 

 

c) d) 
 Figure 4.9: Frequency energy plots of wavelet transforms of the relative response ���𝑎 − ��𝑝 �  of the four simulations with superimposed backbone curves S11±: a) low initial energy 𝑋 = 6 × 10−4 

(��), b) mid initial energy 𝑋 = 1 × 10−3 (��), c) mid-high energy level 𝑋 = 2 × 10−3 (��)  and d) high energy level 𝑋 = 5 × 10−3 (��). 
 

 

It has been found through simulations that the proposed NES is capable of 
vibration absorption. From the simulations and examining the frequency energy plots 
there exists an initial energy region where the NES has good performance, due to 
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strong nonlinear beating. Increasing the initial energy level will result in energy lo- 
calization from 1:1 resonance but will take longer to dissipate energy. 

 
4.1.3  Effects of Damping 

 
The proposed NES in this work has a unique feature that can be changed 

very easily to change the overall performance; namely the damping. The load re- 
sistance can be changed which in turn changes the induced current in the electrical 
system which is directly related to the Lorentz force or damping. It stands to rea- 
son that with increasing of the damping the system can dissipate more energy. 

 

 

To examine this effect, a series of simulations were conducted to determine 
the energy dissipated by the NES defined by Eqn.(4.6) for a range of load re- 
sistances and initial displacements. Figure 4.10 shows the results, demonstrating that 
an increase in damping does indeed improve absorption. The critical threshold still 
remains at approximately 𝑋 = 6 × 10−4 (��) , being determined by the nonlinear

 beating dynamics, but for greater initial energies the increase in damping results in 
better performance. 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

 
 

Figure 4.10: Energy dissipated by NES as a function of initial displacement and load resistance. 
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The simulation of the high initial energy level is repeated with a lower load 
resistance of ��𝑙��𝑎��  = 10 (Ω) . This corresponds to a maximum damping level 

of 
−3 

����𝑚𝑚𝑚  
= 1.66 (𝑁��/��). For the same displacement of 𝑋 = 

5 × 10 

(��), the oscilla- tions are reduced to approximately 𝑡 = 1.8 (��)   in Fig. 4.11, as compared to ap-
 proximately 𝑡 = 3 (��)   in Fig. 4.4. In addition to a reduction in oscillation 

time,
 there is a dramatic reduction in the voltage across the resistor. Clearly there is a 

relationship between the damping and the voltage. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.11: Simulation results for initial conditions of 𝑋 = 5 × 10−3 (��)  and ��𝑙����𝑙  = 10(Ω): 

(a) 
displacements (solid line: primary system; dashed line: NES); (b) percentage of the instantaneous 

total energy in the NES and (c) voltage across load resistor. 
 
 
 

4.1.4  Transient Energy Harvesting 
 

As seen in the last simulation, increasing the damping by changing load re- 
sistance impacted the voltage across the load resistor. To investigate this, the 
amount of energy in Joules consumed by the resistor can be calculated. It can be 
defined as the summation of the power dissipated by the load resistor during time 
��: 

 

 
𝑡
 

������𝑎𝑙  = � 𝑃����𝑎𝑙 ��𝑡 
0 

 

(4.26) 
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For comparison to the amount of energy dissipated by the NES, this energy 
can be expressed as a percentage of the total initial energy in the system as: 
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𝐸 

𝑘  𝑅 

𝐸 
) 

𝑘 

𝐸 

1 2 

1 2 

 
1 

������𝑎𝑙% = 
����𝑡 

𝑡
 

� 𝑃����𝑎𝑙 ��𝑡 × 100 (4.27) 
0 

 

 

where 𝑃𝑙����𝑙    is given by Eqn.(2.29), giving the total percentage of initial energy consumed by the load as: 
 

 
2 𝑡 

𝑡     
����𝑎𝑙 

������𝑎𝑙%  = 

����𝑡 

(2��𝑐�
���𝑙 

+ 
������
𝑎𝑙 

2 �  ��� 𝑎 (��) − 

�� 𝑝 (��)� 

0 

��𝑡 × 100 (4.28) 

Equation (4.28) bears a striking resemblance to Eqn.(4.6) being almost 
the same to the percentage of energy dissipated through the electrical damping 

����𝑤 . Expressing Eqn.(4.6) in terms of only electrical damping and the transduction fac- 
tor one gets: 

 

 
2 𝑡 

𝑡 

��𝐷 ����𝑁  = 

����𝑡 

(2��𝑐�
���𝑙 

+ 
������
𝑎𝑙 

�  ��� 𝑎 (��) − 

�� 𝑝 (��)� 

) 0 

��𝑡 × 100 (4.29) 

which is almost identical to the ��𝑙������%, the main difference being the terms: 
 

 

��(��������𝑙 ) = 
2𝑅

 
����

��𝑎𝑙
 

+ 𝑅 

 

(4.30) 

𝑐����𝑙 ����𝑎𝑙 The term ��(��𝑙����𝑙 )   is a nondimensional factor that will express the 
amount

 of power available for harvesting from the amount of energy damped by the NES. 
Figure 4.12 shows how ��(��𝑙����𝑙 )   changes with the load resistance. A larger 

re-
 sistance indicates that more power could be extracted from the damping. Unfortu- 

nately this is contrary to Fig. 4.10, where the maximum damping occurs at lower 
load resistance. 



79  

 
 
 

 

 
 

 
 
 
 
 
 
 

Figure 4.12: ��(��𝑙����𝑙 )  as a function of load 

resistance.

 
Evidently there is a tradeoff between the amount of damping and the ex- 

tracted power in the transient regime. Applying Eqn.(4.28) for a series of simula- 
tion for varying load resistances and initial displacements, Fig. 4.13 shows the per- 
centage of initial energy available for harvesting. 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

 
 

Figure 4.13: Energy across load resistor as a function of initial displacement and load resistance. 
 

The effects of ��(��𝑙����𝑙 )   are visible and the shift between vibration 
perfor- mance and harvested energy exposed. Fortunately the tradeoff is not too 
large, es- 
pecially for the large initial displacements. 



80  

 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

Figure 4.14: Energy across load resistor as a function and load resistance for different initial dis- 
placements. 

 

 

Remarkably, for the ideal initial energy and with the proper selection of load 
resistance, the system is capable of harvesting approximately 62% of the initial en- 
ergy. It is feasible then that if a designer knew the level of transient input energy 
to the system, an optimal energy harvesting device could be made to absorber and 
collect energy. 

 
 
 

4.2     Harmonically Forced Responses 
 
The study of the nonlinear dynamics of a harmonically forced NES poses some in- 
teresting problems due to the small (or non-existent) linear stiffness as well as 
the nonlinear stiffness and damping. As discussed in Section 1.2.3, the response of 
a NES may experience saddle node and hopf bifurcations, where saddle nodes 
mark the existence of multiple solutions while hopf bifurcations indicate strongly 
modulated responses. 

 

 

The approach taken to analyze the harmonically forced system is to use the 
method of complexification [14, 50, 51]. In this method the dynamics are broken 
in the slow and fast parts similar to the steps taken in Section 4.1.2. Assuming a 
response of 1:1 frequency matching, a harmonic balance method is used to average 
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2 

the response, and bifurcation analysis then performed. Although an accurate method 
to determine the response of the system, the method is tedious to implement and 
due to a few coordinate changes the response difficult to interpret. 

 

 

A recent paper [52] applied a more traditional method of multiple scales 
coupled with a harmonic balance method (MSHBM). The elegance of this method 
is that the final equations are described in the real coordinate system, and varia- 
tions to them are easily performed. The results also proved to be highly accurate 
for the purposes of describing saddle node and hopf bifurcations. The method below 
follows the proposed scheme. 

 

 

The main equations of motion are defined as Eqns.(4.31)-(4.32). For the 
purposes of simplicity the damping of the NES will be considered linear, taking the 
maximum value of 𝑘𝑡    corresponding to the maximum relative velocity. 

 

 
3 𝑚𝑝 �� 𝑝 + ��𝑝 �� 𝑝 + ��𝑝 ��𝑝 − ��𝑎 ���  𝑎 − �� 𝑝 � − ��𝑎 ���𝑎 − ��𝑝 � − ��𝑛 

���𝑎 − ��𝑝 �
 = ��𝑝 𝑦 + 

��𝑝 ��  

 
(4.31) 

 

 
3 𝑚𝑎 ��  𝑎 + ��𝑎 ��� 𝑎 − �� 𝑝 � + ��𝑎 ���𝑎 − ��𝑝 � + ��𝑛 ���𝑎 − ��𝑝 � = 0 (4.32) 

 
 where the forcing term can be expressed as 𝑦 = 𝑌 sin(Ω��), a harmonically moving base with 𝑌   as amplitude and Ω   as frequency. Using trigonometric identities the 
forcing term on the right hand side of Eqn.(4.31) can be expressed in the sim- 
plified form: 

 
 

��𝑝 𝑦 + ��𝑝 ��  = 

������𝑝 � 

2 
+ ���𝑝 ��Ω� 

cos(Ω𝑡 + ��) = 𝑓 cos(Ω𝑡 + ��) (4.33) 

 
 

Combining equations (4.31)-(4.33) gives the main simplified equations of 
motion: 

 

 
3 𝑚𝑝 �� 𝑝 + ��𝑝 �� 𝑝 + ��𝑝 ��𝑝 − ��𝑎 ���  𝑎 − �� 𝑝 � − ��𝑎 ���𝑎 − ��𝑝 � − ��𝑛 

���𝑎 − ��𝑝 � 
= 𝑓 cos(Ω𝑡 + 

��)

 

 

(4.34) 
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𝑝 

2 

3 
𝑚𝑎 ��  𝑎 + ��𝑎 ��� 𝑎 − �� 𝑝 � + ��𝑎 ���𝑎 − ��𝑝 � + ��𝑛 ���𝑎 − ��𝑝 � = 0 (4.35) 
 
 

Equations (4.34) and (4.35) are then scaled by the mass of the primary. 
The equations are then converted into a simplified form, as well as changing the 
time scale. First the forcing frequency is made into a frequency ratio by setting: 

 

 

𝜔 = 
Ω

 
��
𝑝 

 

(4.36) 

 
 

where ��𝑝    is the primary natural frequency. A new time scale is defined, such that: 

��𝑝 𝑡 = 𝜏 (4.37) 
 
 
 

 

that: 
Taking the derivative of Eqn. (4.37) with respect to time one can equate 

 

 

��𝜏
 

��𝑡 
= ��𝑝 (4.38) 

 

 Introducing a general dummy coordinate ��(��) , the derivatives of ��(��)   with respect to time 𝜏 may be expressed as: 
 

𝑥 ′ =  
𝑑 
��(��) =  

𝑑 
��(��) 

��𝑡 
=   
��  

 

(4.39) 

��𝜏 �
�𝑡 

��
𝜏 

��𝑝 

 

 

𝑥′′  =  
𝑑 ��2

 
��(��) = 

��

��2
 

��(��) 

�

�  

= 2 

 

(4.40) 

����2 ��

��2 

��

��2 

��𝑝 

Noting that (∙)′   is the derivative with respect to time 𝜏 . The time scale
 transformation can be completed by using: 

 

 

��  = 𝑥 ′ ��𝑝 , ��  = 𝑥
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 ′′ ��2

 

(4.41) 
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𝑚  𝜔 

Equations (4.34)-(4.41) can be combined to describe the system in a 
simplified form with respect to time ��: 

 

 

′′  ′  ′  ′  3 

��𝑝  + Λ��𝑝 + ��𝑝 − �����𝑎 − ��𝑝 � − �����𝑎 − 
��𝑝 � − Κ���𝑎  − ��𝑝 � 

= 𝐹 cos(ωτ + ��) (4.42) 

