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Abstract

Magnetic resonance imaging guided high intensity focused ultrasound is a po-
tential non-invasive treatment which uses constructive interference patterns to con-
centrate ultrasound energy generated by a piezoelectric (ferroelectric) transducer to
thermally ablate affected tumor and cancerous tissues. However, currently used actu-
ators (ultrasound generators) suffer from heating of the ferroelectric materials during
operation which causes the dampening of ultrasound by changing the effective thick-
ness frequency relationship and/or depolarization of the material. The excess thermal
energy also contributes to the shorter heating and longer cooling cycle of operation
which in turn results in higher treatment cost because of the long operating time.
Such heating is caused by an energy loss (dielectric dissipation) that takes place
when an alternating electric field is applied to the ferroelectric material to generate
the ultrasound waves. The loss is related to the area of the hysteresis loop of the
material. The project aims at establishing a framework to reduce the dielectric dis-
sipation in ferroelectric materials during their operation as ultrasound transducers.
At the initial stage, to study the associated material characteristics, first principle
approaches have been adapted as a method in our research rather than experimental
methods which would consume more efforts in terms of equipment, money and time.
For the purpose of this study, an all electron density functional package WIEN2k is
being used along with the advantage of high performance computing. In order to
determine the ferroelectric parameters which are related to the polarization based
property of materials, an additional software package, BerryPI has been developed

in the framework of our research. The switching of ferroelectric materials which is a
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macroscopic effect has been studied at the atomistic level. A microscopic interpre-
tation has been made on the growth of domains which is an essential contributor to
the ferroelectric hysteresis loss. The findings of the study can be used as a model to
assist in the screening of potential ferroelectric materials for ultrasound transducers.
In addition, an energy efficient method to apply the electric field has been proposed
that will drive the ferroelectric crystal with optimum power and thus, with reduced

dielectric dissipation.
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Chapter 1

Introduction

1.1 Magnetic resonance guided high intensity fo-

cused ultrasound (MRgFUS)

The recent introduction of ultrasound energy to treat tumors and cancer is being
considered as a potential candidate for non invasive surgery [1]. The minimal invasive
treatment is known as Magnetic resonance guided high intensity focused ultrasound
(MRgFUS) [2]. The treatment utilizes the guidance of magnetic resonance imaging
(MRI) to localize the target tumor and monitor the temperature profile of the body
during the surgery. MRgFUS relies on the basic principles of conventional ultrasound
which involves the generation of acoustic waves by vibrating a piezoelectric material
(Fig. 1.1(b)) that can propagate harmlessly through any living tissue. During the
surgery, a sufficiently high energy ultrasound beam is brought into a narrow focus at
the tumor site (Fig. 1.1(a)). The acoustic energy is then converted into a thermal

energy by mechanical absorption at the tissue causing a local rise in temperature



at the tumor site to cause a necrosis (a lesion) [1]. The energy deposition is done
without causing any bio-effects to the adjacent healthy tissue. The ability to treat
tumor tissue distant from the ultrasound source makes the treatment an attractive
option for non invasive surgery.

The thermal ablation process requires controlled monitoring in order to prevent
the overheating of healthy tissue. MRI also has the capability of mapping the tem-
perature profile and spatial distribution of tissue [3]. This thermal mapping feature

is utilized to monitor the thermal ablation process during the treatment(Fig. 1.1(c)).

Figure 1.1: Schematics of MRgFUS treatment. (a) Positioning of the patient for
treating a tumor in uterine fibroid. (b) The ultrasound transducer which applies the
ultrasound energy from underneath the patient. (¢) The thermal ablation process is
being monitored by MRI (C)Department of Radiology, Brigham and Womens Hospital,

Harvard Medical School, Boston, Massachusetts [4]



1.2 Basic principles

1.2.1 Therapeutic action

Tissue damage by ultrasound takes place mainly through the conversion of mechanical
energy into heat. When the ultrasound beam is focused at the tumor tissue, the energy
is converted to heat. Nevertheless, the local temperature rise takes place only if the
rate of heating is higher than the heat dissipation rate. MRgFUS aims at causing an
irreversible cell death through coagulative necrosis. This is possible by heating the
tissue above a threshold temperature of 56°C for 1 second when thermal toxicity of the
cells takes place [1]. Tissue heating is also possible through acoustic cavitation which
causes cell necrosis by employing the combined effect of mechanical stress and thermal
injury. Here, application of ultrasound causes the tissue to vibrate and subjects
the molecular structure to alternative compression and rarefaction. Gas bubbles are
formed during the rarefaction stage which either oscillate in size or collapse rapidly

causing mechanical stress and a rise in temperature [1].

1.2.2 Ultrasound generation

Ultrasound is sound waves with a frequency greater than the upper limit of human
audible range (>20kHz). It propagates in a medium via the vibration of molecules.
First, sound waves are generated from a source which initiates vibration. The vi-
bration is then transferred inside the medium to the neighboring molecules. As a
result, compression and rarefaction of the medium take place. Compression refers to

the state when molecules are pressed or forced together and rarefaction implies the



molecules being weakly bound or free to move (Fig. 1.2). Molecular vibration can
take place in both longitudinal (longitudinal wave) and transverse (shear wave) di-
rection. For therapeutic ultrasound purposes, the practice is mostly concentrated in

the longitudinal wave, as the shear wave gets attenuated quickly in soft tissues [5-8|.

wavelength

pressure

h r_!Igh pressure wavelength

+AP

:
dislance

—AP-

C = compresslon low pressure
y B = rarefaction

Figure 1.2: Compression and rarefaction of sound waves as they propagate through

a medium (©)Andrew Simmons [9]

1.2.3 Ultrasound transducer

Ultrasonic transducer is an energy conversion device that converts electrical energy
into mechanical energy by the piezoelectric effect. The transducer is operated at the
resonance frequency of the piezoelectric material where it demonstrates a very high
response to the applied field [10]. The piezoelectric material vibrates by means of
rapid contractions and expansions in response to the electrical energy supplied by an

alternating electric field. As a consequence, compression and acoustic waves (Fig. 1.2)



are generated [11].

1.2.4 Piezoelectric effect

The phenomenon of piezoelectricity was first discovered by Jacques and Pierre Curie
in 1880 when they observed that certain crystals can generate an electric potential [12]
under the influence of mechanical stress. Soon after, in 1881 an inverse piezoelectric
effect was derived mathematically by Lippman [13] using the thermodynamic princi-
ples which was confirmed experimentally by the Curies [14] in the same year. The
latter effect is termed as indirect or inverse piezoelectric effect and the former one as
direct piezoelectric effect. Such a phenomenon was observed only on certain crystals
like tourmaline, quartz, topaz, cane sugar and Rochelle salt in a direction normal to
the polar axis only. Based on these observations, it was concluded that the piezo-
electric effect can be explained by the symmetry of the crystalline materials and only
polar crystals can demonstrate piezoelectricity. Because of its unique behavior, the
discovery of piezoelectric materials created great interest among researchers leading
these materials to find applications in underwater sonar, medical imaging instruments,
car accelerometers, etc [15, 16].

When a perturbation is applied by means of a mechanical stress (direct piezoelec-
tric effect), the resultant mechanical strain alters the equilibrium charge distribution
by the rearrangement of charges and constituent atoms. The redistribution of charges
produces a net electric potential in the crystal which is expressed by a measurable
quantity called polarization. Similarly, during the indirect or converse piezoelectric

effect when an electric field is applied to the material, the charge distribution is rear-



(a) (b)

Figure 1.3: (a) A Piezoelectric crystal without any perturbation (mechanical stress or
electric field). (b) An external electric field (indirect piezoelectric effect) or mechan-
ical strain (direct piezoelectric effect) will bring the crystal in a piezoelectric state

depending on the nature of perturbation

ranged in accordance with the direction and magnitude of the applied electric field.
To accommodate this perturbation, a net resultant strain is produced inside the ma-
terial. However, ferroelectric materials, which are a special class of the piezoelectric
group, demonstrate a net polarization under certain temperature conditions without

any external perturbation.

1.2.5 Ferroelectricity

Although several crystal classes exhibit a piezoelectric effect, ferroelectric materials
are most widely studied due to their exceptional ability of switching between equi-
librium states [17-21]. Ferroelectricity was discovered in 1920 while investigating

the piezoelectric properties of Rochelle salts [22]. It was observed that these materi-



als demonstrate anomalous dielectric behavior including the presence of a hysteresis
(Fig. 1.4) between the applied electric field and the polarization. And also, a sudden

change occurs in their piezoelectric behavior under certain temperature conditions.

Figure 1.4: The ferroelectric hysteresis showing the polarization response of a ferro-

electric material to the applied electric field £

A ferroelectric material is described as an insulating system having multiple equiv-
alent but opposite states of nonzero polarization in the absence of any electric field.
The non zero polarization is defined as the spontaneous polarization. Such mul-
tiple spontaneous polarization states can also be switched amongst each other under
the influence of an external electric field. Another interesting property that ferro-
electric materials manifest is their ability to inherit several stable structural phases
under different temperature conditions. In most common cases, their structural ar-
rangement holds a ferroelectric phase below a characteristic temperature called the

Curie temperature, T.. From the structural symmetry perspective, the material con-



tains lower number of symmetries in the ferroelectric phase with the absence of any
inversion symmetry, and as a result, the net charge distribution produces a polar
distortion of the structure to generate a nonzero spontaneous polarization. However,
if the material is brought to a temperature higher than the Curie temperature, the
structure undergoes a transformation from the ferroelectric to the paraelectric state.
The paraelectric state is characterized by the presence of a higher degree of symmetry
inside the structure balancing the charge distribution in a manner to maintain a zero
spontaneous polarization [23, 24].

Since, ferroelectricity is observed in the piezoelectric crystal class, the material
must also be polar below the Curie temperature. However, not all polar crystals have
the ability to switch their polarization between equivalent and opposite states (i.e.,
the ability to switch between equivalent atomic configurations). To be considered
ferroelectric, the crystal must also demonstrate the switching phenomenon between
nonzero polarization states [25]. Figure 1.5(a) shows a 2-dimensional view of a per-
ovskite elementary unit cell in the paraelectric phase. At this stage, the distribution
of atoms is highly symmetric which gives rise to a symmetric charge distribution with
no net dipole. As a result, the net charge distribution results in a structure with
zero polarization. On the other hand, on Fig. 1.5(b), the movement of atoms from
their equilibrium position lowers the symmetry and the net charge distribution results
in a finite dipole moment along negative 7Z axis. As a consequence, a spontaneous
polarization in that direction confirms that the structure is in a ferroelectric phase.
Furthermore, it is also evident from Fig. 1.5(c) that an equivalent but opposite fer-
roelectric polarization state of the distortion in Fig. 1.5(b) is possible which leads

to an equal spontaneous polarization in the positive Z direction. Such a structure



represents the equivalent but opposite ferroelectric state.

