PARALLEL ALGORITHMS FOR
THE ITERATIVE SOLUTION OF

LARGE SPARSE LINEAR SYSTEMS

A thesis submitted to
Lakehead University

in partial fulfillment of the requirements
for the degree of

Master of Science

by

(::).Jﬁrgen Krettmann

1982

ProQuest Number: 10611694

Allrights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

ProQuest.
—— -_—

ProQuest 10611694
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106 - 1346

ACKNOWLEDGMENTS

I wish to thank my supervisor, Professor M.W. Benson,
for his advice and encouragement during the-preparation of

this thesis.

The use of approximate inverse for preconditioning the
conjugate gradient method was suggested by Dr. P. O.
Frederickson, Los Alamos National Laboratory, Los Alamos,

New Mexico.

Finally, I would like to thank Ahmoi for her support

during the preparation of this thesis.

Abstract

In this thesis we are concerned with iterative parallel
algorithms for solving finite difference equations arising
from boundary value problems. We propose various new
methods based on approximate inverses. The Jacobi iterative

method for the solution of 1linear equations 1is highly

parallel. Its slow convergence rate, however, has initiated
the study of a variety of acceleration techniques. We
introduce the "Diagonal-Block" and the "Least Squares"

techniQues for calculating approximate inverses which lead
naturally to generalized Jacobi methods that are well suited
to parallel processing. In addition, the calculations

required to establish the iterative process can be done in

parallel. A convergence theorem for a one-dimensional model
problem 1is given. Gauss-—-Seidel versions of these methods
are also considered. These versions converge faster but

often at the cost of decreased parallelism.

Preconditioning has been successfully used in
conjunction with the conjugate gradient method. Many such
techniqu;s use an approximation M to the matrix A of the
linear system under consideration and solvé a system of the
form Mz =4 at each iteration. If, however, an
approximate 1inverse mM-! is used, the solution z = M~ a

only involves a matrix-vector multiplication which is well

suited to parallel computation. We examine the

Diagonal-Block and the Least-Squares techniques for

preconditioning the conjugate gradient method.

Numerical results are presented. The proposed Jacobi
like and Gauss-Seidel 1like methods are compared with
parallel Gauss-Seidel methods in a class of parallel
algorithms proposed by Evans and Barlow (1982). The
preconditioned conjugate gradient methods are compared with
the plain conjugate gradient method. 1In all cases the speed
of convergence increased substantially, but often at the
expense of increased computational work. In some cases it
was necessary to assume the number of processors to be on
the order of N (the number of unknowns) in order to gain

an advantage from parallel processing.

ii

Abbreviation

PGS1

PGS2

JDB1(1I)

JDB2(1I)

GDB1(1I)

GDB2(1I)

JLSQ1(1I)

JLSQ2(1)

GLSQ1(1I)

GLSQ2(1)
CG

DBCG1(I)

DBCG2(1)

LSQCG1(1I)

LSQCG2(1I)

LIST OF ITERATIVE METHODS

Explanation

A Parallel Gauss-Seidel Version for
the one dimensional model problem.

A Parallel Gauss-Seidel Version for
the two dimensional model problem.

Jacobi Diagonal-Block methods for
the one dimensional model problem.

Jacobi Diagonal-Block methods for
the two dimensional model problem.

Gauss-Seidel Diagonal-Block methods
for the one dimensional model problem.

Gauss-Seidel Diagonal-Block methods
for the two dimensional model problem.

Jacobi Least-Squares methods for
the one dimensional model problem.

Jacobi Least-Squares methods for
the two dimensional model problem.

Gauss-Seidel Least-Squares methods
for the one dimensional model problem.

Gausss-Seidel Least-Squares methods
Conjugate Gradient Method

Diagonal-Block Conjugate Gradient methods
for the one dimensional model problem.

Diagonal-Block Conjugate Gradient methods
for the two dimensional model problem.

Least—-Squares Conjugate Gradient methods
for the one dimensional model problem.

Least-Squares Conjugate Gradient methods

for the two dimensional model problem.

1ii

I. INTRODUCTION

II. CONCEPTS OF PARALLEL COMPUTATION
II.1 Classification of Parallel Computers
11.2 Model of Parallel Computation

IT.3 Parallel Linear System Solvers

III. LINEAR STATIONARY METHODS

III.1 General Convergence Theorem

I11.2 Rates of Convergence

I11.3 Generalized Jacobi Methods

III.3.1 Jacobi Method

III.3.2 Jacobi Diagonal-Block Methods
111.3.3 Jacobi Least-Squares Methods

I1I11.4 Generalized Gauss-Seidel Methods

Iv. - GENERALIZED CONJUGATE GRADIENT METHODS
V. NUMERICAL EXPERIMENTS

BIBLIOGRAPHY

CONTENTS

APPENDIX A : Model Problems

Page

13

20
21
25
27
27
28
34

36

38

48

72

74

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

APPENDIX

.