 

 

′′  ′  ′  3 

𝜌��𝑎  + �����𝑎 − ��𝑝 � + �����𝑎 − ��𝑝 � 
+ Κ���𝑎  − ��𝑝 � 

= 0 (4.43) 

 
 

where: 
��𝑝 

Λ = , 𝜆 =
 �

�𝑎 

, 𝜅 =
 ��

𝑎 

2 , Κ =
 ��𝑛 

2 
𝑚𝑝 ��𝑝

 𝑚𝑎 

𝑚𝑝 ��𝑝

 𝑓 

𝑚𝑝 ��𝑝

 Ω 

𝑚𝑝 ��𝑝

 ��𝑝 

𝜌 =
 𝑚𝑝 

, 𝐹 =
 2 

, 𝜔 = 
𝑝    𝑝 ��

𝑝 

, ��𝑝  = � 𝑚𝑝 

 
 

To ensure that the dynamics of both equations capture the whole system 
dynamics, it is convenient to introduce the relative displacement between the main 
structure and the NES, where 𝐻 = ��𝑎 − ��𝑝 , so that Eqns.(4.42) and (4.43) 

be-
 come: 

 

 
′′  ′  ′  3

 

��𝑝  + ��𝑝 + Λ��𝑝 − ��(𝐻 ) − 
��(��) − Κ(��) 

= 𝐹 cos(ωτ + ��) (4.44) 

 

 
′′ ′ 3

 

��(��′′  + ��𝑝 ) + ��(𝐻 ) + 

��(��) + Κ(��) 

= 0 (4.45) 

 
 

In the new time scale the natural frequency of the primary system is equal 
to unity. A detuning parameter 𝜎  is introduced to relate the closeness of the exci-

 tation frequency to that of the natural frequency in the new time scale so that 
𝜎 = 1 − ��2: 

 

 
′′ 2  ′  ′  3

 

��𝑝  + 
(𝜔 

+ ��)��𝑝 + Λ��𝑝 − ��(𝐻 ) − 
��(��) − Κ(��) 

= 𝐹 cos(ωτ + ��) (4.46) 

 

 
′′ ′ 3

 

��(��′′  + ��𝑝 ) + ��(𝐻 ) + ��(��
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) + Κ(��) = 0 (4.47) 
 
 

Following the method of multiple scales [8], the equations are scaled with 
the small parameter 𝜀 ≪ 1, according to the degree of cubic nonlinearity. Remaining
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0    𝑝0 

2 
𝑑 

terms which are assumed small (all remaining have been divided by primary mass 
and natural frequency) are also scaled by ��, and results in: 

 

 
′′ 2  ′  ′  3

 

��𝑝  + 
(𝜔 

+ 𝜀��)��𝑝 + 𝜀Λ��𝑝 − 𝜀��(𝐻 ) − 
𝜀��(��) − 𝜀Κ(��) 

= 𝜀𝐹 cos(ωτ + ��) (4.48) 

 

 
′′ ′ 3

 

𝜀𝜌(��′′  + ��𝑝 ) + 𝜀��(𝐻 ) + 

𝜀��(��) + 𝜀Κ(��) 

= 0 (4.49) 

 
 

According to the method of multiple scales, one begins by introducing a new 
set of time variables according to: 

𝑛𝑛  = 𝜀 𝑛 ��,    𝑛 = 0,1,2, … (4.50)
 

It follows then that the derivatives with respect to 𝜏  become an expansion of
 partial derivatives with respect to 𝑛𝑛 : 

 

 

𝑑  
= 
��𝑛0    

𝜕 
+ 
��𝑛1    

𝜕 
+ 
��𝑛2    

𝜕 
+ ⋯ = ��0 +  ����1 + 𝜀 2 ��2 + ⋯ (4.51) 

��𝜏 ��𝜏  
��𝑛0 

��𝜏  
��𝑛1 

��𝜏 ��𝑛2 

 
2 

2  2 

����2  = ��0  +  

+2����0��1 + 𝜀 

(��1  + 2��0 ��2) + ⋯ (4.52) 

A solution can then be assumed of Eqns.(4.48) and (4.49) by the ex- 
pansion having the form of 

 

 

��𝑝 (��; ��) ��𝑝0 (𝑛0 , 𝑛1 , 𝑛2 , … 
) 

��𝑝1 (𝑛0, 𝑛1 , 𝑛2 , … ) 

� 
��(��; ��) 

� = � 
𝐻  (𝑛 , 𝑛 , 𝑛 , … ) 

� + 𝜀 � 
𝐻  (𝑛 , 𝑛 , 𝑛 , … ) 

� + ⋯ (4.53) 
0 0     1     2 1  0     1     2 

 

 

Substitution of Eqns. (4.51)-(4.53) into (4.48)(4.49), and collecting 
terms of the same order in ��, lead to the following perturbation equations: 

Order 𝜀 0: 

Order ��1: 
2  2 

��2𝑥 + 

��2

 

��𝑝0  = 0 (4.54)
 

3
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��0 ��𝑝1  
+ 𝜔

 
��𝑝1 + ����𝑝0 + 2��0��1 ��𝑝0 + Λ��0��𝑝0 − 

����0 ��0 − ����0 − Κ��0 
− 𝐹 cos(��𝑛0 ) = 0

 

(4.55) 
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2 

2  2  3
 

Order 𝜀 2: 
2 

��(��0 ��0 + ��0 ��0 ) + ����0��0 + ����0 + Κ��0  = 0 (4.56)
 

2  2 

��0 ����2 + ��1 

����0 + 𝜔 

����2 + Λ��0 ����1 + Λ��1����0 + 

2��0��1 ����1 + ����1 

2 

(4.57) 

− ����0 ��1 − ����1��0 − 3Κ��0 ��1 − ����1  = 0 
2  2  2 

�����0 ��1 + ��0 ��𝑝1 � + 2����1��0 ��𝑝0 + 2����1��0��0 + ����0 ��1 + 

����1��0 + 3Κ��0 ��1 + ����1 
= 0 

(4.58)

 
It is apparent that at the order of ��0 there are no nonlinear terms or

 damping. Equation (4.54) describes the motion of an undamped primary system 
which has a solution of the form: 

��𝑝0 (𝑛0 , 𝑛1 , … ) = ��(𝑛1 , 𝑛2 , … )𝑒 ����𝑇0  + ��𝑐 (4.59)
 

where ��(𝑛1, 𝑛2, … )  is an unknown complex function, 𝑖  is the imaginary unit and cc
 stands for the complex conjugate. From this point an important assumption must be 

made concerning the dynamics of the NES. Similar to the transient response, one 
can expect that the NES will have a 1:1 internal resonance, and will oscillate with 
frequency 𝜔 . Applying this fact, an assumed solution for the first order relative

 motion is: 

��0 (𝑛0, 𝑛1 , … ) = ��1 (𝑛1 , 𝑛2 , … )𝑒 ����𝑇0  + ��𝑐 (4.60)
 

where ��1(𝑛1, 𝑛2, … )  is a first order unknown complex function. The ��1    problems 

can
 now be addressed. Equations (4.59)-(4.60) can be used in (4.56). The har- monic balance method is then used for frequency components of ��𝑐��𝑇0 . Higher or- der frequencies (3��, 5��, … )  are not considered at this level of approximation, again 

being attributed to 1:1 internal resonance. This leads to: 
 

 

����1 − ����1 ��
2 + 3Κ��1 𝐵�1 + 

𝑖����1 𝜔 − 𝜌����2
 

= 0 (4.61) 

 

 

where the bar (𝐵�1 ) signifies the complex conjugate. Equation (4.61) describes 
the first order algebraic resonant amplitudes between the primary system and the 
NES. The equations can be further expressed in real form by substituting in 
(4.62) and (4.63): 
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1 

 
1 ��(𝑛1 , 𝑛2 , … ) = 

2 
��(𝑛1 , 𝑛2 , … 

)𝑒

 
1 

����𝑇0  (4.62)
 

����𝑇0  (4.63)
 

��1 (𝑛1 , 𝑛2 , … ) = 
2 
��(𝑛1 , 𝑛2 , … )𝑒

 
 

 

which describe the real amplitudes of the primary system and the relative displace- 
ment (��, ��), and the phase of the each (��, ��) respectively. After 

substitution, the
 equation is then separated into real and imaginary parts giving: 

 

 

cos(𝛼 − ��) = 

−
 

1 (−4𝜅𝑏 + 4����2 𝑏 − 

3��3 Κ) 

 

(4.64) 

4
 𝜌���

�2 
 

 

sin(𝛼 − ��) = 
��

𝑏
 

𝜔𝜌𝑎 

 

(4.65) 

 
 

Squaring both equations and summing them give: 
 

 

(−4𝜅𝑏 + 4𝜌��2 𝑏 − 
3��3Κ)2 

��2 ��2 

��2 ��2 ��4  
+ 
��2��2 ��2 

− 1 = 0 (4.66)

 
Equation (4.66) describes the constraints between the two amplitudes of the 

system, known as a nonlinear manifold. Equation (4.66) does not fully describe 
the dynamics of the system, but only the slow time scale motions. To capture the 
faster dynamics further perturbation is required. To do this the assumed solutions of 
(4.59) and (4.60) are inserted into (4.55): 

 

 

��0 ��𝑝1 + ��2 ��𝑝1 − 

Κ��3 𝑒 

��3�

�𝑇0
 

1   ��𝑖 2
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+ �𝜎𝐴 − 𝑖����1 𝜔 + 𝑖Λ��𝜔 + 2����1 

��𝜔 − 
2 
��𝑒

 
− ����1 � 𝑒 ����𝑇0  + ��𝑐 = 0 

− 3Κ��1 

𝐵�1

 

(4.67) 

 

 
Returning to the method of multiple scales, the objective is to obtain a so- 

lution to ����1, which is done by applying the solvability condition. The condition is
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1    1  1 

1 

2 

that any secular terms containing ��𝑐��𝑇0 , should be caused to vanish by setting 
them to zero, resulting in: 

 

 

1 ��1𝐴 = 
4𝜔 
�2𝑖𝜎𝐴 + 2����1 𝜔 − 2Λ𝐴 𝜔 

− 𝑖��𝑒
 

��

𝑖
 

− 6𝑖Κ��2 𝐵�   − 2𝑖��𝐵  � (4.68) 

 

 

Equation (4.68) as well as its the complex conjugate of are inserted into 
(4.67) resulting in a solvable ordinary differentiable equation (4.69): 

 

 

��0 ��𝑝1 + ��2 ��𝑝1 − 

Κ��3 𝑒 

��3�

�𝑇0 

+ ��𝑐 = 0 (4.69) 

 
 

Solving the above equations results in 2 components, a homogenous and a 
particular solution based upon the principle of superposition. In the case of the 
multiple scales method the homogenous solution is not included as it is present at 
the order of ��0. Therefore the particular solution to (4.69) follows as: 

 

 

  
1 

3
 
��3��𝑇0

 

��𝑝1 (𝑛0, 𝑛1 , 𝑛2 , … ) = − 
8��2 

Κ��1 𝑒 

+ ��𝑐 (4.70) 

 
To proceed to the next order of perturbation ��2 , it is necessary to 

again
 

assume a solution for the response for the relative displacement. As before, it is 
assumed that there will be a 1:1 internal resonance: 

��1 (𝑛0, 𝑛1 , … ) = ��2 (𝑛1 , 𝑛2 , … )𝑒 ����𝑇0  + ��𝑐 (4.71)
 

Substituting Eqns. (4.71),(4.70),(4.59) and (4.60) into (4.58) and 
applying the second harmonic balance for terms of ��𝑐��𝑇0     (neglecting the higher 

or-
 der terms) the following equation is achieved: 