According to the conventional theory, the ferroelectric switching phenomenon
takes place between the polarization states shown in Fig. 1.5(b) and (c) with an
intermediate transition through the paraelectric state (Fig. 1.5(a)). However, achiev-
ing such a switching with a structural change requires an external energy to guide
the process. For ferroelectric materials, the external energy requirement is given by
the energy barrier that the material needs to overcome to undergo the transformation
from the ferroelectric to the paraelectric state. The corresponding energy profile as
a function of polarization takes a double well shape as shown in Fig. 1.5(d). The
external guiding energy is supplied by an alternating electric field which lowers the

energy barrier and favors switching between polarization states.

1.3 Material parameters

1.3.1 Piezoelectric charge constant, d;;

The piezoelectric charge constant, d;; measures the response of the piezoelectric (fer-
roelectric) material to an applied perturbation. For direct piezoelectric effect, it is
defined by the polarization, P generated in a particular direction per unit of a direc-

tional mechanical stress, T applied to the material.

0P,
- 1.1
d;j 5T, (1.1)

Where, subscript ¢ and j denotes the corresponding directions of response and per-
turbation. For inverse piezoelectric effect, the charge constant is defined as the me-

chanical strain, S produced in a particular direction by an electric field, £ applied in



(d)

Figure 1.5: Schematics of two dimensional ferroelectric distortion (a) represents a
paraelectric state with symmetric charge distribution in all directions which will bal-
ance out to give a zero polarization. As the material undergoes a ferroelectric dis-
tortion the net charge distribution gives a non zero spontaneous polarization which
can be present in either positive (arrow up) state (b) or negative (arrow down) state
(c). Ferroelectric switching between the two states of polarization ((a) and (b)) takes

place by overcoming an energy barrier
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certain direction as depicted by the following expression,

5S;
5E;

diy = (1.2)

1.3.2 Electromechanical coupling factor, k7,

The electromechanical coupling coefficient indicates the energy conversion efficiency of
the material. For inverse piezoelectric effect, it is the ratio between stored mechanical

energy and total input electrical energy.

1.3.3 Dielectric constant, ¢;;

Dielectric constant is a measure of the electrical energy stored in the material in
response to an applied field, £. The electrical energy storage is related to change in
polarization with per unit electric field applied leading to the following expression for

dielectric constant,

dPp;

5ij = 61J + 8072
J

(1.3)
where, 9;; is the Kronecker delta function which takes a value of 1 only when i = j.

For @ # j, d;; is zero and ¢ is the permittivity in vacuum.

1.3.4 Dielectric dissipation factor, tané

Dielectric dissipation factor expresses the parasitic loss that results by subjecting a
material to alternating electric field. It is a measure of dielectric loss of the materials.
As shown in Fig. 1.6, when an electric field, £ is applied to an ideal dielectric

material, the resultant charging current find itself out phase by 90° with the applied

11



electric field. However, in a real ferroelectric material, the current also has a loss
component in phase with applied electric field and the net resultant current makes an
angle 0 with the ideal charging current. This loss current is a result of the dissipation
of energy as heat. This loss can be interpreted using the parameter tand which is the
ratio of loss current, I” and charging current, I’. [26].

”

tand = — (1.4)

Figure 1.6: The behavior of current in response to an applied electric field £, where

I represent real current with a deviation from ideal 90° phase between I and V

For ultrasound generation, the electric field is applied in the direction of ferro-
electric distortion, and the response of the material is also measured in the same
direction. The associated properties are denoted using the subscript 33 (d33, k33 for

example) Table 1.1 shows the piezoelectric parameters in the ferroelectric distortion

12



direction for PZT-5H, the material that is currently used for MRgFUS treatment

using ultrasound.

Table 1.1: PZT ferroelectric properties
Crystal | ds3(pC/N) k; ess/eo | tand(%)

PZT-5H | 593 [27] | 0.57 [28] | 3400 [27] | 0.02 [28]

1.4 Current challenge

Despite being a potentially non-invasive treatment, MRgFUS suffers from certain
drawbacks. One of the major challenges from the transducer point of view that arises
during the operation of an ultrasound transducer is the overheating of the ferroelectric
material by excessive thermal build up. Thermal rise can cause the expansion of the
ferroelectric materials, and as a result, the effective thickness-resonance frequency
relationship is not maintained which results in a dampening of the ultrasound waves.
In addition, excessive thermal build up can cause depolarization of the ferroelectric
material if the temperature approaches the Curie temperature of the material. The
amount of thermal rise increases with an increase in the applied input electrical energy.
Such thermal rise thus limits the application of MRgFUS to treat tumors buried deep
in the tissue. The limitation arises because treatment of such a tumor requires an
ultrasound beam of very high input electrical energy so that it can propagate deep
inside the thick layer of tissue. However, excessive thermal build up at high input

electrical power makes such a treatment unfeasible. Also, this thermal build up

13



during the sonication in the near field region of tissue can cause much discomfort to
the patient because of their exposure close to the transducer.

Another major drawback in MRgFUS treatment is high treatment cost. The ma-
jority of the cost comes from the of MRI [29] which costs about $1000 per hour. For
a typical MRgFUS treatment, the operation lasts more than 2 — 3 hours which makes
the treatment cost more than $3000 in addition to other miscellaneous costs of treat-
ment. The longer operation time is required because of a delay between sonication
heating pulses. The delay is caused by two major factors: (i) thermal dissipation of
the heat accumulated in the near-field region of the tissue and (ii) dissipation of the
excess heat generated in the transducer due to the dielectric dissipation. Figure 1.7
depicts a typical heating and delay cycle [30 32] applied during MRgFUS operation

which indicates a time utilization efficiency of approximately 30%.

A
O | 2040 sec 20-40 Sec 20-40 Sec
>
e
)
—
()
Q.
O 30-60 Sec 30-60 Sec
= | L e |
>

Time

Figure 1.7: Heating and delay cycle in MRgFUS treatment
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1.4.1 Dielectric dissipation by hysteresis loss

Heating of the ferroelectric material during the sonication is a fundamental material
dependant characteristic [33, 34] which is caused by the ferroelectric loss due to
dielectric dissipation inside the crystal. The loss originates from a delay in response
of the polarization in the ferroelectric material to the applied field [26]. Normally,
the operation of an ultrasound actuator involves the application of alternating electric
field to a ferroelectric material with frequency in the MHz range which implies that
the polarization reverses ~ 10% times per seconds for each switching cycle. However,
the polarization requires much longer time to attain its equilibrium state with the
electric field [26]. As a result, a lag is generated between the applied electric field
and polarization. Mathematically, in phasor representation the applied alternating

electric field has the following form [33],
£ = Ee™t (1.5)

where, & is the peak amplitude of the applied electric field. ¢ is time, and w is the
angular frequency. The resultant polarization, P with a peak polarization P, acquires

a lag of § in response taking the following form [33],
P = Pye™'™° (1.6)

As a result of this delay, the polarization vs electric field curve takes a hysteretic form
(Fig. 1.8). Under ideal conditions with no lag, the polarization will change in a linear
manner with the applied electric field as shown by the dotted line in Fig. 1.8. As a
result, there will be no hysteresis loss in such a system. The loss in the ferroelectric

material can be depicted by the shaded colored area shown in Fig. 1.8. Such energy
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Figure 1.8: Ideal switching with no energy loss assumes a linear relationship between
polarization and applied electric field(Dotted line). For ferroelectric material the

relationship between polarization and applied electric field takes a hysteresis form.

loss due to hysteresis is converted into heat and results in the heating of the materials

during the operation cycle [17, 33].

1.4.2 Research goal

Several studies have been performed on ferroelectric crystals to understand the phe-
nomenon of excessive overheating in these materials. Most of those studies have
concentrated at a macroscopic level focusing mainly on growth conditions and alloy-
ing [33-42]. Nevertheless, recent development in high performance computing has
allowed researchers to apply atomistic level simulations to understand the ferroelec-
tric overheating phenomenon at the atomic level [43-46]. Some atomistic level studies
have been performed only by considering forces acting on atoms (molecular dynamics)

which did not take all the necessary electronic interactions into consideration [47, 48].
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There has also been some studies at the atomistic level that reveal the formation of
domain walls in ferroelectric materials [49 51]. However, a limited amount of research
exists that focuses on understanding the phenomenon of switching and thus, the di-
electric dissipation at an atomistic level using a model that includes all the possible
important electronic interactions.

The central aim of this study is to reduce the excessive heating in ferroelectric
materials during MRgFUS operation. Achieving such a goal can ensure less ultra-
sound dampening, depolarization risk and driving the transducer with less input
energy demand because of the reduction in losses due to dissipation. Thermal build
up reduction will also assist in cutting down the treatment cost as a result of opti-
mized transducer cooling time. Such research can be approached from two different
directions. Establishing a basis that will serve as a method in screening of poten-
tial materials with a smaller dielectric dissipation factor, tand can be one of the
approaches. Another way this issue can be advanced is by developing a method to
operate the existing ferroelectric materials in a manner that optimizes input energy is
supplied and reduces dielectric dissipation. Both these approaches have been adopted
in the present work and will be discussed in the following chapters.

In chapter 2, we first select a suitable method that includes all the necessary inter-
actions required to advance the ferroelectric overheating issue and then we describe
the theoretical formalism behind the selected method.

In chapter 3, we report an important extension to our selected tool, WIEN2k, that
enables the calculation of polarization related physical properties of solids. We believe
that with this addition, we can further advance our goal of MRgFUS treatment with

reduced dielectric dissipation. Our extension will become a useful research tool for
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the WIEN2k community as well, which presently stands at 2,000 research groups
worldwide.

Chapter 4 deals with a full polarization reversal study over an entire structure of
BaTiOj3 using first-principles. The work captures the energetic justification for do-
main wall formation, energetically expensive nucleation phase as well as the relatively
easier propagation phase of the domain wall motion. The model opens an opportu-
nity for the computation of domain wall motion dependent properties of ferroelectric
materials using first principles. We believe our study will facilitate the design of novel
ferroelectric materials by predictive modelling of their physical properties.