Programs for Data Organization 78
Programs for finding Approximate Inverses 91
Programs for the Parallel Gauss-Seidel 99
Algorithms PGS1 and PGS2

Programs for Parallel Jacobi like 105
Methods using Approximate Inverses

Programs for Parallel Gauss-Seidel like 108
Methods using Approximate Inverses

Programs for Preconditioned Conjugate 113
Gradient Methods using Approximate Inverses

Miscellaneous Programs. 117

I. INTRODUCTION

In this thesis, we consider linear systemé arising 1in
connection with the numerical solution of boundary value
problems. These linear systems are large and sparse. We
propose several iterative algorithms that are based on
approximating_the inverse of the coefficient matrix of the
linear system. Our main objective is to investigate the use
of these approximate inverses for linear stationary methods
(see chapter 3) and preconditioned conjugate gradient

methods (see chapter 4) as a means to enhance the rate of

convergence.

"The iterative methods in this thesis, however, can be’
extremely costly in a computational sense (especially for
large linear systems). This suggests the concurrent use of
many processiﬂg elements in order to improve the speed of
computation and to handle large volumes of data. Massively
parallel computers, as assumed in this thesis, are not yet
available, but the development of VLSI circuits has made
them feasible (Siegel, 1982, Haynes, 1982). Moreover, it
is an op;n problem how expensive the interconnection between
processors will be and what limitations Ehat will pose on
the speed of computation. The interconnection requirements
will not be considered in our model of computation. The
methods under consideration, however, involve mainly

matrix-vector products which can be computed very

efficiently on a 1linear-connected systolic array as
considered by Kung and Leierson (see Haynes, et al.l1982).
No control of the data items is required once it is input
into the array. Systolic arrays can be thought of as part

of a larger computer system replacing certain sopftware

routines (Haynes, et al.l1982).

In chapter 2 we discuss certain aspects of parallel
computation and establish a general model of a parallel
computer which sets the background for comparing our
iterative processes. In section II.3 we develop two
parallel versions of the Gauss-Seidel iterative methods,
PGSl and PGS2, that exploit the sparsity structure of the
matrices under consideration. These methods serve as a
basis of comparison for the methods wusing approximate

inverses that are developed in the chapters that follow.

We will use two examples to illustrate our results (see
appendix A). We consider Young's two dimensional model
problem (Young,1971,pp. 2-4) and its one dimensional analog.
The one dimensional model problem provides a relatively

simple test problem for studying our proposed algorithms.

In chapter 3, we deal with linear stationary methods of

the form Uy = (I - BA) ug + Bb to solve the linear
system Au = b . 1In sections I1I.1 and 1II1I.2 we develop
some standard convergence results. According to these

results we attempt in section III.3 to create approximate

inverses B such that the spectral radius of I-BA is as

small as possible. The approximate inverse B is required
to satisfy a certain sparsity structure and the non-zero
entries are determined in a way that BA approximates the
identity. Two different techniques are developed; the

Diagonal-Block (DB) and the Least-Squares (LSQ) technique

(Benson, Frederickson, 1981,Benson, 1973). The corresponding
approximate inverses are used in Jacobi like and
Gauss-Seidel like iterations. 1In case of the Diagonal-Block

(DB) approximate inverses, we give a convergence result for
the Jacobi like methods applied to the one-dimensional model
problem. All experiments have been carried out on sparse
matrices. We remark that these techniques for approximating
the inverse are not necessarily restricted to such matrices.

The Least-Squares technique, however, is highly expensive if

the coefficient matrix is dense.

In chapter 4, we develop a generalized conjugate
gradient methoa for solving linear systems and discuss its
main properties. This method can be used 1in -conjunctiqn
with an approximation M to the coefficient matrix A. 1In
this case a linear system of the form Mz = d must Dbe
solved at each iteration. Applying the DB or LSQ

approximate inverses to this method, we can compute the

vector =z Dby matrix-vector multiplication.

In‘chapter 5, we present the results of our numerical
experiments on the two model problems considered. Two sets
of algorithms are compared with respect to two measures, the

speed of convergence and the amount of computational work

per iteration. The latter varies with the number of
independent processors that are assumed. The 1linear
stationary methods of chapter 3 are compared with the
Gauss—-Seidel methods PGS1 and PGS2 of chapter 2 and the
preconditioned conjugate gradient methods are compared with
the plain conjugate gradient method. It was found that the
number of iterations is reduced significantly when
approximate inverses are used. Moreover, the fbetter“ the
inverse of the coefficient matrix is approximated, the fewer
iterations are needed 1in most cases. If we include the
second measure of comparison, this result cannot be obtained
in all cases. We observe that in many cases the linear
stationary methods using the proposed approximate inverses
are shown to be advantageous over the parallel Gauss-Seidel_
methods of chapter 2, if an appropriate number of processors
is assumed. The same result applies to the preconditioned
conjugate gradient methods and the conjugate gradient
method. Finally we comment that all parallel algorithms in

this thesis are simulated on a uniprocessor.