 

 

����1 ��1 + ����2 + 3Κ��1 𝐵�2 + 6Κ��1 𝐵�1 ��2 + 2𝑖����1��𝜔 + 2𝑖����1��1 𝜔 
− ����2 ��

2 
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+ 𝑖λB2 𝜔 = 0 
(4.72)

 
which describes the second order dynamics of the constrained system. In order to 
gain a full comprehensive description of the dynamics Eqns. (4.72) and (4.61) 
are summed: 
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2 

 

(𝜆 + 2𝑖𝜌��)��1��1 + 2𝑖����1��𝜔 + 3Κ(𝐵�2 + 𝐵�1 )��1 
+ (𝜅 − ����2 + 6Κ𝐵�1 ��2 + 𝑖����)��1 + (−𝜌��2 + 
𝑖��𝜔 + ��)��2 
− 𝜌����2  = 0 

 

 

(4.73) 

 
 

Using the definition of the expansion of 𝐵 = ��1 + ����2 , and noting that 

𝜀 ≪
 

1, it can be concluded that the dominant part of 𝐵 = ��1 . Therefore Eqn. (4.73)
 can be simplified by setting ��2  = 0:

 
(𝜆 + 2𝑖𝜌��)��1𝐵 + 2𝑖𝜌��1 ��𝜔 + 3Κ��2 𝐵� + (−𝜌��2 + 𝑖��𝜔 + ��)𝐵 − 𝜌����2  = 

0 (4.74)

 
From the two harmonic balances at different orders of 𝜀 , Eqn.(4.74) de-

 scribes the changing amplitude of 𝐵   with respect to the 𝑛1    time scale. Truncating the perturbation at order ��1    for the primary system, Eqn.(4.68) also describes 
the

 changing amplitude of 𝐴   with respect to the 𝑛1    time scale. The presence of ��1𝐴
 in (4.74) dictates that the response of the relative displacement is dependent on 

the response of the primary system. Substitution of the polar form of ��(𝑛1, … ) =
 1 

��(��)��𝑐𝛼�� and ��(𝑛 , … ) = 
1 
��(��)��𝑐��𝑡 into these equations and noting that 

2  1  2 

(∘  ) = ��1(∘) , Eqns(4.68) and (4.74) can be written as 
 

 

8(��  + 𝚤𝑎  ��  )��𝑒 ��𝛼𝑡
 

= �(−3𝑖Κ��3 + (4��𝜔 − 4𝑖��)��)𝑒 ��𝑗𝑡 + 4(𝑖𝜎 − 

Λ��)𝑒 ��𝛼𝑡

 
− 4𝑖��𝑒 ��𝑖 � 

 

 
(4.75) 

 
 

1
 

4𝑏 

1 
�8𝜔 �− 2 

��𝜔 + ����  − ����  � ��𝑒 −��(��−��)𝑡 + 4(−2𝜌𝜔 + 

𝑖��)��β  + (4𝜆 + 8𝑖𝜌��)𝑏 
 

3 

 
 

(4.76) 

+ 4 � 
4 
��2 Κ − 𝑟ℎ𝑜 ��2 + 𝜅 + 𝑖����� ��� = 0 

 
 

From the above equations it can be seen that they describe the amplitude 
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(��, ��)  as well as the phase (��, 𝛽 ) of the primary system and the relative 

dis-
 placement as they change over time. Separating the equations into the real and 

imaginary parts and solving for the derivatives of each term, four first-order coupled 
nonlinear equations describing the amplitudes and phase of the system can be ob- 
tained: 
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��  =
 1 (−3 ��3Κ − 4 𝜅 

��)��𝑖��(−𝛽 + ��) 

1 
+ 𝜆 𝑏 ��𝑜��(−𝛽 + ��) 

8 𝜔 2 

1 (4 𝐹 ��𝑖��(−𝛼 + ��) − 4 Λ 

𝑎 ��) 
+ 

(4.77) 

8
 (��)

𝑎 
 

 

��  = 1 
𝜆 𝑏 
��𝑖��(−𝛽 + 

��) 
+ 

1 (−3 ��3 Κ − 4 𝜅 ��)��𝑜��(−𝛽 + ��) 

2 𝑎 8 𝑎 𝜔 

1 (4 𝜎 𝑎  −  4 𝐹 cos(−𝛼 + 

��)) 
+ 

(4.78) 

8 𝑎 𝜔 
 

 

𝑏  = − 
1 1 

�−8 𝜌 �����2Λ + �
1
� ��(��2 + ��)� 𝑎 cos(−𝛽 + ��) 

4 ��2 + 4 ��2 ��2  2
 
1 

− 8 𝜌𝜔𝑎 �(��2 + ��)𝜌 

− � 
2 

� Λ��� sin(−𝛽 + ��) + 4 ��𝜌 𝐹 cos(−𝛽 

+ ��)
 

 

(4.79) 

+ 8 ��2 𝜔𝐹 sin(−𝛽 + ��)
 

8 4 4 4 
+ 3 𝑏 � 

3 
��2 ��2 + 

�Κ��2 + 

��2  

+ 
3 

��� 𝜌 + 

Κ��2 + 
3 

��� ��� 
3 

 
 

��  = 
1 1 

2  
1 

2 ��2 + 4 ��2 ��2 �−4 𝜌𝑎 

�(𝜔
 

+ ��)𝜌 − �  � Λ��� 𝜔 cos(−𝛽 + ��) 
2 

+ 4 𝜌𝑎 �𝜌��2 Λ + 
1 
��(��2 + ��)� sin(−𝛽 + ��) + 4 ��2 ��𝐹 

cos(−𝛽 + ��) 
2

 
− 2 ��𝜌 𝐹 sin(−𝛽 + ��) 

 

 

(4.80) 

4 
+ 3 𝜔𝑏  �� 3 

𝜅 + Κ��2 

− 

4 
��2 � ��2 + 

�Κ��2 + 
3 

4 
𝜅 − 3 

2 
��2� 𝜌 

− 
3 

2 
��2�� 

3 

 
 
 
 

Equations (4.77)-(4.80) describe the amplitude and phase of the system 
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in terms of periodic motions. Thus the equations need to be solved such that the 
derivatives of the four equations are equal to zero. The choice of using this modi- 
fied multiple scale method was to retain the physical coordinates, making it easy to 
compare directly with numerical and experimental results. The equations can then be 
returned to main system parameters, shown in Appendix A due to the length. 

 

 

Once solutions for Eqns.(4.77)-(4.80) are determined, the steady state 
response can be reconstituted from the solutions by means of: 
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2 

��(��) = 𝑎 cos(Ω𝑡 + ��), ��(��) 

= 𝑏 cos(Ω𝑡 + ��) (4.81)
 

In addition to describing the coupled system, the equations can also describe 
the uncoupled primary system. Setting 𝑏 = 0 , and 𝛽 = 0 , a Eqns.(4.82) and

 (4.83) express the motion of a harmonically forced single degree of freedom sys- 
tem. 

 

 

��  =
 1 (4 𝐹 sin(−𝛼 + ��) − 4 Λ𝑎 

��) 

 

(4.82) 

8 𝜔 
 

 

��  =
 1 ��4 (1 − ��2 )�𝑎 − 4 𝐹 cos(−𝛼 + 

��)� 

 

(4.83) 

8 𝑎 𝜔 
 

 

which can be reduced to: 
 

 

Λ2 ��2 ��2
 

��2 
+

 

(1 − ��2 )2��2
 

��2  
= 1 (4.84)

 
 

 

Returning to the main system parameters, Eqn. (4.84) can be arranged to 
describe the so called displacement ratio: 

 
 

2  2    2
 

𝑎 = � 
𝑌 ��𝑝

 

��𝑝  + 

��𝑝 Ω
 

2 

 

(4.85) 
2 

2 Ω   + ���𝑝 − 𝑚𝑝 Ω  

� 
which is an identical representation of the displacement transmissibility ratio of the 
standard base excited single degree of freedom system [6]. It is important to note 
that the displacement transmissibility ratio remains constant despite any change in 
excitation amplitude. 

 
4.2.1      Validation of the Solutions 
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Equations (4.77)-(4.80) are four coupled highly nonlinear equations with 
multiple solutions at various points, to efficiently solve these equations it necessary 
to use numerical methods. For this work the continuation software Matcont [53] will 
be used. The use of the software involves finding steady state solutions to the 
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system equations, and then finding neighboring equilibrium points by continuing with 
a single parameter, in this case the forcing frequency. In this way one can con- 
struct the so called frequency response plots (FRP). The advantage of such a 
software lies in the fact that during continuation, stability can be determined from 
the eigenvalues of the system equations, as well as determining the type of bifur- 
cation at points of lost stability. 

Figure 4.15 shows the FRP for the values of 𝑌 = 0.005 (��) and 
��𝑙����𝑙  = 50 (Ω). The blue lines indicate stable solutions with respect to periodic 
so-

 lutions, while red lines indicate unstable solutions with respect to periodic solutions. 
The green triangles represent limit points in the response, marking the existence of 
multiple solutions. The unstable region that lies between the limit points is achieva- 
ble only through numerical integration, being an unstable saddle region. In real 
world applications, system responses will be attracted to one of the other two 
points at the same frequency. The black squares denote Hopf bifurcation points. 
The response of the system within this unstable region is a modulated periodic or- 
bit. 

 

 

To verify the outcomes of the FRP from Eqns.(4.77)-(4.80), and to de- 
termine if the effect of assuming 𝑘𝑡    to be constant, an assumption made at the beginning of the MSHBM method, Eqns.(3.23)-(3.24) were numerically integrated 
at points of stability where the transduction factor changes with ��. The steady 

state
 response was recorded and the maximum amplitude of primary and relative dis- 

placement plotted on the FRP. Figure 4.15 shows that Eqns.(4.77)-(4.80) are 
in good agreement with numerical results, indicating that the MSHBM method works 
correctly, and that keeping 𝑘𝑡    constant has no significant effects.
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Figure 4.15: FEP for 𝑌 = 0.005 (��)  and ��𝑙����𝑙 = 50(Ω): a) primary displacement ��𝑝 ; b) relative displacement ��. Blue lines indicate stable periodic orbits. Red lines are unstable indicating non peri- 
odic orbits. Black squares indicate Hopf bifurcation points and green triangles limit points. Red circles 

are responses from numerical integration of equations (3.23),(3.24). 
 

 

The dynamics within the unstable region of Hopf bifurcation represent a far 
departure from periodic solutions. As noted by many works [14, 16, 54, 55], a 
harmonically excited NES and linear oscillator may experience weakly modulated re- 
sponses or the more interesting strongly modulated response (SMR). SMRs can 
be considered as a repeated form of TET. It was seen during the transient analy- 
sis that the most efficient vibration absorption occurred when the energy level in- 
duced a frequency close to the primary frequency causing a nonlinear beating. 
SMRs are in effect an extension of that principle. The beating phenomenon causes 
rapid exchanged of vibrational energy between the systems, which must be passed 
in part through damping. 