In chapter 5, a 3-dimensional potential profile study between multiple possible
states of polarization has been performed. Application of an electric field on the
surface revealed the ideal polarization switching path. The study then proposes an
optimum electric field cycle that can operate the ferroelectric crystal with reduced
power which in turn will result in a significant reduction in loss and excessive heating

of the ferroelectric material.
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Chapter 2

METHOD

2.1 Selection of method

One of the goals of the project is to establish a correlation between structure and
dielectric dissipation of ferroelectric materials. Previous formability database stud-
ies [52 55] predicted a large number of possible ferroelectric compounds that can be
formed. Design of functional ferroelectric materials for a particular practical applica-
tion with the conventional trial and error approach, therefore, involves study of each
of these individual compounds separately. Such a screening process becomes challeng-
ing in terms of consumption of time and money. Also, meeting the goal of driving
a ferroelectric crystal energy efficiently requires understanding of the switching of
polarization states from an atomistic scale. Such knowledge can assist in proposing
a ferroelectric switching process that ensures a reduction in the excessive heating of
the ferroelectric material. The application of a theoretical approach to address these

issues has been highly recognized recently [43-46]. Density functional theory (DFT)
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is the most successful and widely used theoretical approach to compute electronic
properties of materials using approximate solutions of the Schrédinger equation. The
application of DFT in conjunction with crystallographic database information can fa-
cilitate the computation of the desired material properties at an atomistic level with
a reasonable balance between accuracy and scalability. Such an approach will act as
a guide in establishing a basis for reducing the dielectric dissipation of the ferroelec-
tric material. A well-established basis can then benefit experimentalists, who are the
essential contributors in any materials design process and thus speed up the process

with a higher chance of success.

2.2 Formalism of density functional theory (DFT)

A solid can be described as a system of light, negatively charged electrons and heavy,
positively charged nuclei interacting with each other. If the system contains N nuclei
each with charge Z;, then N + va Z; electromagnetic interacting particles will define
the physical properties of that system. The Hamiltonian H of the system unambigu-
ously describes these Coulombic electrostatic interactions between atomic nuclei and

electrons. It can be written as
H(R,r) =T;(R) 4+ Uy(R) + T.(r) + Uee(r) + Ui (R, 1) (2.1)

T;(R) is the kinetic energy operator for the nuclei and Uy;(R) is the potential en-
ergy operator that describes nuclei-nuclei interactions. T,(r) and Ue.(r) are the cor-
responding kinetic energy and potential energy operator for electrons, respectively.

The U (r, R) operator represents the external potential or the potential energy due to
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the interaction of electrons with the nuclei. R={R,,,n =1, ..., K'} is a set of nuclear
coordinates and r={r;,n = 1, ..., N} corresponds to the electronic coordinates.

The terms appearing in Eq. (2.1) have the following explicit form [56],

T(R) ==Y 51 -A 22)
n=1 n
K K
1 YA /62
Ui(R) = — N 2.3
(R) 8meg ;TLIZ#JR”_RW' (2.:3)
N g2 )
To(r) == Q—mOAi (2.4)
=1
] X 02
Ue(r) = — _ 2.5
(x) 8760;;|I‘i—1‘j| (25)
N K
1 Z,e?
Upe(r.R) = — - 2.6
(r ) 47'('60 ; ; |I'i — Rn| ( )

For a given system, if all the components of the Hamiltonian in Eq. (2.1) are provided,
the properties of the system can be determined by solving the corresponding many-

body Schrodinger equation,

HU(R,1) = EV(R, 1) (2.7)

where F is the energy eigenvalue and W(R,r) is the corresponding eigenstate or the
wave function.

Solving Eq. (2.7) in practice is almost impossible within full quantum mechanical
framework as it implies that both the electrons and nuclei move. One of the compli-
cations for the full treatment of Eq. (2.7) is that it requires knowledge of the locations
of the nuclei for each particular state of electron motion. The Born-Openheimer

approximation [57] was introduced to deal with this issue. This approximation
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simplifies Eq. (2.7) by considering nuclei as stationary and thus decoupling nuclei
and electron dynamics. The assumption is originated from the massiveness of the
nuclei in comparison to electrons which also implies that the nuclei are much slower
than electrons (i.e., the kinetic energy of the nuclei is negligible in comparison to the
kinetic energy of the electron). The application of the Born-Openheimer approxima-
tion to the Hamiltonian in Eq. (2.1) therefore eliminates the kinetic energy operator
for nuclei, (T;(R)). The potential energy operator for nuclei, U;(R) also disappears

as it becomes constant. The Hamiltonian thus simplifies to

Hpo(R,r) =T.(r) + Uee(r) + Ui(r, R) (2.8)

The Hamiltonian with fixed nuclei in Eq. (2.8) is much simpler than its original form
Eq. (2.1). However, for a many-electron system, it is still almost impossible to solve
the electronic wave functions with the Born-Openheimer approximation only as it
involves treating massive number of degrees of freedoms that arise from the electron-
electron interaction term in Eq. (2.8). The treatment of the term U, for an electron
in a particular state of electronic motion requires information about the locations
of all other electrons due the influence of the electron under consideration. Such
adjustment of positions by all the electrons to treat every single electron introduces a
massive number of variables in Eq. (2.8) which is almost impossible to solve without
further simplification.

Hartree in 1928 [58], proposed a theory that simplifies the electron-electron in-
teraction term in Eq. (2.8). The theory considers the interaction of electrons with
the average over potential of other electrons. The introduction of the Hartree theory

thus brought the Hamiltonian in Eq. (2.8) into a consideration in a non-interacting
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system. The potential energy due to electronic interactions according to the Hartree

theory is given by

2 /
e p(')
Uhartree = dr ) 2.9
fart 47r60/|r—r’| (29)
where p(r') is the average electron density at position r’. For a system with N

electrons, the ground-state density is expressed as,
N
pr') =) 10, (x)) (2.10)
j=1

The single-particle Schrodinger equation according to the Hartree theory takes the

following form,

h2
—%Vz + Uie(r) + UHartree(r) :| \I/Z(I') = GZ‘\IJZ‘(I') s (211)

where ¢ and j represent quantum numbers for the single-particle state.

The Hartree theory, however, is not consistent with the Pauli exclusion princi-
ple [59]. Based on the Pauli exclusion principle, a many-electron wave function must
satisfy the Schréodinger equation and be antisymmetric [59]. Although the wave func-
tion ¥ in the Hartree theory satisfy the Schrodinger equation, it is not antisymmetric.
The Hartree potential term, as a result, contains coupling between orbital ¢ and itself
as the orbital is already included in the total charge density p. However, an elec-
tron can not interact with itself. To address this shortcoming in the Hartree theory,
Fock introduced [60] an additional term in the Hartree Schrodinger equation. This
Hartree-Fock theory takes the antisymmetry of many-electron wave function fully

into account and therefore satisfies the Pauli exclusion principle:
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hQ
_%VQ + Uie(r)+UHaTtree(r) :| \Ijz(r)

N

_62 / 1 7\ * !/
e, Zl / dr m%(r) U (r) U, (r)65.0, = € Wi(r).
(2.12)

where d5,,, denotes the Kronecker delta function with o; and o; as spin orbital levels.

The total energy of the system is minimized in terms of trial wave functions using
the mean field theory which is based on Rayleigh-Ritz’s variational principle [61-
63|. The HF theory uses the Slater determinant consisting of all possible permutations
of two sets of single-particle coordinates exchanged {r;, o;}, which is antisymmetric
under exchange of any two particles, as its trial wave function. The Hartree theory
corresponds to a trial wave function which is a simple product of N single-particle
wave functions.

Application of the Hartree-Fock theory enables the computation of energies for a
static configuration of a many-electron system. However, the theory does not fully
account for the correlation among electrons (only the Pauli exclusion principle is
fulfilled). The electron correlation term becomes significant in heavily interacting
systems where Hartree-Fock theory yields unsatisfactory results, therefore, limiting
its application to the molecular systems. In addition, the electron orbitals entering
the Hartree-Fock equations in a non-local way makes it difficult to be applied to
extended systems [64]. A more powerful and modern method that addresses the issue
is called the density functional theory (DFT).

DFT is based on two theorems given by Hohenberg and Kohn in 1964 [65].

First theorem: With a trivial additive constant, the external potential U, 1is
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uniquely a functional of the electronic density. This leads to the consequence that
the ground-state energy functional is a unique functional of the ground-state density
of the system.

The first theorem states that the electronic density of a system contains as much
information as the wave function. As a consequence, any ground-state observable
quantity can be expressed as a unique functional of the electron density.

Second theorem: The ground-state energy functional is of the following from,

EUv’,e [p} = <\IJ|T6 + Uee|\11> + <\I]|Uze|\11>
(2.13)

= Fulpl + [ o) U dr
where Fpyi[p] is defined as the Hohenberg-Kohn density functional. The functional
does not contain any information about the nuclei or their locations. For a given
system, knowledge of Fyx[p] necessarily implies information on the solution of the
full many-body Schréodinger equation. It should be noted that Fpy[p] is a functional
that does not depend explicitly on the external potential but only on the electronic
density. Ey, represents the ground-state total energy of the system with a ground-
state electronic density that corresponds to an external potential, U,.. Application
of Rayleigh-Ritz’s variational principle [61-63] facilitates the determination of the
ground-state density by minimizing the total energy of the system in terms of the
trial wave function.
Hohenberg-Kohn theory proposes an unique way of obtaining the ground-state
properties of an interacting system. However, the theory does not provide any method
for obtaining energy functional, Fyx[p]. In 1965, Kohn and Sham [66] combined the

Hohenberg-Kohn theorem with the early postulate by Hartree and Fock [58, 60] which
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turned DFT into a practical tool to study the ground-state properties of materials.

Kohn and Sham expressed the energy functional in the following form:

h2
Ey,, o] = _%VQ[/)] + Uniartreelp] + Uselp] + Uielp] , (2.14)

where U, is the exchange correlation functional.

Equation (2.14) thus simplifies the expression for an interacting system by consid-
ering it as a non-interacting classical electron gas subjected to an external potential
due to the nuclei and then, by the addition of the exchange correlation effects. The
corresponding Kohn-Sham Hamiltonian takes the form,

h2
HKS - _%VQ(I‘) + UHartTee + ch + Uie (215)

DFT aims at solving the Schrodinger equation with the Kohn-Sham Hamiltonian, Hgg;
for any interacting many-electron system. Majority of the electronic structure calcu-

lations for solids are performed within this first principle framework.

2.3 Exchange correlation functional

There are several schemes to apply exchange correlation functionals in DF'T. Amongst
them, two of the most significant and most widely used are called the local density
approximation (LDA) and the generalized gradient approximation (GGA). These two

functionals have been adopted in various case studies throughout the present work.

2.3.1 Local-density approximation (LDA)

LDA defines the exchange correlation energy U,.(r) of a non-homogenous system by

first dividing the system into infinitesimally small volumes with constant density [67—

26



69]. Then, it assumes that for each of those volumes, the exchange correlation energy
per electron at a particular point r is equal to the exchange correlation energy per
electron of a homogenous gas that has the same electronic density as the system in

question. The expression takes the form [69],

Uselp(r)] = / hemesenens ()] o(x)de (2.16)

homogenous

Jios is the exchange correlation energy per electron for the system as a

where v
homogenous gas.