 

 

Two frequencies are considered within the region of Hopf bifurcation with the 
aim to explore the response and to further validate the used method. Figures 4.16 
and 4.17 show the response of the system excited at Ω = 14.4 (𝐻��) and

 
Ω = 16.5 (𝐻��). The first row are the amplitudes computed from equations 

(4.76)-
 (4.79), the second row the reconstituted responses from equation (4.80) and 

the final the numerically integrated responses from the original equations (3.23) 
and (3.24). The responses are both clearly modulated, which can be seen from 

the predicted amplitudes ��, 𝑏 . The reconstituted responses show good 

agreement
 with the numerically integrated response. 
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Figure 4.16: SMR when 𝑌 = 0.005 (��), ��𝑙𝑙��𝑙 = 50(Ω)  and Ω = 14.4 𝐻��: a) amplitudes 

computed
 

from equations (4.77)-(4.80); b)reconstituted responses from equation (4.81); c) numerically 
integrated responses from original equations (3.23),(3.24). 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 

 
 

 
 
 
 
 

 

Figure 4.17: SMR when 𝑌 = 0.005 (��), ��𝑙����𝑙 = 50(Ω)  and Ω = 16.5 𝐻��: a) amplitudes 
computed from equations (4.77)-(4.80); b)reconstituted responses from equation (4.81); c) 

numerically 
integrated responses from original equations (3.23),(3.24). 
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4.2.2  Interpretation of FRPs 
 

Having verified the solutions of Eqns. (4.77)-(4.80), it is important to 
understand the significance of the generated responses. The unstable area lying be- 
tween the limit points indicated by green triangles is a physically unachievable re- 
sponse. Therefore at the frequencies lying within this region there are two solutions 
that can be realized, one being more attractive than the other depending on system 
conditions. 

 

 

The spontaneous switching from one realizable solution to another is known 
as the so called jump phenomenon [8], and can be visualized through monoton- 
ically increasing or decreasing frequency sweeps, during which the forcing amplitude 
remains constant. Figure 4.18 shows the increasing sweep, the response path indi- 
cated by arrows. Best seen in the relative displacement plot the response will fol- 
low along the upper branch until the rightmost limit point is reached, where an in- 
crease in frequency will cause a jump to the lower branch. The primary system 
experiences the same jump in response at the rightmost limit point. Reversing the 
process in Fig. 4.19, the decreasing sweep shows the same jump occurring at the 
other limit point. In the case of the relative displacement the jump is from the 
lower branch to the upper, while the primary again jumps from a higher to a low- 
er. 

 

 
 

 
 
 

 
 
Figure 4.18: Increasing frequency sweep. Arrows indicate response path as frequency is increased. 
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Figure 4.19: Decreasing frequency sweep. Arrows indicate response path as frequency is decreased. 

 

 

The jump phenomenon is not determined solely by limit point bifurcations. 
Numerically, the attraction to one response over another is dictated by the initial 
conditions of the equations. Physically, the jump can occur at any frequency within 
the range between limit points. The likelihood of a jump occurring increases as the 
response approaches the nearest limit point. Within this region the system becomes 
sensitive to external disturbances; an applied force can cause a spontaneous jump, 
or a moment of increased damping can also cause a jump. 

 
4.2.3  Response Analysis 

 
The study of the performance of a NES is very involved, due to the highly 

nonlinear nature. In the transient analysis it was found that the NES performance is 
dependent on initial energy, introduced through initial conditions. It is reasonable 
then to expect a similar relationship for the harmonic regime. Figure 4.20 depicts 
the two extremes of the response that can be achieved. Line (A) corresponds to 
a large amplitude excitation of 𝑌 = 1.5 × 10−4 (��) , while line (B) shows a low amplitude excitation of 𝑌 = 9 × 10−5 (��). 
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Figure 4.20: Comparison of two types of response regimes. A) high amplitude excitation, B) low 
amplitude excitation. Green line represents primary system with NES disengaged. 

 

 

The analysis will examine the system in two general categories: 1) low am- 
plitude excitation and 2) high amplitude excitation. 

 

 
4.2.3.1 Low  Amplitude Excitation 

 
Figure 4.21 shows the FRP for 𝑌 = 8 × 10−5 (��)  and ��𝑙����𝑙  = 50 (Ω) . 

The green line represents the displacement transmissibility ratio of the primary 
system if 
the NES were detached. For the region between approximately 9-12.5 (Hz), the 
NES absorbs a large portion of the vibration. The region of highest vibration atten- 
uation corresponds to the region of SMRs, a desirable trait for good vibration re- 
duction. There exists a small region where multiple solutions may exist, indicated by 
the limit points. Although at this level of base amplitude the response is quite 
good, it does not show the full dynamics of the system. 
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Figure 4.21: FRP for 𝑌 = 8 × 10−5 (��)  and ��𝑙����𝑙 = 50(Ω): Blue lines indicate stable periodic 

re-
 

sponse and red lines unstable response. Black squares indicate Hopf bifurcation points and green 
triangles limit points. Green line represents primary system with NES disengaged. 

 

 

Figure 4.22 shows the full dynamics of the system. In addition to the previ- 
ous response, there exists a closed island of extremely high amplitude, comparable 
to that when the NES is not attached. The island consists of a single stable solu- 
tion for the region 8.1-11 (Hz), and poses a significant problem in terms of vi- 
bration suppression performance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.22: FRP for 𝑌 = 8 × 10−5 (��)  and ��𝑙����𝑙 = 50(Ω)  with closed high amplitude island: 
Blue lines indicate stable periodic response and red lines unstable response. Black squares indicate 

Hopf 
bifurcation points and green triangles limit points. Green line represents primary system with NES 

disengaged. 
 

 

Fortunately at this level of excitation amplitude this island is unrealizable. 
Numerical integration of the main system equations were conducted using a wide 
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variety of initial conditions, and the system was never induced to have islands am- 
plitude. This conclusion is supported by [14], where Monte Carlo simulations were 
conducted for numerous frequencies and initial conditions; concluding that the steady 
state amplitude solutions were always attracted to lower amplitude values. In addi- 
tion the high amplitude response has no full connection to the entire system over 
all frequencies making it completely disconnected to a full range of frequencies. 

 

 

Assuming that the higher amplitude branches play no significant role, the 
load resistance can be varied to determine its contribution. Figure 4.23 shows the 
response for resistance values of 12, 25, 50 and 100 (Ω) , corresponding to

 damping from high to low values respectively. At the first peak, the increase in 
damping yields no significant increase in amplitude for the primary system, and ab- 
sorption isolation remains good. Beyond the first peak higher damping results in an 
increase in amplitude. It also has the result of minimizing the region of multiple 
responses due to limit point bifurcations. For ��𝑙����𝑙  = 100Ω , the response can 

be
 significantly reduced but may still result in high amplitudes in locations of multiple 

responses. 
 
 
 

 
 

 
 
 
 
Figure 4.23: FRP for variations in load resistance. 𝑌 = 8 × 10−5 (��). Periodic stability and bifurcation 

points not shown for clarity. 
 
 

Overall the vibration absorption is excellent at this level of excitation ampli- 
tude. At all damping levels, the overall response shape remains the same, the 
main difference being the extension of the region of multiple solutions. This does 
not affect the overall performance, but may have implication for the energy harvest- 
ing. 
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The main problem for this system is to determine the point at which the upper 
amplitude levels will become main attractors for the response. This work proposes a 
simple method to determine a maximum excitation amplitude that will induce the 
higher branch response. First a frequency must be selected corresponding to the 
peak amplitude ratio for the lower branch, in this case 11.02 (Hz). Equations 
(4.77)-(4.80) are then evaluated in terms of primary displacement ratio to force 
amplitude at the chosen frequency. 

 

 

Figure 4.24 shows the results for the continuation with respect to excitation am- 
plitude at ��𝑙����𝑙  = 50 (Ω). Two limit points are encountered, marking a region 

that
 is physically unattainable. These points are significant as they relate directly to the 

joining of the upper and lower branches. Any excitation amplitude to the left of the 
leftmost limit point, lying in the ‘safe region’, can be considered an acceptable 
amplitude, due to there being a singular solution, or a point where the high ampli- 
tude island has yet merged with the main response. Any excitation amplitude great- 
er than leftmost limit point will allow the system to jump to the higher amplitude. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.24: Primary displacement ratio as a function of force amplitude for ��𝑙����𝑙  = 

50(Ω).
 

Figure 4.25 shows the FRPs at the force amplitudes of 𝑌 = 9.22 ×
 

10−5 (𝑚 )   and 𝑌 = 1.143 × 10−4 (��) , corresponding to the two limit points from
 Fig. 4.24. In Fig. 4.25(a), the large amplitude island is disconnected and has no 

smooth transitions to the lower branch, indicating that it will not be a strong attrac- 
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tor. Numerical integrations for many initial conditions always found the lower ampli- 
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tude level to be dominant. In Fig. 4.25(b), the two response amplitudes have 
switched, the lower amplitude not becoming an island within the large amplitude re- 
sponse. This implies that the larger amplitude branch is the main attractor for the 
response. Again, many numerical integrations with various initial conditions were 
conducted, where it was found that the response always was attracted to the higher 
amplitude. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a)                              b) 

Figure 4.25: FRP for ��𝑙����𝑙 = 50(Ω): ��) 𝑌 = 9.22 × 10−5 (��), b) 𝑌 = 1.143 × 

10−4 (��)

 

Figure 4.26 shows the displacement ratio as a function of excitation ampli- 
tude for different load resistances. For high load resistances giving low damping the 
safe region is decreased, while higher resistances and damping will extend the op- 
erating range. Table 4.3 lists the maximum excitation amplitudes 𝑌����𝑚    for the 

four
 plotted load resistances. 
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Figure 4.26: Primary displacement ratio as a function of force amplitude, arrow indicating an in- 
crease in load resistance. Lines correspond to a load resistance of 12, 25, 50 and 100 (Ω).

 
Table 4.3: Maximum excitation amplitudes for various resistances. 

��𝑙����𝑙 (Ω)   𝑌����𝑚 (��)   
12 1.94 × 10−4

 
25 9.961 × 10−5

 
50 9.218 ×−5

 
100 8.722 × 10−5

 

As long as the excitation amplitude 𝑌   remains in the safe zone the NES
 performs as an excellent vibration absorber. The NES is capable of providing wide 

band vibration attenuation and may exhibit strongly modulated to periodic responses. 
 

 
4.2.3.2 High Amplitude Excitation 

 
 

Once the excitation amplitude increases past the safe region, wideband vi- 
bration absorption is lost. Figure 4.27 shows the FRP for an excitation amplitude of 
𝑌 = 0.001 (��)  for various load resistances. The effect of passing the safe region is

 
clearly seen; when the system is close to the primary natural frequency there is 
minimal vibration absorption. 
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Figure 4.27: FRP for 𝑌 = 0.001(��)  with changing load resistance, arrow indicating an increase in load resistance. Response lines correspond to a load resistance of 12, 25, 50 and 100 (Ω). Green 

line represents primary system with NES disengaged. 
 

 

A change in load resistance yields no improvement for the system at the 
first peak. At higher frequencies it has the same effect as in the low excitation 
amplitude, there is an extension of the region with multiple solutions, which can 
lead to either good or poor vibration absoption. 

 

 

Although at the higher excitation amplitudes, the vibration absorption may be 
compromised, there still exists some regions of good absorption. Figure 4.28 de- 
picts the FRP for 𝑌 = 0.00015 (��)  and load resistances of 25, 50, and 100 (Ω).

 
This represents a level of excitation amplitude just past the safe level. Regions ly- 
ing to the left of the dashed lines show an increase in amplitude, but there is ex- 
cellent vibration attenuation at frequencies lying to the right. 
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Figure 4.28: FRP for 𝑌 = 0.00015(��)  with changing load resistance, arrow indicating an increase in load resistance. Response lines correspond to a load resistance of 25, 50 and 100 (Ω). Green line 

represents primary system with NES disengaged. 
 

 

For high excitation amplitude levels, the choice of using a NES as a vibra- 
tion absorber may be acceptable, if one knows the range of frequencies and am- 
plitudes that will excite the system. It is critical though to be aware of these fac- 
tors when choosing a design. It is interesting to note that this fact is not explicitly 
detailed in the existing NES literature, and no method for selecting a safe working 
amplitude has been described. 