While treating the system as a homogenous electron gas, the exchange energy is

computed using the following expression by Dirac [69, 70],

0= =3 20| (2.17)

and the correlation energy of the homogeneous gas is estimated from quantum Monte-
Carlo simulation of the energy of a homogenous electron gas [67].

LDA performs well in systems where the electronic density is homogenous in
comparison to system with non-homogenous electron density [69]. As a consequence,
it overestimates binding energy of molecules and cohesive energy for solids. Despite
of inaccurate binding energies, LDA reproduces bond lengths and angle properties for
systems with strong bonds with fairly high accuracy, which are in good agreement with

the experimental results. LDA generally underestimates the bond length slightly [69].

2.3.2 Generalized gradient approximation (GGA)

To address situations when there are inhomogeneities in the electronic density, the

GGA exchange correlation functional has been introduced. The basis here relies on
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carrying out an expansion of density in terms of the gradient and higher derivatives.

The exchange correlation energy takes the following form [69],

Uselp(r)] = / Uge ()] p(r) Faclp(r), Vp(r), Vp(r)...Jdr (2.18)

Here F. is an enhancement factor that modifies the LDA expression based on varia-
tion of density in the vicinity of the point of interest.

In general, GGA overestimates structural properties such as the bond length.

Several improvements to exchange correlation functionals (exact exchange ap-
proach [71], screen exchanged LDA [72], hybrid exchange correlation [73], GW [74])
have been proposed that improve the performance of LDA and GGA. However, im-
plementation of these exchange correlation functionals can be computationally chal-
lenging. For ferroelectric crystals, LDA and GGA reproduce experimental structural
parameters with fair accuracy (~6 percent) and are the preferred exchange correlation

functionals.
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Chapter 3

BerryPI-A package for polarization

computation

Before we begin, we need to point out that the current chapter is by and a large

reproduction of an article published by the author. [75].

3.1 Introduction

First-principle microscopic theories, such as density functional theory (DFT), play
a major role in the development of parameter-free models that establish a relation
between atomic structure and material properties using a minimum of or no ex-
perimental input at all. Combined with the recent advances in high-performance
computing, this development open up new opportunities for exploring novel mate-
rials and understanding their properties [76, 77]. In particular, the ability of DFT
to capture microscopic polarization [78-80] enables the calculation of the related

material properties, such as spontaneous polarization and Born effective charge [79],
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permittivity [81], pyroelectric coefficient [82] and piezoelectric tensor [83, 84].

The calculation of polarization using a geometric phase approach (also known as
the Berry phase [91]) is now implemented in major solid-state DFT packages, such
as ABINIT [85] and VASP [86], which belong to the plane wave family. To the best
of our knowledge, only one successful realization of the Berry phase approach using
the all-electron full-potential linearized augmented plane wave (LAPW) method has
been reported so far [83]. However, the package is not available for external users.

This chapter presents a new software BerryPI that extends the capability of
the popular all-electron full-potential DFT package WIEN2k [87] to calculation of
polarization in solids using the Berry phase approach. BerryPI also relies on the
WIEN2WANNIER [88] program in the computation of overlap matrices as described be-
low. As an example, we calculated the spontaneous polarization and Born effective
charges of several perovskite, zinc-blende and rock-salt structures and compare the
results with experimental data, pseudopotenial calculations and other DF'T results

reported in the literature.

3.2 Modern theory of polarization

In any phenomenological description of a dielectric medium, macroscopic polarization
is the most essential concept [89]. However, the consideration of polarization for a pe-
riodic crystal proved to be a long-standing problem due to lack of proper microscopic
understanding [80].

The most well known definition of polarization relies on expressing the quantity

in terms of the dipole moment within a unit volume of a finite system [82].
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1
Psystem = —/ drrn(r) (3.1)
VSystem System

where, 7(r) is the total charge density of a system with volume, Vg, e

Equation (3.1) is applicable only to a finite macroscopic system which implies the
charge density will have contribution from both the surfaces and the bulk. However,
these two contributions cannot be easily disentangled. Furthermore, if the surface
preparation of the system is altered in a manner that the surface charge density is
also changed, the dipole moment scaling also gets shifted. The scaling shift essentially
implies a polarization change in the system although the bulk of the system still
remains unchanged. The definition thus neglects the contribution from bulk of the
system.

Another approach towards the definition describes the polarization of a system
with periodic charge distribution by segmenting it into unit cells of volume, 2 and

carrying the following integration [82],

1
Pcoar = ﬁ/drrn(r) (3.2)
Q

The polarization in Eq. (3.2) however, relies heavily on the choice of the elementary
cell. As evident from Fig 3.1, a change in the shape and the location of the unit cell
in the same charge distribution causes the resultant dipole moments to be in different
orientation and thus polarization direction to be different. Equation (3.2) is only
applicable to systems that have a cell boundary with zero charge density. However,
electronic charge density in crystalline materials is continuous and periodic.

Deficiencies in the previous definitions led to the consideration of this phenomenon

from experimental point of view where the change in the polarization is treated as
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Figure 3.1: The different choices of unit cell yield different estimation of dipole mo-

ment (polarization).

a measurable quantity rather than its bulk value. The change in polarization is
related to the current flowing through the interior of the system during a time period

associated with perturbation. Such consideration can be formulated mathematically

as follows [82],

AP =PWY — PO = Q—l/dt/ dr j(r,t), (3.3)
cell

where j(r,t) is the local transient current density resulting from a charge redistri-
bution inside the bulk unit cell. Electric current flowing through the system can be
segmented into ionic and electronic part. The ionic part is associated with the change
in ionic phase which is given by the displacement of ions due to electric field or any
external perturbation. The electronic current is given by change in electronic phase

which represents change in electronic density or average positions of the electrons due

to the external perturbation.
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Extension of Eq. (3.3) from time dependent parameter to adiabatic perturbation

at each time interval \ yields [80, 82, 90,

M GP
AP =P, —P,, = / ﬁdA (3.4)
Ao

Here, A\ represents the atomic displacement or strain in response to an external
perturbation that transforms the crystal from an initial state A\g to a perturbed state
A1. Such a transformation leads to adiabatic evolution of polarization from P, to
P,,. Equation (3.4) is applicable to any insulating system for which the polarization
derivative can be computed along the path \y — A;. This phenomenology of ex-
pressing polarization in terms of their difference rather than the absolute value is the
basis of modern theory of polarization [80, 82].

In the framework of the modern theory, polarization of a given state thus, consists

of two components: ionic and electronic
P =P, + Pq . (3.5)

Ionic polarization, P;,, is caused by relative displacement of positive and negative
ions in a polar crystal. Computation of ionic polarization is straightforward; it is
based on the position of atomic nuclei and the corresponding ionic charges [80]. The
electronic part of the polarization is related to the spatial distribution of the electron
density [82], which can be expressed in terms of a geometric phase (Berry phase) [78,

91] as explained below.
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3.3 Berry phase

Berry phase was introduced by M.V. Berry in 1984 to compute the geometric phase
acquired by a quantum system while traversing along a closed path C' in parameter
space [91]. The parameter space is defined by a set values on which the hamiltonian
depends. The Berry phase for a Hamiltonian H (R) with parameters & = {a;, a2} can
be stated as [92],

dgn(C) = i ]{3 < n(R)|Ven(R) > dR (3.6)

Where Vg is the derivative with respect to R and n(R) is the eigenstate of H(R)
For a crystalline material with periodic boundary condition, the reciprocal lattice
vector, k is considered to be the parameter space and the corresponding eigenstate is

expressed by the periodic part of bloch wave function, u, where n is the band index.

Thus the Berry phase then takes the form [80, 82, 91],

den = =i{Uni| Vi|tnk) - dk = =i In{Unic|[thnaesan)) - (3.7)

For a given system in unperturbed state, the Berry phase term in Eq. (3.7) thus
computes the electronic phase by applying the periodic boundary condition to perform
the closed loop internal. In addition, if an external perturbation is applied to the
system the wave function acquires a phase with respect to the unperturbed state.
The change in electronic phase yields the change in electronic polarization which is a
measure of the electronic component of the current flowing through the system due
to the perturbation.

The electronic part of the polarization is related to the average position of elec-

trons. Bolunt et al. [93] showed that the position operator for electrons is related to
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the Berry phase according to,

occ.

iQ bands

(el = 55 D [k ol P (39

3.4 Method

We consider a periodic insulating crystal, which is represented by a unit cell with NV
atoms and M doubly-occupied bands (non spin-polarized calculation is considered).
It is assumed that the electronic ground state can be described by a single-particle
mean-field Hamiltonian as in the density-functional theory. The eigenstates of this

Hamiltonian are the Bloch functions

Unie(T) = Upe (1) 7 (3.9)

which are characterized by the band-index n and the wave vector k. The complex
amplitude u,x(r) = v,k (r + R) remains invariant for any lattice vector R.
The total microscopic polarization of such a system is given by [78]

occ.
atoms

. bands
P = % Z Ziony, — (22%)3 ; /BZ K (tpe| Victac) (3.10)
where € is the simulation cell volume, e is the elementary charge, Z°" is the ionic
charge represented by the number of valence electrons in the atom s and r, is its
position vector. The factor of 2 in the numerator corresponds to the band occupancy.
The integration in Eq. (3.10) is performed over the Brillouin zone (BZ), and the
integrand is closely related to the geometrical phase change as shown in Eq. (3.7)

After summation over all occupied bands, the integral in Eq. (3.10) will represent
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an average phase acquired by system wavefunctions, i.e. the electronic phase. This
phase value has the uncertainty of an integer multiple of 27.
The Cartesian o component of total polarization of a state can be expressed in

terms of the corresponding total phase ®, [84]
P, =< %R, (3.11)

Where R, is the length of the real-space lattice vector in the direction «. By analogy

with Eq. (3.10) for polarization, the total phase is split into two components

o, = Pel,a + Pion,a » (312)

Where ¢ o and @jon o are electronic and ionic phases, respectively.
The ionic phase for a given structure is determined by the spatial position and

charge of individual ions via [84]
N
Gion,a = 2T Z Z0 s wrapped in the range [0, 27] (3.13)
s=1

where p; , is the fractional coordinate of ion s in the crystallographic direction «.
In practice, the Berry phase ¢(k)) is computed for individual k-paths parallel to
the a-axis in the Brillouin zone (Fig. 3.2), and each result is wrapped in the range of

[0, 27]. Then, the total electronic phase corresponds to an average [78]

Pel,a = Sll/s dSJ_ QO(kH> ) (314>

Where S is the surface area of the Brillouin zone perpendicular to the a-axis. The
Berry phase for an individual path k| can be expressed as [78]
J-1
p(k)) = 2 Im [ln T det Sarwar(k;, kj+1)] . (3.15)
j=0
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Here S is the overlap matrix of the size M?, where M is the number of occupied bands,
and the factor of two takes into account the spin degeneracy. The path is designed
such that the end k-point represents the starting point displaced by the reciprocal

lattice vector, i.e., k; — kg = G,.