 
4.2.4  Energy Harvesting 

 
Using the MSHBM method has another distinct advantage; that the relative 

amplitude of the system is explicitly described which is useful in determining power 
output. With the maximum amplitude described, the velocity can be approximated by 
taking the first derivative with respect to time of Eqn.(4.81), and the peak velocity 
determined by the amplitude: 

�� (��) = −��Ωcos(Ωt + β) (4.86)
 

�� 𝑝𝑤��𝑘  = −��Ω (4.87)
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𝑘  𝑅 

(2𝑅 

Combining this with Eqn.(2.29) the peak power across the load of the 
system can be defined as: 

 

 
2 

  𝑡     ����𝑎𝑙 2    2  (4.88)
 

𝑃𝑝𝑤��𝑘  = 

𝑐����𝑙 

+ 
������
𝑎𝑙 

)2 𝑏  Ω 

The maximum theoretical power can be equated by setting: 
 

 

��𝑃𝑝𝑤��𝑘
 

��������𝑎𝑙 
= 0 (4.89) 

 

 which results in ��𝑙����𝑙  = 2��𝑐��𝑐𝑙 . This is known as resistance matching. Although this predicts a maximum power output at ��𝑙����𝑙  = 12 (Ω), it does not take into account 
the effect of damping or the nonlinear response of the system. 

 

 

To examine the energy harvesting for low excitation amplitudes and the effect 
of the load resistance, the amplitude of excitation is set to the safe value for 
��𝑙����𝑙  = 100 (Ω) , insuring that the higher amplitude branch is not reached. 

Figure
 

4.29 shows the FRP and the peak power for this input for varying resistances. 
Here the invalidity of Eqn.(4.89) reveals itself. As the load resistance is increased 
the peak power also increases, but with a change in frequency. The most reliable 
and best performing resistance is approximately ��𝑙����𝑙  = 25 (Ω), where there is 

min-
 imal loss with some slight increases in frequency range. 
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a)                              b) 
 

Figure 4.29: a) FRP for relative displacement and b) peak power as a function of frequency: 
𝑌 = 8.722 × 10−5 (��)  with changing load resistance, arrow indicating an increase in load resistance.

 
Response lines correspond to a load resistance of 12, 25, 50 and 100 (Ω).

 
The power output represented in Fig. 4.29(b) is a very high approximation 

for the power output. Figure 4.29(a) shows that all of the locations of the highest 
output power are regions of SMRs, where the amplitude and phase of the system 
constantly change. This makes the assumption that the velocity can be estimated by 
Eqn.(4.86) invalid. The important fact is that the system achieved a design goal, 
that successful energy harvesting could be achieved without effecting vibration ab- 
sorption. 

 

 

To examine the high amplitude excitation, the values used in Fig. 4.28 
(𝑌 = 0.00015 (��)) will be used to represent an excitation amplitude just past the

 safe amount. Figure 4.30(a) shows the FRP for various resistances. As with the 
previous example, as the resistance is increased the range of the frequency range 
is extended. In terms of power, it is clear that a decrease in resistance causes 
the power to increase but the frequency range is shortened. 
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a) b) 
 

Figure 4.30: a) FRP for relative displacement and b) peak power as a function of frequency: 
𝑌 = 0.00015(��)  with changing load resistance, arrow indicating an increase in load resistance. Re- sponse lines correspond to a load resistance of 12, 25, 50 and 100 (Ω). 

 

 

It is apparent that the energy harvesting ability of the NES does not interfere 
with overall performance. In fact the ability to change the damping of the system 
allows one to easily modify the system to match environmental conditions. If a 
broad range of frequencies are expected then the damping can be lowered to in- 
duce wider band energy harvesting, though this comes at the possibility of the jump 
phenomenon causing lower outputs. 

 
 
 

4.3  Conclusion 
 
 
 

The analytic analysis has showcased some of the very interesting features 
and attributes of the nonlinear energy sink. Furthermore it showed that theoretically 
a NES could be modified such that it is able to harvest energy. For the transient 
response, it was found that there is a critical energy threshold for the NES to be 
engaged, and initial energy levels just past that threshold resulted in excellent vi- 
bration and energy harvesting. At higher initial energy levels the system was still 
performed well, sinking vibrational energy to the NES where it could be harvested. 
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For the harmonically forced analysis, the performance of the NES was divid- 
ed into two main responses, low and high excitation levels by deriving a set of 
four equations describing amplitudes and phases of the system. The low energy 
levels had excellent vibration absorption for all excitation frequencies while yielding 
harvestable power. The high excitation amplitude demonstrated a reduced region of 
vibration absorption, resulting in the loss of wideband vibrational attenuation, but still 
showing the capability of good vibration suppression. With the increase in excitation 
amplitude, there was also an increase in available output power. 

 

 

These results verify the original idea for this work, and the method of intro- 
ducing energy harvesting to a NES. The low mechanical damping of the beam al- 
lows for good vibrational energy transfer from mechanical to electrical while main- 
taining all the characteristics of a NES. 
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Chapter 5 
 
 

 

Apparatus Testing 
 
 

 
5.1  Testing Setup 

 
 
 
 

Sensor 
Post 

 
 
 
 
 
 
 
 
 

Electrical 
Circuit 

Reflex 
Sensors 
 
 
 
Clamping 
Magnet 

 

 
 
 

Figure 5.1: Image of the apparatus testing. 
 

 

Figure 5.1 shows the basic setup for the testing of the apparatus. The reflex 
sensors which measure displacement (only two are shown), are mounted on a 
rigid sensor post which is rigidly fixed to ground. The electrical circuit is mounted 
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on a test breadboard so that the two coils are connected in series and connected 
to a load resistor, a 2000 (Ω) potentionmeter. For transient testing, two large

 clamping magnets are fixed to the linear track on either ends of the base fixing it, 
and are removed for harmonic testing. 

 
5.2  Transient Response 

 
Testing the transient response of the apparatus was conducted in the same 

method as the analytic analysis. The primary system was displaced by a distance 
��, such that the initial conditions were equal to ��𝑝 (0) = ��, ��𝑎 (0) = ��, �� 𝑝 

(0) = 0,
 

�� 𝑎 (0) = 0 . A bar with an adjustable set screw was placed between the primary
 mass and the sensor post, displacing it by ��. The bar was then quickly removed
 and the response recorded. 

Figure 5.2 shows the recorded response for 𝑋 = 1.085 × 10−3 (𝑚) and 
��𝑙����𝑙  = 50 (Ω) , close to the optimal initial energy level. The system shows 
very

 good vibration absorption, which can be attributed to the nonlinear beating that oc- 
curs at the beginning of the response. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.2: Experimental results for 𝑋 = 1.085 × 10−3 (��)  and ��𝑙𝑙��𝑙 = 50(Ω): (a) 

displacements 
(solid line: primary system; dashed line: NES); (b) percentage of the instantaneous total energy 

in the NES and (c) voltage across load resistor. 
 

 

The nonlinear phenomenon is clearly seen in the instantaneous energy within 
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the NES where rapid exchanges of energy from the primary system to the NES 
occur, here as with the simulation the energy must be consumed through the elec- 
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trical damping causing good vibration reduction. The measured voltage across the 
resistor is a good match to the simulation results shown in Fig. 4.2. 

Figure 5.3 shows the response to an initial displacement of 𝑋 = 1.949 × 
10−3 (𝑚)   and ��𝑙����𝑙  = 50 (Ω) . Here the first moments consist of the 
nonlinear

 beating which causes a large reduction in the primary amplitude. The two systems 
then enter into 1:1 resonance and the energy is localized to the NES in an irre- 
versible way, causing the amplitude of the primary system to decreases monoton- 
ically. The physical test also takes longer to eliminate the primary vibration as 
compared to the results in Fig. 4.3, indicating that the actual electrical damping 
may be less than the analytically derived quantity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3: Experimental results for 𝑋 = 1.949 × 10−3 (��)  and ��𝑙𝑙��𝑙 = 50(Ω): (a) 

displacements 
(solid line: primary system; dashed line: NES); (b) percentage of the instantaneous total energy 

in the NES and (c) voltage across load resistor. 

Increasing the initial displacement to 𝑋 = 3.172 × 10−3 (��) with ��𝑙����𝑙  

= 
50 (Ω), Fig. 5.4 shows a similar response to that of Fig. 5.3. In this case the

 nonlinear beating is not as prominent, and the instantaneous energy to the NES is 
minimal. From the percentage of the instantaneous energy in the NES it is clear 
that TET is occurring, as the energy is being directed to the NES during the 
length of the response. 
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Figure 5.4: Experimental results for 𝑋 = 3.172 × 10−3 (��)and ��𝑙����𝑙 = 50(Ω): (a) 

displacements
 

(solid line: primary system; dashed line: NES); (b) percentage of the instantaneous total energy 
in the NES and (c) voltage across load resistor. 

 

 

The wavelet transform was then applied to the relative displacements of the 
three test results and plotted with respect to the total system energy at each mo- 
ment. The total system energy was fitted with an exponential function to remove 
noise, and the results given in frequency energy plots along with the back bone 
curve S11±, which were obtained analytically. Figure 5.5(a) shows the results 
for 𝑋 = 1.085 × 10−3 (𝑚)  corresponding to an initial energy of 0.00287 (J). Here as

 with the analytic results, the energy level is just past the critical threshold, resulting 
in strong nonlinear beating, after which the system is attached to the S11+ fre- 
quency curve. Figure 5.5(b) displays the results for the second test at 
𝑋 = 1.949 × 10−3 (��)   with an initial energy of 0.00926 (��) . With the increase 

in
 the initial energy there is less nonlinear beating and the response is quickly attract- 

ed to the S11+ curve when the system reaches 1:1 resonance. The response for 
Fig. 5.5(c) shows much less nonlinear beating, with higher frequencies being less 
dominant, resulting in the longer TET. 

 

 

The most interesting feature of these plots are that at lower energy levels 
the frequency does not follow the S11+ curve exactly, but is attracted to a fre- 
quency of approximately 7.5(Hz). At the lower energy levels the displacement of 
the NES is small, engaging mainly the linear stiffness, implying that the linear stiff- 
ness may be slightly greater than the approximated value of 50 (��/��). This 

may
 be explained because the stiffness measurements were done through forced dynamic 
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testing, and might not have accurately captured the linear component. It appears 
that the slight increase in linear stiffness does not heavily affect performance. 

 

 
 
 
 

 
 
 
 
 

 

a) b) 
 
 
 

 
 
 
 
 

 

c) 
 Figure 5.5: FRPs of WT from the relative response ���𝑎 − ��𝑝 �  of the 3 tests with superimposed backbone curves S11± with ��𝑙����𝑙 = 50(Ω): a) 𝑋 = 1.085 × 10−3 (��), b) 𝑋 = 1.949 × 10−3 (��), and c) 𝑋 = 3.172 × 10−3 (��). 
 

 

Lastly the potential for energy harvesting is investigated. The total energy 
consumed by the load resistor was calculated by Eqn.(4.26), as well as the initial 
energy for the three tests. The percentage of the energy through the load resistor 
was then expressed as a percentage of the initial energy, the results given in Ta- 
ble 5.1. The table also lists the values predicted by the simulations with the same 
initial conditions as the tests. 
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Table 5.1: Comparision of harvested energy to predicted harvested energy. 
 
 

Initial Displacement ��𝑐𝑛𝑡  (��) ��𝑙����𝑙 
(��) 

��𝑙������%  

(%) 

Predicted: ��𝑙������%  

(%) 𝑋 = 1.085 × 10−3
 

𝑋 = 1.949 × 10−3

 
𝑋 = 3.172 × 10−3

 

0.00287 
0.00926

 
0.0245 

0.0015 
0.0037

 
0.0067 

52.3 
40.0

 
27.3 

61.1 
47.73

 
32.3 

 

 

The results are a generally good agreement, all percentage of the initial en- 
ergies consumed by the load resistor being within 15% of the predicted value. This 
variation may be explained by assumption in deriving the transduction factor; mainly 
that the coils were perfectly made. The coils were wound by hand and may have 
some inconsistences throughout. 

 

 

The NES is still capable of good energy harvesting and vibration absorption, 
performing especially well when the initial energy is just past the critical threshold. 
With better constructed coils the NES may be capable of matching the predicted 
energy harvesting capabilities. 

 
5.3     Harmonically Excited Testing 

 
Testing the system with a harmonic excitation was conducted with a series of fre- 
quency sweeps, but provided some distinct challenges to overcome. The base of 
the system is driven by shaker, which in turn causes the entire system to vibrate. 
The problem with this arrangement is that the system is in fact a three-degree of 
freedom system, the additional degree being the base and shaker system which has 
its own stiffness and damping. This means that if the input voltage to the shaker 
amplifier is kept constant, the displacement of the base is not constant at all fre- 
quencies but will vary depending on the dynamics of the primary and NES system, 
making it difficult to compare to the analytic results which assumed a fixed excita- 
tion amplitude. 

 

 

To overcome this, all results in the analytic and experimental outcomes are 
displayed in the displacement transmissibility ratio. Displaying results in this manner 
makes the analytic and experimental results directly comparable, as the primary am- 
plitude will always be expressed with respect to the base amplitude. 
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Because the base excitation amplitude varies at different frequencies depend- 
ing on system dynamics, it is important to keep the force applied to the system 
fixed to insure that energy levels remain constant. For an electronic shaker, the 
amount of force generated is proportional to the amount of current applied to the 
coil within the shaker. Therefore it is important to keep the current being delivered 
to the shaker constant at all frequencies. In the following tests the current was 
maintained at a constant value and the root mean square (RMS) value reported. 
The RMS current value will also be used as a way to distinguished between exci- 
tation levels, and to be comparable to the analytic results. 

 

 

To test the validity of this, a FRP of the primary system displacement with 
detached NES was done at a constant RMS amperage of 0.7 (��) . Figure 

5.6
 shows the comparison of the analytic to the experimental displacement ratio. The 

good match indicates that the method is valid. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5.6: Comparison of the analytic and experimental frequency response of the primary system 
for shaker current of ��𝑅𝑅𝑅  = 

0.7(��).

 

The tests were conducted using a forward frequency sweep, starting at a low 
excitation frequency and slowly increasing the frequency in 0.25 (Hz) increments. 
If a jump occurred, the frequency of the jump was recorded and the system was 
struck so as to bring the amplitude back to the original one before the jump, and, 
then the frequency sweep resumed. Once the system could no longer be made to 
jump back up to the original amplitude the forward sweep was concluded. The 
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same procedure was then followed for a backwards sweep, this time only noting 
the point where the system jumped to the higher frequency. 

 

 

To calculate the displacement transmissibility ratios, the amplitude peaks of 
the base, primary, NES and relative displacement of the recorded response were 
determined and the average of those peaks taken. The average amplitude peaks 
were then divided by base peak average to find the displacement transmissibility 
ratio. If the response was modulated, an average of the modulated peaks was 
used. 

The first test was conducted for a shaker current of ����𝑅��  = 0.7 (��)   

and 
��𝑙����𝑙  = 50 (Ω), with the results shown in Fig. 5.7. The response shows good 
vi-

 bration absorption around the natural frequency of the primary mass, which is the 
main area of concern. Similar to the high excitation analytic results, there is a shift 
in the peak natural frequency, so that the first peak occurs at 10 (Hz). Unlike 
the analytic results the displacement ratio of the primary system is lower than the 
analytic, giving better results than the predicted values for that peak. At higher fre- 
quencies the forward sweep revealed the first jump in amplitudes at 13.5 (Hz), 
while the backward sweep had a jump at 13 (Hz). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a)                              b) 
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c) 
Figure 5.7: Test results for a shaker current of ��𝑅𝑅𝑅 = 0.7(��)  and ��𝑙����𝑙 = 50(Ω). a) 
displacement ratio, blue line experiment results with NES removed; b) average power consumed by 
the load re- 

sistor; c) relative displacement ratio. 
 

 

Figure 5.7(b) shows the average power consumed by the resistor. The 
jump phenomenon is visible for the forward and reverse frequency sweeps, corre- 
sponding to the high and low branches of the relative displacement. The figure 
clearly shows the main goal of this work, that the absorber works effectively as a 
vibration absorber while being able to produce useable energy. At higher frequen- 
cies, more power is available but there is an increased chance of a jump and 
lower power levels realized. 

 

 

In Fig. 5.8, the same current is used as the previous test but with a load 
resistance of ��𝑙����𝑙  = 26.3 (Ω).   With the higher amount of damping, there is a 

re-
 duction in the first peak as well as a greater shifting of the peak frequency to ap- 

proximately 9.75 (Hz). The jump phenomenon is less significant in this case, as 
there is a single jump frequency for both forward and reverse sweeps at approxi- 
mately 12.75 (Hz). This is confirmed by the analytical analysis where at higher 
damping the region of multiple solutions is greatly reduced. With the lower load re- 
sistance there is a slight increase in the average power, as it approaches the 
theoretical optimal power at ��𝑙����𝑙  = 2��𝑐��𝑐𝑙 . The importance here is that 

there is
 usable power being generated, while overall the vibration suppression is good, es- 

pecially in the region of the primary resonance. 
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a) b) 
 
 

 
 
 
 

c) 
Figure 5.8: Test results for a shaker current of ��𝑅𝑅𝑅 = 0.7(��)  and ��𝑙����𝑙  = 26.3(Ω). a) 

displace- ment ratio, blue line experiment results with NES removed; b) average power consumed 
by the 

load resistor; c) relative displacement ratio. 
 

 

In both of these tests it is clear that there is some deviations from the 
analytic results. It seems that the displacement ratio responses of the primary sys- 
tem neither fit into the low or high excitation categories. This may be explained by 
the way that the tests were conducted with the devices available. The first problem 
is that the Brüel & Kjær  type 4809 shaker used for the test, has a nonlinear force 
to frequency curve for frequencies below 10 (Hz) and for low amperage. 

 

 

The second problem is due to the inertia of the system, and the definition 
of the ‘safe’ excitation amplitude to induce the low response. Considering that for a 

load resistance of ��𝑙����𝑙  = 50 (Ω)  the maximum displacement for the low amplitude given from the analytic portion is 𝑌 = 9.22 × 10−5 (��) , it is extremely hard to 
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achieve a force from the shaker that is proportional to this displacement. The 
shaker needs to provide enough force to overcome the dynamic friction of the linear 
slide bearing as well as the inertial mass, an unforeseen problem during the con- 
struction of the apparatus. 

 

 

The first two tests can then be viewed as a mixture of high and low exci- 
tation amplitudes, displaying traits of both. Although these results seem somewhat 
different from the analytic results, it is the performance that is important. Even with 
these variations the NES still has a very robust response to varying inputs, greatly 
minimizing the primary amplitude at the resonant frequency. The amplitude gains at 
other frequencies may be acceptable depending on the application. 

 

 

Figure 5.9 demonstrates the interesting phenomenon of SMRs; for the test 
����𝑅��  = 0.7 (��)  and ��𝑙����𝑙  = 26.3 (Ω). The response was recorded at the 

frequency
 of 11.5(Hz) and shows a strong modulation for the primary system while the rela- 

tive response exhibits a weakly modulated response. During all system tests, SMRs 
would appear occasionally but not with the expanded range predicted by the analytic 
results. This may be explained in part by being limited to high excitation ampli- 
tudes, where regions of SMRs are greatly reduced. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

 Figure 5.9: Recorded displacement response for ��𝑅𝑅𝑅 = 0.7(��)  and ��𝑙����𝑙 = 26.3(Ω)  and a excitation frequency Ω = 11.5(𝐻��). 
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Increasing the shaker current to ����𝑅��  = 1 (��)  and with a load 

resistance of
 

��𝑙����𝑙  = 26.3 (Ω), the response in Fig. 5.10(a) shows a closer match to the 
ana-

 lytic results at high excitation level. As with the previous tests, there is a decrease 
in the first peak from the analytic prediction. There is some gain in the higher fre- 
quencies compared to the analytic results which should more closely follow the re- 
sults from the removed NES response. On the forward sweep the system experi- 
enced the first jump at 15 (Hz) while the reverse sweep produced a jump at 14 
(Hz). With the increase in driving force there is a corresponding increase in the 
power in the system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

c) 
Figure 5.10: Test results for a shaker current of ��𝑅𝑅𝑅 = 1(��)  and ��𝑙����𝑙  = 26.3(Ω). a) 

displace- ment ratio, blue line experiment results with NES removed; b) average power consumed 
by the 

load resistor; c) relative displacement ratio. 
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In the final test presented, the shaker was driven with a current of 
����𝑅��  = 1.5 (��)   and ��𝑙����𝑙  = 26.3 (Ω) . The response for the system is 

a good
 match to the analytic results. The low frequencies as well as the high frequencies 

follow the response of the primary mass response very closely, with a slight offset 
in the first peak. The region of multiple solutions is very distinct, with the first 
jump occurring at 18 (Hz) for the forward sweep and the second occurring at 
16.75 (Hz). Most impressive is the output power of the system, at low frequen- 
cies the system can output approximately 2.8 (mW) up to approximately 18.79 
(mW) for the single response point at 16 (Hz). Passing this point the system 
can induce higher power outputs but may result in a jump to lower values. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

a)                              b) 
 
 

 
 

 

c) 
 Figure 5.11: Test results for a shaker current of ��𝑅𝑅𝑅 = 1.5(��)  and ��𝑙����𝑙 = 26.3(Ω). a) displace- ment ratio ��𝑝 , blue line experiment results with NES removed; b) average power consumed by the 

load resistor; c) relative displacement ratio. 
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5.4  Conclusion 
 

The testing of the device demonstrated that the main objective of this work 
was achieved, and proved the original design concept; that a NES could be modi- 
fied to in such a way that the damping effects of the NES could be harnessed 
into usable power. 

 

 

The transient testing revealed that the system was a close match to the an- 
alytic model. A critical input energy level exists for the NES to be engaged, and 
energy levels just passed that threshold will induce nonlinear beating resulting in 
excellent vibration absorption. Any energy levels pass this point will result in less 
nonlinear beating at the beginning of the response, and will result in the NES and 
primary masses entering into a 1:1 resonance where vibrational energy is localized 
to the NES and dissipated through damping. 

 

 

The harmonic excitation tests diverged from the analytic analysis for the low 
excitation levels due to limitations of the testing conditions, but were a good match 
for the high excitation levels. At the lower force levels, the results displayed char- 
acteristics of both the high and low level excitation analytic predictions, with the 
overall results being very good in terms of vibration suppression. In all the tests, 
useable power is produced within the system. The power output also has wideband 
characteristics, especially within the region of singular solutions, an interesting con- 
sideration if this system were modified to be only an energy harvester. 
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Chapter 6 
 
 

 

Summary 
 

 
 
 

The original proposal of this work was to investigate the potential of an energy 
harvesting nonlinear energy sink. From a review of the literature of the NES, the 
intention was to exploit one of the main phenomenon of the NES to generate 
power; namely the fact that the device sinks vibrational energy and dissipates it 
through damping. By directly converting the dissipated damped energy into electricity, 
one could then have a device that could minimize vibration while harvesting energy. 