Figure 3.2: Berry phase integration in the Brillouin zone for calculation of the elec-

tronic polarization along z-axis.

Computation of the overlap integral between two cell periodic parts of the Bloch

function
Smn(kj’ kj+1) = <umkj |unkj+1> (316)

is the most challenging part in determining the Berry phase. Here m and n refer to
the occupied band indices, which span in the range 1 to M. Calculation of such an
integral is a part of the standard procedure of constructing Wannier functions, which

is done by the WIEN2WANNIER package [88].
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3.5 Program implementation

BerryPI is a Python script that controls the execution process according to the flow
in Table 3.1. The script is invoked in the case directory after completing the standard
WIEN2k self-consistency field cycle. The only input parameter required is the k-mesh
for Berry phase integration. The script determines the number of occupied bands
M, cell geometry, the ionic charges and their relative positions based on WIEN2k files.
The electronic, ionic and total phases as well as the corresponding components of
polarization are calculated along the Cartesian axes.

Since the ionic and electronic phases used in the calculation of polarization carry
the uncertainty of an integer multiple of 27, the proper calculation of the polarization
difference between two structures requires AP < |eR/Q|. In the case of typical
perovskite structures, |eR/Q| is of the order of 1 C/m?, which is still greater than
typical values of the spontaneous polarization (see Table 3.3).

When comparing the polarization between two structures, it is useful to inspect
the total phases as shown in Fig. 3.3. In this specific case, the phases are ®© = —0.97
and ®Y = +0.97, which yields A®1~9 = 1.87 instead of —0.27. This ambiguity
can be resolved by performing a calculation for the third structure, which represents
an intermediate state between (0) and (1).

The source code of BerryPI can be downloaded from the GitHub repository. The
execution of BerryPI requires WIEN2k [87] and WIEN2WANNIER [88] installed along

with Python and the NumPy library.
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Figure 3.3: Phase map that illustrates two ways of computing the phase difference

AD.

3.6 Validation

First, we begin with calculation of polarization in the case where the outcome can
be predicted exactly. For non-interacting (noble) atoms the net polarization is zero.
Therefore the electronic and ionic polarization should cancel each other P, + P.; = 0.
This property is used in order to test the accuracy of our calculations of polarization.

Two helium atoms were placed in a tetragonal cell as illustrated in Fig. 3.4. The
cell dimensions ¢ = 10 and b = ¢ = 5 Bohr were chosen in order to prevent a
possible interaction between neighboring atoms. The reference structure had one
atom positioned in the origin, while the second atom was placed at p, = 0.5, p, =
p. = 0. In the perturbed structure, the second atom was slightly displaced in the x
direction.

The standard self-consistency LAPW cycle was executed with WIEN2k for both
structures using one k-point. It is strongly advised not to use an iterative diagonal-

ization option in the self-consistency cycle prior to the Berry calculation, as it will
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Figure 3.4: The unit cell containing two noble atoms used for the test. One of the

atoms is displaced from its centrosymmetric position.

likely lead to spurious results. We forced WIEN2k to preserve the symmetry of a per-
turbed structure when performing the calculation for the reference (centrosymmetric)
case. Then we calculate the electronic and ionic polarization for both structures fol-
lowing the steps described in Table 3.1 using a 10 X 1 x 1 k-mesh. The fine mesh in
the z direction is required for accurate computation of the Berry phase in Eq. (3.15).

Results of the calculated difference in polarization between the reference and per-
turbed structures are presented in Table 3.2. It is apparent that the ionic and elec-
tronic polarization cancel each other with high accuracy even for very small perturba-
tions. The same calculations were repeated for neon in order to verify the performance
in the case of multiple bands and core electrons. The results for the ionic and elec-
tronic polarization (Table 3.2) are also consistent with the expectation of zero net
polarization, which validates our approach. The sign alternation between the ionic

and electronic components of polarization is due to 27 wrapping applied to the phase.
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Table 3.2: Test for noble atoms

Change in the polarization (C/m? x 1073)

Element Displacement AP, AP,
0.001a 4.5802 —4.5814

He 0.002a 9.1604 —9.1604
0.005a 22.8966 —22.9058

Ne 0.001a —18.3210  18.3234
0.05a —916.0496 916.0496

3.7 Applications

In the following, we provide two examples on calculation of the material properties
related to polarization using BerryPI. The examples include modeling the sponta-
neous polarization of perovskite crystals and calculation of the Born effective charge

of polar materials.

3.7.1 Spontaneous polarization

Spontaneous polarization P is one of the major characteristics for ferroelectric ma-
terials. It is defined as the change in polarization that occurs when the crystal un-
dergoes a phase change from the centrosymmetric structure to a structure without
an inversion symmetry

P.= P, — P, . (3.17)

Here P,. and P, refer to the polarization values for non-centrosymmetric and cen-

trosymmetric structures, respectively. Figure 3.5 illustrates a particular example of
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the ABOj3 perovskite crystal in two different phases: cubic (centrosymmetric) and

tetragonal (non-centrosymmetric).

\
\
\
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¢ ~le f(_%
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Figure 3.5: Perovskite ABOj cubic (a) and tetragonal (b) crystal structures.

For our study we selected some of the most well characterized perovskite com-
pounds: BaTiOz, KNbO3; and PbTiO3. The calculations were performed with the
WIEN2k package using the generalized gradient approximation [94] (GGA) for the ex-
change correlation functional and 6 x 6 x 6 sampling of the Brillouin zone. The radii
Ry of muffin tin spheres centered around individual atoms are chosen to be equal
2.5, 2.5, 2.26, 1.77, 1.7 and 1.5 Bohr for Ba, K, Pb, Nb, Ti and O, respectively. The
product of the minimum Ryt radius and the maximum cut-off wave vector in the
reciprocal space was kept at a constant value of Ryt Knax = 7 throughout all calcula-
tions. The energy to separate core and valence electrons was set such that electrons in
the following orbitals were treated as valence electrons: Ba — 5s 5p 6s, K — 3s 3p 4s,
Pb 4f 5d 6s 6p, Nb  4s 4p 4d 5s, Ti  3s 3p 3d 4sand O  2s 2p. In order to min-
imize the discrepancy between experimental and theoretical structures, we adopted
the experimental values [95-97] of the lattice constant for all three compounds in our

calculations. The internal degrees of freedom for tetragonal ferroelectrically distorted
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structures were fully relaxed by minimizing the Hellmann-Feynman forces acting on
atoms below 0.2 mRy/Bohr. For the cubic centrosymmetric structures, the atomic
positions and structural parameters were adjusted accordingly by keeping system vol-
ume same as in the tetragonal ferroelectric state. The convergence tests performed
with a denser k-mesh 10 x 10 x 10 and Ryt Kmax = 8 indicate that the polarization
calculation itself is not sensitive to these parameters (only 0.3% difference). However,
a special care should be taken to obtain accurate atomic positions. This is why the
force convergence criteria is reduced down to 0.2 mRy/Bohr, which is less than the
default value by a factor of 10.

Results of our calculations of the spontaneous polarization in BaTiOz, KNbOj3
and PbTiO3 compounds are summarized in Table 3.3. Our results are consistent
with the experimental data and results of other first-principle calculations. Next we
explore the sensitivity of calculation results to the choice of the basis set (LAPW
vs. plane waves). The same calculations were repeated with the ABINIT package [85]
using Hartwigsen-Goedecker-Hutter pseudopotentials with semicore electrons for K,
Ti, Nb and Ba [98]. Due to the presence of semicore electrons, the cutoff energy was
chosen to be relatively high (30 Ha). In this calculation the k-mesh, lattice parameters
and atomic positions were kept identical to those used in WIEN2k. Our ABINIT results

(Table 3.3) are in agreement with LAPW (BerryPI) data within 10% accuracy range.

3.7.2 Born effective charge

The Born effective charge reveals the mixed ionic and covalent character of bonds

and provides further insight into understanding the origin of polarization effects in
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Table 3.3: Spontaneous polarization (C/m?) for perovskite compounds.

Compound BerryPI ABINIT Experimental Other calculations®

BaTiO; 0.31 0.28 0.26 [102] 0.2 [99], 0.29 [100]
KNbOj; 0.36 0.34 0.37 [103] 0.3 [101]
PbTiO; 0.86 0.84 0.75 [104] 0.88 [83]

solids [105]. By definition, the Born effective charge of an atom in a solid is related to
the change in polarization due to the displacement of this atom from its equilibrium

position [106]
Q 0P,
e Orspg

(3.18)

* p—
s’a/g -

It is convenient to express the effective charge in terms of the total phase using

Eq. (3.11), which yields
0P,

—— 3.19
s (3.19)

s*,a,e = (27)_1

The zz component of the Born effective charge tensor was calculated for tetragonal
BaTiO3z and PbTiOj3 structures using the same parameters as described in Sec. 3.7.1.
Individual atoms were displaced by ps . = £0.01, while keeping the position of other
atoms unchanged. The self-consistent electron density was obtained for each pertur-
bation. The corresponding change of the total phase along the z axis was used in

order to compute the derivative in Eq. (3.19). The calculated Born effective charges

1[99]: Projector augmented waves, with the local density approximation (LDA) for the exchange-
correlation functional.
[100]: Projector augmented waves, LDA
[101]: LAPW (linear response), LDA

83]: LAPW-GGA
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are presented in Table 3.4. The results obey the acoustic sum rule ) Z7 , = 0
with a negligible error. We also report calculation of the effective charge for binary
zinc-blende (GaAs) and rock-salt (NaCl) structures. Our data are also consistent

with results of other first-principle calculations listed in Table 3.4.

Table 3.4: Born effective charge Z7, in units of elementary charge for tetragonal

perovskite crystals

Compound Atom BerryPI Other calculations

Ba  +2.77 +2.83 [105]

Ti  +5.90 +5.81 [105]

BaTiO;  O1  —4.79 —4.73 [105]
02  —1.97 —1.95 [105]

03  —197 —1.95 [105]

Pb  +3.50 +3.52 [83)]

Ti  +5.34 +5.18 [83)

PbTiO;  O1  —4.51 —4.38 [83]
02 —2.14 —2.16 [83]

03 —2.14 —2.16 [83]

GaAs As  —221 —2.00 [107]

NaCl Na  +1.11 +0.99 [108]
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Chapter 4

Ferroelectric switching with

domain wall motion

We want to put a note that several contents of the current chapter appear in an
article under review [S.J. Ahmed, S. Pichardo, L.Curiel, O.Rubel, ”First-principle
modelling of the ferroelectric switching in BaTiO3: concurrent switching vs domain

wall motion”].

4.1 Introduction

The introduction of BerryPI to the selected tool WIEN2k enables the computation
polarization based properties of the ferroelectric material which allows us to focus on
our goal of reducing the excess heat generated in ferroelectric materials. As discussed
in chapter 1, the performance of a ferroelectric systems is governed by switching of
polarization due to an external electric field. The switching occurs via nucleation of

domains with inverse polarization followed by their growth. The latter is referred to
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as domain wall motion. The domain wall motion is considered to be responsible for
hysteresis energy loss in ferroelectrics, which is the sources of excess heat generated
in ferroelectric materials during operation [17, 33].

Domain walls in ferroelectric materials have been studied theoretically mostly
using semi-empirical molecular dynamics [47, 109 113]. Shin et al. [112] proposed
the most well established theory of the nucleation and motion of domain wall using
molecular dynamics simulation. Their study emphasized that it is always easier to
create a two-dimensional nucleus at the domain interface compared to creating a
three-dimensional nucleus in uniform bulk material, as the latter introduced larger
domain wall areas which results in larger energy penalty. The model wass able to
capture both the nucleation of domains and their successive growth in response to
the applied electric field. However, this approach relies on inputs from first principle
studies [49, 50], such as the interatomic potential, domain wall formation energy,
spontaneous polarization and its profile across the wall.

Nevertheless, quantum mechanical ab initio investigations of domain walls in fer-
roelectrics are mostly limited to calculation of their formation energy [49, 114]. Meyer
and Vanderbilt [50], Beckman et al. [115] further advanced the first-principle model-
ing of propagation of domain walls and determined the energy barrier associated with
the motion of 180° and 90° walls in PbTiO3. Results of their study are applicable to
the growth of established domains, whereas the initial (nucleation) phase and most
importantly the associated energy barrier remains overlooked. This gap motivated us
to perform a full polarization reversal study considering both the domain nucleation

and propagation stages using first-principles.

48



4.2 Landau theory

Landau theory was proposed in the context of order disorder transformation in
superconductors and ferroelectric systems that involves a change in the symme-
try [116, 117]. The theory enables calculation of symmetry based properties with
a minimal number of input parameters from either experimental or microscopic cal-
culations and thereby, is considered as a bridge between macroscopic observation and
microscopic models. Landau theory is capable of describing the equilibrium behav-
ior of the system near the phase transition. However, the transition between phases
with a change of symmetry does not take place smoothly. The thermodynamic state
of the two symmetrically distinct phases must be identical at the transition point.
The transition between phases is characterized by an internal variable of the system
called the order parameter. The parameter has a value of zero in the high symmetry
or unperturbed phase which changes continuously as the symmetry is lowered by a
phase transition [118-120]. To describe the ferroelectric phase transition, the entity

polarization serves as the order parameter [121].

4.3 Landau-Devonshire theory

Devonshire’s extension to the Landau’s symmetry-based consideration provided the
description of first and second order phase transitions in a ferroelectric bulk system
with spatially uniform polarization [118-120]. Devonshire’s explanations were based
on fundamental principles of ferroelectrics. The model expresses the thermodynamic

state of a system as a function of a specific set of variables or order parameters.
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Another important consideration in the model is, in thermal equilibrium, the values
of these order parameters or variables minimize the free energy of the system.
The total energy of a system within Landau-Devonshire(LD) theory can be ex-

panded as power series of the order parameter polarization [121, 122].

E(P)=aP?*+bP*+ cP" (4.1)

Here, a, b and c are coefficients that describes the phase transition. The value of

a varies as a function of temperature, T.
a=ay(T —T,) (4.2)

Here, T, is the characteristic Curie temperature of the material at which second order
transition takes place. The constant b takes a positive value for a process involving
a second order transition however, it becomes negative while ¢ becomes positive in
case of a first order transition. Since, the scope of the present work is limited to
second order transition only, the equations are expressed only in terms of ¢ and b in
the following chapters.

Figure 4.1 shows the change in potential energy profile with decreasing/increasing
temperatures generated by the LD model. At higher temperature, the energy profile
assumes a parabolic shape while a remains positive. As the temperature is lowered
to T,, a phase transition starts to occur where the constant a becomes null. As the
temperature is lowered below T,, the ferroelectric crystal undergoes a second order
transition to the ferroelectric phase and the potential profile takes a double well shape

by changing the constant a to a negative quantity.
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Figure 4.1: Schematic of variation of energy in terms of polarization at different

temperatures as the ferroelectric material undergoes a second order phase transition

Application of a constant electric field £ alters the system’s total energy as fol-

lows [122],
E(P)=aP*+bP'—EP (4.3)
The minima of E(P) in Eq. (4.3) where $£ = 0 determines the equilibrium con-

figuration of the system. Mathematical solution yields the expression for electric field

as a function of polarization as [121, 122],

E(P)=2aP+4bP? (4.4)

Figure 4.2 depicts the LD model generated Eq. (4.4) polarization response of the
ferroelectric crystal to the electric field applied at different transition temperatures.
At a temperature above T, the material is in the paraelectric state characterized by
a linear response to applied electric field. As the temperature reaches 7., a second
order transition starts to commence. Below 7., the material’s response to applied
electric field takes a hysteresis form when the material has attained a second order

phase transition to the ferroelectric phase.
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Figure 4.2: The polarization response of a ferroelectric material to the applied electric

field £ at different temperatures captured using LD theory
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In response to an alternating electric field, when a ferroelectric material switches
between alternating states of polarization, the loss during the process can be given
by the energy that is not recovered during the process. The loss can be written

mathematically as,

I/Vloss = fpdg

=/Hm%—/&m%

which corresponds a switching process where the polarization is switched from state

(4.5)

P, to state P, first and then, switched back to state P; in response to the alternating
field. As evident from Fig. 4.2, when the ferroelectric switching takes a hysteresis
form below T., the energy spent to switch the material to an alternating equivalent
state, is not recovered during returning back to the initial state as the switching takes
a different path. The energy that is not recovered during the process can then be
given by the area of the hysteresis loop which corresponds to energy loss during the
polarization reversal process. As mentioned in chapter 1, this loss energy due to
hysteresis is converted into heat and causes a thermal rise in the material [17, 33].
Figure 4.2 also shows that the major contribution to the ferroelectric loss comes
from the coercive field, & which is defined as the field required to balance the polar-
ization between oppositely polarized domains resulting in a vanishing net polarization
of the material. Another property on which the energy loss depends, is the sponta-
neous polarization, Ps of the material. Application of an alternating electric field
with a peak amplitude &, switches the materials polarization states between Py and
P, according to Eq. (4.3). The spontaneous polarization, Py depends on the funda-

mental lattice configuration of the material. However, the coercive field, & depends
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mainly on the formation of domain walls between regions of opposite polarization
and their relative propagation [33]. The fundamental lattice portion also plays an
important role to &. as it significantly influences the motion of domain walls which

will be addressed in the later sections of this chapter.

4.4 Domain wall

The existence the multiple states of spontaneous polarization in different crystallo-
graphic directions gives rise to the concept of domain wall as in a crystalline material,
it is possible for these polarization states to get oriented against each others. A do-
main is defined as the volume in the material where the spontaneous polarizations in
individual elementary cells are oriented in the same direction [123]. Domain walls are
defined as the boundary between oppositely polarized domains.

The number of possible domain states and domain wall configurations are a de-
pendant on the number of possible spontaneous polarizations states. For tetragonal
perovskites, six possible orientations of spontaneous polarization perpendicular to
each other are possible. This results in two possible sates (Fig. 4.3) of domain wall
in these material. One of them presents a situation when the spontaneous polariza-
tions in individual elementary cells are oriented against each other (Fig. 4.3(a)) and
is defined as 180° domain wall. Another possible configuration conveys 90° domain
wall when the spontaneous polarizations are oriented perpendicular(90°)(Fig. 4.3(b))
with respect to each other.

Ferroelectric domain walls are normally considered to be Ising type where the

polarization switches traversing through a zero polarization along a high symmetry
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Figure 4.3: Two possible states (a)180° (b)90° of domain wall in a tetragonal ferro-

electric material.

path [124]. Ising type switching is regarded favorable in ferroelectric materials because
of their strong electrostrictive nature. Polarization reversal through any other path
than the high symmetry path would require very high amount of elastic energy [124]
due to a large lattice strain. However, several recent studies [125-128] provided the
evidence of the Bloch-like and Néel-like rotation of polarization through a curved
path. Bloch type switching refers to the rotation of polarization in planes parallel to
the domain wall and Néel type deals with rotation occurring in planes perpendicular
to the domain wall. The study on this curved switching nature is discussed in chapter
5.

In this study, we perform a theoretical study of Ising type polarization reversal
via 180° domain wall motion in BaTiOg3, which is one of the most well characterized
perovskite compounds. Calculations of the energy profile suggest that the ferroelectric
switching occurs as a result of sequential reversal of polarization in adjacent cells,
which is the essence of domain wall formation and motion. The results are applied
to calculation of the coercive field for BaTiO3 and compared to a Landau-Devonshire
(LD) model [118-120], which is widely used for interpretation of ferroelectric switching
phenomenon [129]. We show that both models result in a similar magnitude of the

intrinsic coercive field, in spite of the fact that the LD model does not capture effects
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associated with the domain wall formation and propagation. This chapter represents

several sections of an article submitted for review by the author.

4.5 Computational details

The first-principle calculations are carried out within a linear augmented plane wave
method using the density functional theory (DFT) implemented in WIEN2k pack-
age [87]. The local spin density approximation [130-132] has been chosen for the ex-
change correlation functional, since it was successfully applied previously [50, 115, 133]
to study ferroelectric materials and their properties. The Brillouin zone for single ele-
mentary cell calculations was sampled using 6 x 6 x 6 k-mesh. In the case of supercell
calculations, the k-mesh was adjusted accordingly in order to maintain the same k-
point density. The radii Ryt of muffin tin spheres centered at individual atoms are
chosen to be equal 2.3, 1.8 and 1.54 Bohr for Ba, Ti and O, respectively. The product
of the minimum Ry radius and the maximum cut-off wave vector in the reciprocal
space was kept at the constant value of RyrK.x = 7 throughout all calculations.
The energy to separate core and valence electron was set such that electrons in the
following orbitals were treated as valence electrons: Ba 5s 5p 6s, Ti  3s 3p 3d 4s
and O — 2s 2p.

Self-consistent structural parameters of BaTiO3 were used in the calculations. The
internal degrees of freedom for tetragonal structures were fully relaxed by minimiz-
ing the Hellmann-Feynman forces acting on atoms below 0.2 mRy/Bohr. The fully
optimized structural parameters are listed in Table 4.1.

The polarization inversion in the single cell was associated with a reaction co-
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Table 4.1: Structural parameters for BaTiO3 in the tetragonal phase obtained theo-

retically and experimentally.