 

 

From this idea the design goals were constructed. The first design criterion 
was to have a system with an essential nonlinearity (minimal linear stiffness) with 
a small amount of mechanical damping. The solution was to mount a mass on a 
thin preloaded steel beam. This would provide linear motion with a high degree of 
nonlinear stiffness, as well as a low linear stiffness component. The preloading 
gave the beam an increase in displacement, while also further reducing the linear 
stiffness of the beam. Using a thin steel beam also had the added benefit of a 
low amount of mechanical damping. 

 

 

The second criterion was to harvest the vibrational energy in electrical form. 
To do this a traditional energy harvester setup was employed by simply replacing 
the NES mass with magnets and surrounding them with coils. Fixing the magnets 
to the primary mass allowed them to vibrate when the system was excited. A low 
amount of mechanical damping would allow for more electrical damping, giving bet- 
ter energy harvesting. 
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With the apparatus defined, the interactions between the mechanical and 
electrical systems were explored. From Newton’s second law the equations of mo- 
tion for the system were defined. Starting from a simple single coil approach, the 
relationship between the changing magnetic fields from the oscillating magnets to the 
fixed coils was defined in terms of relative velocity. This definition included a trans- 
duction factor 𝑘𝑡 , an essential component linking the electrical and mechanical sys- tems. The transduction factor was then used to define the electrical damping, in- 
duced coil voltage and current. 

 

 

System parameter identification was conducted starting with the primary sys- 
tem, using tradition linear identification methods. The next step was to determine 
the transduction factor. Using the software FEMM, the magnetic fields of the mag- 
nets were estimated and exported to Matlab. The radial component of the magnetic 
flux density was integrated over the area of a coil for different discrete placements 
along the entire length of the magnet. Two locations were found to have optimal 
𝑘𝑡    values, corresponding to the ends of the magnets, determining where the coils should be placed when the system is at rest. Because the coils were connected in 
series such that the voltages were summed, the transduction factor was then dou- 
bled to represent the effect of both coils. It was also found that the transduction 
factor is not constant, and changes with respect to the relative displacement. It was 
argued that the transduction factor could be considered as constant, due to the fact 
that the regions were 𝑘𝑡    was low corresponded to low relative velocity.

 
The stiffness and mechanical damping of the NES were then determined 

through the restoring force surface method. Exciting the entire system with a slowly 
modulated harmonic excitation, the force at every recorded time instant was approx- 
imated. Also knowing the displacement and velocity at every time instant, a 3- 
dimensional averaged force surface was constructed for the displacement and veloci- 
ty of the NES. The stiffness of the NES was found to have a strong nonlinearity 
that was nearly cubic, while having a low linear stiffness. The mechanical damping 
of the NES was found to be very low. The restoring force surface method was 
then extended to the primary system, the results matching primary parameters and 
verifying the method. Connecting the coils to the load resistor, the same procedure 
was conducted for the NES to determine the effect of the electrical damping. The 
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results indicated a good match to the FEM results. Combining all of the system 
parameters resulted in a complete system model, describing the equations of mo- 
tions for the mechanical system and the electrical system. 

 

 

The transient system response was studied analytically, where it was shown 
that there is an initial energy threshold for the NES to be engaged. If the initial 
energy threshold was not met the system response was dominated by the primary 
system and vibration absorption by the NES was minimal. The best vibrational ab- 
sorption results occurred when the initial energy threshold was just passed, resulting 
in a nonlinear beating and good targeted energy transfer(TET). The nonlinear 
beating induced quick energy exchanges between the primary system and NES, 
which must be passed through the NES damping, quickly reducing vibrational ener- 
gy. At higher initial energy levels, the nonlinear beating was reduced and the sys- 
tem entered into a 1:1 resonance. During 1:1 resonance the phenomenon of TET 
was easily visualized, as seen in the percentage of instantaneous energy within the 
NES plots, where vibrational energy was localized to the NES over the duration of 
the response. The energy being released back to the system once the majority was 
dissipated. The robustness of the system was then explored by altering the primary 
systems mass and stiffness. The NES having no linear stiffness was able to self- 
tune and reduce vibrations for despite these changes. 

 

 

The frequency energy relationship of the system was then explored by ex- 
amining the nonlinear normal modes of the underlying Hamiltonian system. Using the 
method of complexification, the amplitudes of the undamped system were defined 
with respect to a dominant frequency. Knowing the amplitudes of the system, the 
energy for different periodic orbits could be defined, giving the two so-called sym- 
metric backbone curves S11±. The initial energy threshold could be visualized as 
the cusp of the S11- curve. A wavelet transform was applied to the four initial 
simulations, allowing for the calculation of the frequencies and energy at each mo- 
ment in time. These were then superimposed on the backbone curves. These re- 
vealed the nature of the nonlinear beating phenomenon and its dependence on ini- 
tial energy. 

 

 

The effect of electrical damping and the potential for energy harvesting was 
determined. For higher initial energy levels, the vibration in the primary system 
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could be reduced by increasing the amount of damping, or reducing the load re- 
sistance. This increase in vibration suppression had the effect of reducing the 
amount of power available for harvesting. Comparing the percentage of initial energy 
dissipated through electrical damping and the percentage of initial energy consumed 
by the load resistor, a nondimensional term was found relating the two. It was 
found that the optimal load resistance would vary with the initial energy. Fortunately 
the optimal values were at high damping levels, therefore striking a balance be- 
tween vibration suppression and energy harvesting. 

 

 

The harmonically excited response analysis utilized a modified classic pertur- 
bation method. Based upon the method of multiple scales, the analysis included two 
harmonic balances to capture the dynamics of the system, giving 4 coupled highly 
nonlinear equations describing the amplitudes and phases of the primary system and 
the relative displacements at any excitation frequency. The equations not only de- 
scribed the amplitudes and phases, but also indicated when the system would ex- 
perience strongly modulated responses through Hopf bifurcations, as well as the ex- 
istence of multiple solutions and response stability. The stability of these equations 
must be regarded as a divergence from periodic solutions. The equations were then 
validated by numerical integration of original equations at points of stability. 

 

 

Two types of responses were identified and categorized; high and low exci- 
tation levels. The distinction between these two responses was whether the system 
would be attracted to a high level amplitude in the lower frequency range. For low 
excitation levels, the higher amplitude response manifests as a closed island re- 
sponse, with no connection to low amplitude response for all frequencies. It was 
found that when this island is unconnected, it is an unattainable response, verified 
through numerical integration with various initial conditions. 

 

 

A method for determining when the high amplitude island would become re- 
alizable was proposed. Each of the high and low excitation levels exhibit a peak 
amplitude frequency. By doing a continuation analysis at that frequency, for the 
displacement transmissibility ration and excitation amplitude, the excitation amplitude 
where the higher response becomes dominant can be identified. A safe excitation 
amplitude was defined for the low response, and the value was found to be de- 
pendent on damping. 
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In the case of all low excitation amplitudes, vibration damping is excellent, 
having broad band vibration suppression. For the high excitation amplitudes the ef- 
fectiveness of the NES is minimized, but only in terms of broad band vibration ab- 
sorption. With the high amplitude response realized, a peak emerges where no vi- 
bration attenuation occurs, that is slightly shifted from the primary systems natural 
frequency. Depending on the level of amplitude, there may be regions that exhibit 
excellent vibration suppression, limiting the useful range of the NES. 

 

 

Regardless of which excitation category the system falls into, one fact re- 
mains; that in all cases the NES can produce useable power. The load resistance 
can then be selected to change the energy output performance of the system. 
Lower load resistances would yield higher results, but would have a less effective 
broadband harvesting, while higher load resistances could potentially generate more 
power at higher frequencies, but would be susceptible to the jump phenomenon, 
which would give lower power outputs. 

 

 

The transient performance of the system was then tested, performed in the 
same manner as the analytic simulations. The results had good agreement with an- 
alytic results. The optimal initial energy corresponded to the analytically derived one, 
and the NES underwent nonlinear beating giving good vibration suppression. At 
greater initial energies the NES exhibited TET and 1:1 resonance, giving comparable 
results to the simulations. The wavelet transform was applied to the recorded re- 
sponses and were found to be attracted to the S11+ backbone curve, as predicted 
by the analysis of the nonlinear normal modes. The frequency energy plots also 
indicated that the actual linear stiffness may be higher than the one found through 
the surface restoring force method. The ability to harvest transient vibrational energy 
proved to be possible, with measured results being approximately 15% less than 
predicted simulations. 

 

 

Testing the system under harmonic excitation proved difficult. The goal of in- 
ducing the low excitation amplitude response was not achievable due to apparatus 
limitations. The results for an equivalent low excitation amplitude was interpreted as 
a mix of high and low excitation response. A shifted peak was observed, signifying 
a high excitation amplitude, but the displacement ratio was much lower, a quality of 
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the low excitation amplitude. Although not matching the analytic results, the perfor- 
mance was excellent, the NES reducing vibrations in a broadband manner. Increas- 
ing the applied shaker force, the results matched the analytic results very well. The 
responses showed a high amplitude shifted peak and vibration attenuation in some 
frequency regions. 

 

 

The analysis and testing have shown that an energy harvesting nonlinear en- 
ergy sink is attainable. Furthermore, the design presented in no way impedes the 
function of the NES, it merely harvests the dissipated vibrational energy; elegant 
due to its simplicity. In addition to its simplicity, the system is robust, able to 
compensate for changes in system parameters. 

 

 

Future work may explore many interesting features of this system. This sys- 
tem was constructed without any tuning, as the system has the ability to self-tune 
due to the lower linear stiffness. For the transient response, if a repeatable initial 
condition is known, the system may be optimized so that the nonlinear beating 
phenomenon is always engaged. The same applies for the harmonically excited re- 
sponse. If the excitation amplitude is known, a method to optimizing the NES may 
be developed so that the possibility of the high amplitude branches is never real- 
ized. 

 

 

The system may also be used as semi-active smart structure. The electrical 
system has the interesting ability to quickly change the damping by changing load 
resistance. Utilizing digitally controllable resistors a control scheme may be imple- 
mented that can maximize the vibrational absorption and energy harvesting abilities. 



113  

 
 
 
 
 
 
 
 
 
 
 
 

References 
 

 
 
 

[1] C. R. Fuller, S. J. Elliott and P. A. Nelson, Active Control of Vibration. Lon- 
don; San Diego: Academic Press, c1996. 

 
[2] I. Maciejewski, "Control system design of active seat suspensions," Journal 

of Sound and Vibration, vol. 331, pp. 1291-1309, 2012. 
 

 

[3] W. Sun, J. Li, Y. Zhao and H. Gao, "Vibration control for active seat sus- 
pension systems via dynamic output feedback with limited frequency character- 
istic," Mechatronics, vol. 21, pp. 250-260, 2011. 

 

[4] D. York, X. Wang and F. Gordaninejad, "A new MR fluid-elastomer vibration 
isolator," Journal of Intelligent Material Systems and Structures, vol. 18, pp. 
1221-1225, 2007. 

 

[5] Y. Sun, "Control of torsional rotor vibrations using an electrorheological fluid 
dynamic absorber." Journal of Vibration Control, vol. 17, pp. 1253-1264, 
2011. 

 

[6] D. J. Inman, Engineering Vibration. Upper Saddle River, N.J.: Pearson Pren- 
tice Hall, 2008. 

 
[7] J. P. Den Hartog, Mechanical Vibrations. New York: McGraw-Hill, 1956. 

 

[8] A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations. New York ; Toronto: 
Wiley, 1979. 