Structural Present Experimental Other DFT
parameters calculations structure [134] calculations [25]
a (A) 3.93 3.986 3.929

c/a 1.005 1.01 1.01
dzpa/c (fixed) 0.0 0.0 0.0
dzrifc 0.009 0.015 0.009

520, /c ~0.015 —0.023 ~0.013
§20,.04/C —0.01 —0.014 —0.009

ordinate &, which takes the values of 1 and 0 for the relaxed ferroelectric tetrago-
nal structure and the corresponding centrosymmetric structure, respectively. The
structural parameters for an arbitrary transition state ¢ were determined by a linear

interpolation
0z(€) =dz(1) € . (4.6)

We assumed that the tetragonality of the lattice remained unchanged during this
transition.

Polarization properties were calculated based on the modern theory of polariza-
tion [80, 82] in the framework of Berry phase approach [91]. This capability is im-
plemented in a BerryPI package [75] for WIEN2k in conjunction with WIEN2WANNIER

code [88].
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4.6 Results and discussion

4.6.1 Ferroelectric switching and domain wall motion

Devonshire’s [118-120] extension of the original Landau model to polarization inver-
sion in perovskite crystals implies a concurrent switching of the body-centred atom
between two equivalent positions in the entire structure. However, this ansatz is not
consistent with the existence of domain walls, which require formation and growth
of regions with opposite polarization. In order to identify which of the two scenar-
ios is more favourable, we compare a potential energy profile associated with the
polarization inversion in single cell and supercell models.

Figure 4.4 shows a potential energy curve that corresponds to the variation of
total energy as function of Ti-atom position for a BaTiOj3 single cell. The barrier
for switching between two equilibrium positions is found to be E, = 2.8 meV, which
represents the concurrent switching. Previous theoretical studies [19, 129] indicate
that the barrier height is extremely sensitive to the choice of an exchange correlation
functional, mismatch of the lattice parameters and the choice of the basis set, which
results in a wide range of values reported E, = 5...100 meV. Therefore, we base fur-
ther discussion on the relative difference in the barrier height rather than its absolute
value.

In order to model the ferroelectric switching via a domain wall motion, we choose a
supercell that consists of six unit cells as illustrated in Fig. 4.5(a). It was previously
shown [50] that such a supercell is large enough to capture the 180° domain wall
energy accurately. According to our hypothesis, the ferroelectric switching occurs via

consecutive switching of polarization in adjacent unit cells as depicted in Fig. 4.5(a-c),
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Figure 4.4: Potential profile associated with polarization inversion for a single unit

cell of BaTiOj3 in the absence of an external electric field. (Lines are a guide to the

eye)
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which represent the nucleation and growth of the domain with opposite polarization.
Additional constraints were applied to Ba and Ti atoms in the cells directly adjacent
to the switching cells in order to prevent the structure from formation of a single
domain. However, the forces acting on those atoms did not exceed 3 mRy/Bohr. The
corresponding potential profile is presented in Fig. 4.5(e) (solid line).

In contrast to the single cell switching, the potential profile for consecutive process
is non-monotonic with a series of peaks associated with the barriers to be overcome
during switching of individual cells. The energy barrier for the nucleation stage
(Fig. 4.5(a)) is about 2-3 times higher than the barriers corresponding to the propa-
gation phase. The latter are notably lower than the barrier for concurrent switching
(Fig. 4.5(d)). Moreover, the barrier height reduces significantly as the size of domain
with opposite polarization grows. The resultant barrier for consecutive switching of
polarization in the entire supercell is approximately 8 meV, which is half that com-
pared to the concurrent process (Fig. 4.5(e) solid vs. dashed line, respectively). This
result favors the existence of domain walls and their propagation as a mechanism for

ferroelectric switching.

4.6.2 Coercive field

In this section, we apply results of the domain wall motion study to calculate the
intrinsic coercive field of BaTiOs. It is known from previous studies [115, 135] that
theoretical models largely overestimate (by orders of magnitude) the coercive fields
observed experimentally. The lower coercive field measured experimentally are tradi-

tionally attributed to extrinsic factors [135], such as the defect-mediated nucleation of
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Figure 4.5: Consecutive (a-c) and concurrent (d) processes of polarization inversion
in BaTiO3 supercell. The arrows on panels (a-d) illustrate the polarization vector
of individual unit cells. The total energy variation during the switching process is
shown on panel (e) as a function of the reaction coordinate for both scenarios. The

energy barriers are linked with the corresponding structural transitions (a-d).
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domains [133, 136], which is not captured in the ideal structures studied theoretically.
The physical coercive field is often identified as the field at which the domain walls
become unpinned [115|(i.e, mobile).

According to the definition of the electric enthalpy, the electric field corresponds
to a slope of the total energy density U vs polarization curve [115]. The coercive
field is then determined by the maximum slope of U(P) function along the reaction

(switching) path
_du

Sc—d—P

(4.7)

max

Figure 4.6 represents the energy profile as a function of polarization for two dis-
tinct mechanisms of ferroelectric switching. Using this energy profile we estimate the
coercive field of 68 MV /m for BaTiO3 considering only the propagation phase, which
represents the domain wall unpinning,.

Next, it will be instructive to compare our result for the coercive field with other
methods based on the single-domain switching. The potential energy profile as a
function of polarization for single unit cell can also be readily obtained from DFT
calculations (Fig 4.7). The same energy density profile can also be expressed in terms
of the LD model using the power series [122]

U(P) = g— 2(P/P)? — (P/P)T] | (4.8)

where F), is the energy barrier height, €2y is the equilibrium unit cell volume and P
is the spontaneous polarization. As evident from Fig. 4.7, the LD model matches the
DFT energy profile. The coercive field can be expressed analytically in terms of LD

model parameters as [115]

E
£ = (4/3)3/2%—; . (4.9)
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Figure 4.6: Energy profile as a function of polarization considering nucleation and
propagation of domain walls. The labels a-c refer to the barriers for consecutive

switching of individual cells shown in Fig. 4.5(a-c).
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Equation (4.9) yields the coercive field of £. = 57 MV /m for the potential curve shown
in Fig. 4.7. This result is remarkably close to that obtained for the propagation phase
of the domain wall motion (& = 68 MV /m). The limited width of the domain wall
implied in our study can explain the similarity between the coercive field results

obtained with and without domain walls [137].
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Figure 4.7: Total energy evolution as a function of polarization corresponding to a
single-domain ferroelectric switching. Results are calculated using DFT and fitted to
LD model Eq. (4.8) with the following parameters: £}, = 2.8 meV, Qy = 61.2 A% and

P, =0.20 C/m?2.

Finally, it should also be noted that the values of the coercive field calculated
here are still much greater than the experimental results of & ~ 0.07 MV/m for

BaTiOj [138, 139]. Experimentally, the domain wall width for BaTiO3 was found to
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be 50 A due to contribution from the extrinsic factors like presence of defects and
impurities [140]. However, the polarization profile of the ideal BaTiO3 structure in
the current study suggests a domain wall width of nearly one unit cell. Other DFT
calculations of domain wall study also found the domain wall width within one unit
cell range [49, 114]. Kim et el. [137] showed that the coercive field is strongly depen-
dant on the width of domain wall. The higher domain wall width in experiment due
to extrinsic factors explains the reason for observing a lower coercive field experimen-
tally. Study of defect related extrinsic contributions within first principle framework
requires a structure that contains large numbers of unit cells which is computationally
expensive. In the present work, we establish a basis for domain wall motion study in

an ideal structure.
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Chapter 5

Ideal ferroelectric switching model

5.1 Introduction

First-principles study of ferroelectric switching between polarization states is mostly
based at the Landau Devonshire (LD) model [19, 49, 82]. The model implies that the
ferroelectric switching occurs by an Ising type polarization rotation in a straight line
path achieved by overcoming the energy barrier between the ferroelectric state and
cubic paraelectric state in a two dimensional space.

Recently, several studies [124, 126-128] indicated that the ferroelectric switching
can also take place by Bloch-like and Néel-like polarization rotation through an opti-
mum curved path. Because of this curved nature of the path, switching may also be
guided in a manner that the polarization reversal process needs much lower energy
barrier to be overcome.

Here, in order to validate previous studies, we first make attempts to determine

the curved nature of the optimum switching path. We choose to perform a first-
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principle potential energy profile study on a three dimensional surface among four
equivalent polarization states that are oriented in different directions within [010]
plane. The energy surface study is carried out on PbTiO3 which is one of the most
well characterized material. We confirm that the ferroelectric switching takes place in
a curved path with much lower energy barrier than the Ising like switching process. As
a result, the intrinsic coercive field required for polarization reversal is also much lower
than the field predicted by ferroelectric-paraelectric barrier. Based on the findings,
we propose an alternative approach to drive a ferroelectric crystal with the electric
field applied in two crystallographic directions that can ensure a much lower hysteresis

loss and thus, reduce dielectric dissipation in the material.

5.2 Computational details

The first-principle calculations are performed using the identical computational pack-
ages, exchange correlation functional and computation parameters mentioned in sec-
tion 4.5. The radii Ryt of muffin tin spheres centered at individual atoms are chosen
to be equal 2.26, 1.68 and 1.49 Bohr for Pb, Ti and O, respectively. The chosen
energy to separate core and valence electron treated electrons in the following orbital
as valence electrons: Pb —4f 5p bd 6s 6p, Ti — 3s 3p 3d 4s and O — 2s 2p. The fully

optimized structural parameters for PbTiOj3 are listed in Table 5.1
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Table 5.1: Structural parameters for PbTiO3 in the tetragonal phase obtained theo-

retically and experimentally.

Structural Present Experimental Other DFT
parameters calculations structure [95] calculations [25]
a (A) 3.858 3.905 3.905

c/a 1.047 1.063 1.063
dzpp/c (fixed) 0.0 0.0 0.0
dzrifc 0.033 0.04 0.048

520, /c 0.09 0.112 0.120
§205.04/C 0.102 0.112 0.128

5.3 Potential energy surface

The reaction space for energy surface calculation is chosen between four equivalent
polarization states oriented in different directions within [010] plane (Fig. 5.1). The
reaction coordinate £ however, takes values between (1,0), (0,1) and (0,0) for the fer-
roelectric structures with polarized down state (P, ), polarized left state (P,) and the
corresponding centrosymmetric structure only, as indicated by the shaded region in
Fig. 5.1. The energy profile for the full reaction space can be obtained by performing a
fourfold symmetry operation on the chosen reaction area where computation of energy
and polarization is performed. The structural parameters for an arbitrary transition
state ¢ is determined by a similar linear interpolation mentioned in Eq. (4.5).

The obtained energy surface takes a hat profile shape as a function of polarization

(Fig. 5.2). The profile finds the highest energy barrier for switching between the
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Figure 5.1: Reaction space for building the energy surface. The computation was

performed on the shaded area only because of the presence of the fourfold symmetry.

ferroelectric and cubic perovskite phase to be 72 meV. Previous theoretical studies [19,
129] indicate that this barrier height is extremely sensitive to the choice of an exchange
correlation functionals, mismatch of the lattice parameters and the choice of the basis
sets. The highest energy barrier between ferroelectric and cubic state ranged from
30-600 meV in those studies [19, 129]. Therefore, we also base our discussion on the
relative difference in the barrier height rather than its absolute value. The obtained
potential energy surface depicts that there exists regions where the corresponding
energy barriers are significantly smaller. These regions can be a favorable option for
ferroelectric switching path (indicated by arrows in Fig. 5.2). In addition, it may also
be possible to guide the switching in a path that the polarization reversal process

traverses through these minimum energy barrier regions.
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Total Energy difference (meV)

Figure 5.2: The 3-dimensional energy surface obtained from the Reaction space shown
in Fig. 5.1. The plot in the bottom represents the contour of the energy surface with
the four corner circles denoting the spontaneous polarization states. The maximum
in the middle of the contour plot corresponds to the centrosymmetric paraelectric

state.
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5.4 Optimum switching path

Polarization switching in a ferroelectric is characterized mainly by the coercive field,
Ec of the material which is defined as the field needed to switch polarization be-
tween oppositely polarized states. In the framework of conventional theory based
on LD model [118-120] which considers an Ising like switching, the coercive field is
determined by the highest derivative of the energy density profile as a function of
polarization. According to Eq. (5.1), the energy density profile in LD theory depends
on two parameters: energy barrier for ferroelectric to cubic paraelectric transition

and the spontaneous polarization of the crystal [122].

Un(P) = g— 2(P/P)? — (PIP)T] | (5.1)

Where Ej, is the energy barrier height, €2y is the equilibrium unit cell volume and F;
is the spontaneous polarization. For PbTiO3, with an energy barrier of 72 meV and a
spontaneous polarization of 0.8 C/m?, the coercive field yields a value of 372 MV /m
from the highest derivative of Eq. (5.1). LD theory implies that an alternating elec-
tric field with a peak amplitude equivalent to the coercive field obtained from LD
model lowers the barrier and switches the material to a polarization state in the field
direction and thus switching occurs along straight line path between two ferroelectric
states that traverses through the zero polarization cubic paraelectric transition state
(Ising type).

However, the potential energy surface in Fig. 5.2 depicts regions with much smaller
energy barriers that can favor ferroelectric switching. Such regions implies the pres-
ence of a smaller derivative of energy density with respect to polarization. Here,

we perform an optimum switching path determination study by applying alternative
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electric fields to the potential energy surface and observing the evolution of the energy
surface as a function of period.
The energy density will change in the following way due to the applied electric

field [122],

U=U,—EP (5.2)

where U is the energy density in response to an electric field, £. Uy represents the
ground state energy density.

To determine the switching path, we use an algorithm program. The program
searches for the optimum path by finding the steepest decent during potential surface
tilting by an electric field.

First, we apply an alternating electric field that has a peak amplitude of the
coercive field incurred from the LD theory to the potential energy profile along the
7. direction. The contour plot of evolution of the energy surface in response to the
alternating electric field is shown in Fig. 5.3(b-i) where Fig. 5.3(b) represents the
ground state energy surface where all four states of polarization are equally favorable.
Figure 5.3(f) corresponds to the Eo= 372 MV /m computed from the LD model which
shows that the material has switched to the ferroelectric state in the field direction.
However, our path determination program demonstrates that the switching doesn’t
take place in a linear path through the paraelectric state but rather the process occurs
along a curved path as indicated by the arrow in Fig. 5.3(f). It is also worth noticing
that the ferroelectric switching along a curved path also takes place (Fig. 5.3(e)) at

an electric field of 340 MV /m which is lower than the computed coercive field based
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on LD model. However, the next lowest electric field (263 MV /m) of the time period
does not favor ferroelectric switching (Fig. 5.3(d)) as the path algorithm suggests
that the polarization is situating at an intermediate state of switching. As a result,

it can be concluded that the optimum field for polarization reversal lies in between

263 MV/m and 340 MV /m.

Electric field,
58 3

e

2,
P(CHm?)

2
P,(Clm?)

1 05 05 1 1 0.

P (é/mz) ’ Px(é/mzi T o P, (é/mz) P ((n:/mz)
(U] (C)] (h) (i)
Figure 5.3: The applied alternating electric field (a) has peak value of £= 372 MV /m

05 1 1 05 05 1

incurred from LD model. The dots on panels (b-i) are spaced within T intervals of
the time period. Change in potential energy surface at electric fields during those

intervals are illustrated on labels (b-i)

Next, we make attempts to determine optimum field required to switch between
ferroelectric states by applying several magnitudes of alternating electric field ranging

from 263 MV/m to 340 MV/m. We find the field at which ferroelectric switching
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takes place (coercive field) to be 325 MV /m. Figure 5.4(b-i) shows the development
of potential energy surface in response to an alternating field having a peak amplitude
equivalent to the optimum field. Figure 5.4(f) corresponds to the energy surface at

the coercive field where the switching takes place in a curved path.
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Figure 5.4: Alternating electric field with peak value of Ec= 325 MV /m. The dots on

panels (b-i) are spaced within g intervals of the time period. Each contour plot from
(b-i) represents the evolution of energy surface during the corresponding period in-
terval. The ferroelectric switching takes place in a curved path at the peak amplitude

interval of 4 £ (f).

It is now apparent that for an applied field in particular direction, switching does

not take place along a linear path through the paraelectric state but rather follows
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a curved path requiring much lower electric field. Because of its curved nature,
ferroelectric switching path also has a component in the perpendicular direction to
the applied field. The analysis of the switching path suggests that the process can
facilitated by applying the electric field in a direction tangential to the path. Based
on this finding, we propose an alternative approach to drive a ferroelectric crystal

more energy efficiently. (patent pending)

5.5 A model to drive ferroelectric crystal

In a conventional operation of a ferroelectric material, a pair of electric contacts are
attached on the faces of the ferroelectric crystal (Fig. 5.5(a)) to apply alternating
electric field. However, as it is now evident that the switching takes place with a
component in the perpendicular direction too, we propose the addition of an assist-
ing electric field component in the perpendicular direction by attaching another set of
contacts on the corresponding faces (Fig. 5.5(b)). This additional alternating electric
field will serve as a guide to the curved path of switching process and as a result, the
ferroelectric switching can be achieved at a lower magnitude of electric field. Nev-
ertheless, since the perpendicular component of the curved switching path alternate
polarity during the half period, the perpendicular assisting field has to be applied
accordingly in a manner that it finishes the half cycle during the quarter period of
the main component of the electric field.

Such a ferroelectric switching with a lower magnitude of electric field essentially
implies lower hysteresis loss of the crystal which in turn results in lower dielectric

dissipation in the material.
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In addition, achievement of the identical piezoelectric response with a lower field
also implies a significant reduction in the power required to drive the crystal as the
applied current, /=E%/R where R is the ohmic resistance of the material. Thus,
ferroelectric switching with the proposed method can significantly improve the energy

efficiency along with reduced overheating issue.

(a) (b)

Figure 5.5: (a) Electric contacts (yellow plates) are applied in two opposite sides to
apply electric field in one direction (b) Proposed method of applying electric contacts

in a manner that electric field can be applied from 2 different direction

The curved nature of the switching path and proposed method of electric field from
two direction allow several ways of achieving the ferroelectric switching phenomenon.
Figure 5.6 presents one such particular example. Here, two sets of alternating electric
field has been applied with one of them (main component with a peak of 163 MV /m) in
the direction of desired switching (Z crystallographic direction) and another one with
same magnitude (peak of 163 MV /m) but with a phase shift of 90° as a perpendicular
assisting component in X crystallographic direction. Such an electric field can be
applied from identical source which makes the process much simpler in comparison

to process that involves several sources of electric field. Ferroelectric switching to
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the desired spontaneous polarization state takes place at a field of 163 MV/m in
the polarized direction and null in the perpendicular assisting direction (Fig. 5.6(f)).
It is thus confirmed that the ferroelectric switching with the proposed model can
take place with an coercive field significantly lower in magnitude than the field that
would require in achieving the same effect with a one directional field only. Since,
hysteresis loss of ferroelectric is depends on the coercive field of materials, reducing
the coercive field thus cause the shrinkage of the area of the hysteresis loop (Fig. 5.7
with less hysteresis loss. As a result, much less dielectric dissipation of the ferroelectric

material is ensured when a two dimensional electric field is applied.
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Figure 5.6: (a) The applied alternating electric field based on the proposed model

1

where the main component applied in the direction of switching has a peak of
163 MV/m and the assisting field has a peak of 115 MV/m. The panels (b-i) are
spaced within % intervals of the time period. Evolution of energy surface with alter-

nating electric field from two directions is illustrated from (b-i)
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Chapter 6

Conclusions

In this work, we first presented a module that extends the capability of WIEN2k
(all-electron density functional package) to the calculation of polarization using the
Berry phase approach. The accuracy of calculations was verified using a model of
non-interacting noble atoms. We applied the approach to calculation of spontaneous
polarization and Born effective charge of some well characterized perovskite crystals,
sodium chloride and zinc-blende structures. Obtained results agree well with alter-
native calculations and experimental data. The module serves as an useful tool for
studies involving ferroelectric materials within all electron full-potential linearized
augmented plane wave framework.

Then, with the goal of establishing a basis for screening of potential ferroelectric
materials, we performed a domain wall motion study in BaTiOgz. There, we have
shown that the polarization switching is a non-concurrent process which results in
the formation of domain walls. Our study has captured two distinct phases (nucle-

ation and propagation) of the domain wall motion at the microscopic level. Results
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of the calculations suggest that the nucleation of domain walls requires overcoming
of an energetic barrier, which is much higher than the one corresponding to the prop-
agation phase. The intrinsic coercive field was computed based on the total energy
vs. polarization profile. The coercive field calculated in the framework of Landau-
Devonshire model is comparable to the results obtained with a more elaborate theory
that includes effects of the domain wall motion. It is well known that, ferroelectric
switching is strongly influenced by the the domain wall motion. The study of such
motion will serve as a basis for future studies involving the application based screening
of ferroelectric materials using first principle methods.

Finally, we performed a study on finding the optimum switching path for polar-
ization reversal between two opposite spontaneous polarization states. Based on the
findings, we proposed an optimized method of applying electric field to the ferro-
electric crystal that can drive them with much lower value of field and thus, much
lower dielectric dissipation. Application of the proposed method experimentally to
the existing ferroelectric materials during MRgFUS operation will significantly assist

in reducing the current challenge involving the thermal build up during the treatment.
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