114  

[9] A. F. Vakakis and O. Gendelman, "Energy pumping in nonlinear mechanical 
oscillators: Part II - Resonance capture," Journal Of Applied Mechanics- 
Transactions Of The ASME, vol. 68, pp. 42-48, 2001. 

 
[10] O. Gendelman, L. I. Manevitch, A. F. Vakakis and R. M'Closkey, "Energy 

pumping in nonlinear mechanical oscillators: Part I - Dynamics of the under- 
lying Hamiltonian systems," Journal Of Applied Mechanics-Transactions Of The 
ASME, vol. 68, pp. 34-41, 2001. 

 
[11] E. Gourdon, C. H. Lamarque and S. Pernot, "Contribution to efficiency of 

irreversible passive energy pumping with a strong nonlinear attach- 
ment," Nonlinear Dynamics, vol. 50, pp. 793-808, 2007. 

 
[12] T. P. Sapsis T.P., A. F. Vakakis A.F., O. V. Gendelman O.V., L. A. 

Bergman L.A., G. Kerschen and D. D. Quinn D.D., "Efficiency of targeted 
energy transfers in coupled nonlinear oscillators associated with 1:1 resonance 
captures: Part II, analytical study," Journal of Sound and Vibration, vol. 325, 
pp. 297-320, 2009. 

 
[13] D. Quinn, O. Gendelman, G. Kerschen, T. P. Sapsis, L. Bergman and A. 

F. Vakakis, "Ef fil-ciency of  target 

lators associated with 1:1 resonance captures: Part I," Journal of Sound and 
Vibration, vol. 311, pp. 1228, 2008. 

 
[14] A. F. Vakakis, O. V. Gendelman, L. A. Bergman, D. M. McFarland, G. 

Kerschen and Y. S. Lee, Nonlinear Targeted Energy Transfer in Mechanical 
and Structural Systems. Toronto: Springer 2008. 

 

[15] T. Nguyen and S. Pernot, "Design criteria for optimally tuned nonlinear energy 
sinks—part 1: transient regime," Nonlinear Dynamics, vol. 69, pp. 1-19, 
2012. 

 
[16] O. V. Gendelman, Y. Starosvetsky and M. Feldman, "Attractors of harmoni- 

cally forced linear oscillator with attached nonlinear energy sink I: Description 
of response regimes," Nonlinear Dynanmics, vol. 51, pp. 31-46, 2008. 



115  

[17] G. Gatti and M. J. Brennan, "On the effects of system parameters on the 
response of a harmonically excited system consisting of weakly coupled non- 
linear and linear oscillators," Journal of Sound and Vibration, vol. 330, pp. 
4538-4550, 2011. 

 
[18] G. Gatti, I. Kovacic and M. J. Brennan M.J., "On the response of a har- 

monically excited two degree-of-freedom system consisting of a linear and a 
nonlinear quasi-zero stiffness oscillator," Journal of Sound and Vibration, vol. 
329, pp. 1823-1835, 2010. 

 
[19] E. Gourdon, N. A. Alexander, C. A. Taylor, C. H. Lamarque and S. Pernot, 

"Nonlinear energy pumping under transient forcing with strongly nonlinear cou- 
pling: Theoretical and experimental results," Journal of Sound and Vibration, 
vol. 300, pp. 522-551, 2007. 

 
[20] G. Kerschen, D. M. McFarland, J. J. Kowtko, Y. S. Lee, L. A. Bergman 

and A. F. Vakakis, "Experimental demonstration of transient resonance capture 
in a system of two coupled oscillators with essential stiffness nonlineari- 
ty," Journal of Sound and Vibration, vol. 299, pp. 822-838, 2007. 

 
[21] G. Kerschen, J. J. Kowtko, D. M. Mcfarland, L. A. Bergman and A. F. 

Vakakis, "Theoretical and Experimental Study of Multimodal Targeted Energy 
Transfer in a System of Coupled Oscillators," Nonlinear Dynamics, vol. 47, 
pp. 285-309, 2007. 

 
[22] D. M. McFarland, L. A. Bergman and A. F. Vakakis, "Experimental study of 

non-linear energy pumping occurring at a single fast frequency," International 
Journal of Nonlinear Mechanics, vol. 40, pp. 891-899, 2005. 

 
[23] X. Jiang, D. M. McFarland, L. A. Bergman and A. F. Vakakis, "Steady 

State Passive Nonlinear Energy Pumping in Coupled Oscillators: Theoretical 
and Experimental Results," Nonlinear Dynamics, vol. 33, pp. 87-102, 2003. 

 
[24] S. Roundy, P. K. Wright and J. M. Rabaey, Energy Scavenging for Wireless 

Sensor Networks: With Special Focus on Vibrations. Boston: Kluwer Academic, 
2004. 



116  

[25] A. Erturk and D. J. Inman, "Piezoelectric energy harvesting," pp. 392, 2011. 
 

[26] S. Hurlebaus and L. Gaul, "Smart structure dynamics," Mechanical Systems 
and Signal Processing, vol. 20, pp. 255-281, 2006. 

 
[27] M.N. Fakhzan, "Harvesting vibration energy using piezoelectric material: Mod- 

eling, simulation and experimental verifications," Mechatronics, 2012. 
 
[28] S. Priya, "Advances in energy harvesting using low profile piezoelectric trans- 

ducers," Journal Of Electroceramics, vol. 19, pp. 167-184, 2007. 
 
[29] S. Saadon and O. Sidek, "A review of vibration-based MEMS piezoelectric 

energy harvesters," Energy Conversion and Management, vol. 52, pp. 500- 
504, 2011. 

 
[30] B.P. Mann and N.D. Sims, "On the performance and resonant frequency of 

electromagnetic induction energy harvesters," Journal of Sound and Vibration, 
vol. 329, pp. 1348-1361, . 

 
[31] D. Spreemann, Y. Manoli, "Electromagnetic Vibration Energy Harvesting Devic- 

es," New York: Springer, 2012. 
 

[32] B. P. Mann and N. D. Sims, "Energy harvesting from the nonlinear oscilla- 
tions of magnetic levitation," Journal of Sound and Vibration, vol. 319, pp. 
515-530, 2009. 

 
[33] Yang Zhu, J. W. Zu and L. Guo, "A Magnetoelectric Generator for Energy 

Harvesting From the Vibration of Magnetic Levitation," IEEE Transactions on 
Magnetics, vol. 48, pp. 3344-3347, 2012 NOV., 2012. 

 

[34] J. Liu and K. Liu, "A tunable electromagnetic vibration absorber: Characteri- 
zation and application," Journal of Sound and Vibration, vol. 295, pp. 708- 
724, 2006. 

 

[35] N. Zhou and K. Liu, "A tunable high-static–low-dynamic stiffness vibration 
isolator," Journal of Sound and Vibration, vol. 329, pp. 1254-1273, 2010. 



117  

[36] A. Carrella, M. J. Brennan, T. Waters and K. Shin, "On the design of a 
high-static-low-dynamic stiffness isolator using linear mechanical springs and 
magnets," Journal of Sound and Vibration, vol. 315, pp. 712-720, 2008. 

 

[37] L. Zuo, "Design and characterization of an electromagnetic energy harvester 
for vehicle suspensions," Smart Materials and Structures, vol. 19, 2010. 

 
[38] H. A. Wheeler, "Simple Inductance Formulas for Radio Coils," Proceedings of 

the Institute of Radio Engineers, vol. 16, pp. 1398-1400, 1928. 
 
[39] Finite Element Method Magnetics. 2013. http://www.femm.info/wiki/HomePage 

 
[40] S. F. Masri and T. K. Caughey, "A Nonparametric Identification Technique for 

Nonlinear Dynamic Problems," Journal of Applied Mechanics, vol. 46, pp. 
433-447, June 1, 1979. 

 
[41] S. F. Masri, H. Sassi and T. K. Caughey, "Nonparametric Identification of 

Nearly Arbitrary Nonlinear Systems," Journal of Applied Mechanics, vol. 49, 
pp. 619-628, September 1, 1982. 

 
[42] K. Worden, "Data processing and experiment design for the restoring force 

surface method, part I: integration and differentiation of measured time da- 
ta," Mechanical Systems and Signal Processing, vol. 4, pp. 295-319, 7, 
1990. 

 
[43] K. Worden, "Data processing and experiment design for the restoring force 

surface method, part II: Choice of excitation signal," Mechanical Systems and 
Signal Processing, vol. 4, pp. 321-344, 7, 1990. 

 
[44] D. McFarland, G. Kerschen, J. Kowtko, Y. Lee, L. Bergman and A. Vaka- 

kis, "Experimental investigation of targeted energy transfers in strongly and 
nonlinearly coupled oscillators," Journal of the Acoustical Society of America, 
vol. 118, pp. 791-799, 2005. 

http://www.femm.info/wiki/HomePage


118  

[45] G. Kerschen, "VTT benchmark: application of the restoring force surface 
method," Mechanical Systems and Signal Processing, vol. 17, pp. 189-193, 
2003. 

 
[46] N. G. Stephen, "On energy harvesting from ambient vibration," Journal of 

Sound and Vibration, vol. 293, pp. 409-425, 2006. 
 
[47] O. V. Gendelman, T. Sapsis, A. F. Vakakis and L. A. Bergman, "Enhanced 

passive targeted energy transfer in strongly nonlinear mechanical oscilla- 
tors," Journal of Sound and Vibration, vol. 330, pp. 1-8, 2011. 

 
[48] T. Pham, S. Pernot and C. Lamarque, "Competitive energy transfer between 

a two degree-of-freedom dynamic system and an absorber with essential 
nonlinearity," Nonlinear Dynamics, vol. 62, pp. 573-592, 2010. 

 
[49] R. Bellet, B. Cochelin, P. Herzog and P. -. Mattei P.-O., "Experimental 

study of targeted energy transfer from an acoustic system to a nonlinear 
membrane absorber," Journal of Sound and Vibration, vol. 329, pp. 2768- 
2791, 2010. 

 
[50] O. V. Gendelman, E. Gourdon and C. H. Lamarque, "Quasiperiodic energy 

pumping in coupled oscillators under periodic forcing," Journal of Sound and 
Vibration, vol. 294, pp. 651-662, 2006. 

 

[51] Y. Starosvetsky and O. V. Gendelman, "Attractors of harmonically forced line- 
ar oscillator with attached nonlinear energy sink. II: Optimization of a nonlinear 
vibration absorber," Nonlinear Dynamics, vol. 51, pp. 47-57, 2008. 

 

 

[52] A. Luongo and D. Zulli, "Dynamic analysis of externally excited NES- 
controlled systems via a mixed Multiple Scale/Harmonic Balance algo- 
rithm," Nonlinear Dynamics, vol. 70, pp. 2049-2061, 2012. 

 

[53] MATCONT and CL MATCONT: Continuation toolboxes in Matlab. 2013. 
http://www.matcont.ugent.be/ 

http://www.matcont.ugent.be/


119  

[54] Y. Starosvetsky and O. V. Gendelman, "Response regimes of linear oscillator 
coupled to nonlinear energy sink with harmonic forcing and frequency detun- 
ing," Journal of Sound and Vibration, vol. 315, pp. 746-765, 2008. 

 

[55] I. Grinberg, V. Lanton and O. V. Gendelman, "Response regimes in linear 
oscillator with 2DOF nonlinear energy sink under periodic forcing," Nonlinear 
Dynamics, vol. 69, pp. 1889-1902, 2012. 



120  

 
 
 
 
 
 
 
 
 
 

Appendix A 
 

 
 
 

Four equations describing the amplitudes and phases of the system under harmonic 
excitation, returned to the main system parameters. 

 

 

(A.1) 
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