II. CONCEPTS OF PARALLEL COMPUTATION

The advances in parallel computer systems during the
last decade have brought a new aspect to the classification
of numerical algorithms: sequential vs. parallel. The
concept behind parallel computing 1is that programs are
designed to hgve paths of independent calculations in order
to make use of many processors at a time. For optimal
efficiency, programs using P processors should run P times
faster than otherwise identical programs using only one
processor. However, "experience and théory show that the

actual speed-up is often much less" (Heller,1978).

The first section of this chapter 1is devoted to a
general discussion of parallel computers. In the second
section, we develop our model of parallel computation and
outline some of the problems occurring in this field. 1In
the third sec;ion, we present several parallel algorithms

for solving linear systems arising from differential

equations.

II.1 CLASSIFICATION OF PARALLEL COMPUTERS

Thus far, no single parallel computer system can be
considered as the dominant one. Our interest here is in the

following two important classes of parallel computers, first

defined by Flynn, 1966.

Instructions for each processor in a multi - processor
system come either from a central control unit or from the
individual processor. In the first case, the system has
only one stream of instructions in execution at a given
time, but each processor may affect many different data.
This is the single - instruction stream multiple - data
stream model (S I M D). SIMD machines are best suited
for algorithms requiring the same operation on large arrays
of independent data. Examples of this type are array
processors, pipeline processors, associate processors and
bit - slice processors (Stone, 1973). The more general
multiple - instruction stream multiple - data stream model
(MI MD) is configured as multiple independent processing
elements with no processor having overall control. MIMD
machines- are capable of executing different instructions
simultaneously, and each instruction may operate on a
different datum. For complex programs, the processors are
initially allocated to independent (parallel) paths, which
they execute until completion. Communication among the
individual processors still takes place in order to share

[3

information and to otherwise cooperate in the solution of

the problem (synchronization may take place).

The following discussion will emphasize SIMD machines,
since the iterative methods of the chapters that follow are
ideally suited for vector processes. Moreover, most of the

existing machines are of this type.

The importance of the above characterization of
parallel compgter systems lies in the fact that an algorithm
designed for an SIMD machine can be used with essentially
equal efficiency by all systems of that class. For example,
both an ILLIAC 1V and a pipeline computer such as

CDC STAR 100 are heavily oriented to vector processes, soO
that a good algorithm for one of them will tend to be a good
one for the other one as well. Nevertheless, to design an
algorithm that runs at maximum efficiency on a particular
computer, one may have to take the architecture of that
computer into account, since SIMD computers differ in
speqific capabilities. However, it 1is worthwhile to
investigate algorithms for SIMD computers because the
principle design of an algorithm is usually not affected by
the changes required for optimal efficiency. The same can

be said about algorithms for MIMD computers.(Stone,1973)

I1.2 MODEL OF PARALLEL COMPUTATION

There are various models of parallel computation. The
theoretical model assumes unlimited parallelism in the sense
that the number of required processors varies with the size
of the problem under consideration (" sufficiently many
processors ",Heller,1978). Our interest is in the
iterative solution of a linéar system of equations with a
banded (or striped) and large matrix, say of order 10° to

\O‘. Therefore we prefer the practical model that has a
fixed number of processors, independent of the application.
Nevertheless, we will alsov for simplicity refer to the

theoretical model, which might be justified by the current

technology that has created the " age of the
microprocessor " thus making the future construction of
computer systems with '’ to A" processors feasible

(Siegel,1982,see also Haynes, 1982).

‘The precise details of the architectures are
unimportant for our purposes. When we speak of a SIMD
machine, we have in mind a computer system consisting of a
control -unit, P processing elements (PE's) and an
interconnection network. Each PE consists .0f a processor
with its own private memory for intermediate storage, and
each PE also has access to a common memory. The PE's are
connected by a network, and fed instructions by the control
unit. To simplify discussions we make the strong assumption

that any processor can obtain any data in one time step,

that is to say we will ignore the time required for data
acquisition and concentrate on the arithmetic time. We
remark that we can convert this computer model into an MIMD

model by storing predetermined instructions in the private

memory of each PE.

The above assumption that each processor can fetch any
data item in one time step (cycle) is somewhat ideal. In
reality, constraints on the computer architecture can create
complex problems of data manipulation, which may result in a
significant 1loss of processing power. The systolic
architectural concept (see Kung, 1982) optimizes the
data-communication structures among the processors at the
price of specialization. This concept results in extremely
high speed and efficient special-purpose systems. The basic
idea 1is an overlapping of 1/0 and computation. Each data
item is operated on many times and no further control is
required after the data item is input into the array of
processors. A simple example is the 1linearly connected
array considered by Kung and Leiserson (see Haynes,et
al.,1982,p.10).This systolic array can compute a
matrix-vector product of size N with a banded matrix of
bandwidth W in 2N+W time units when W/2 processors are
used. This is fairly close to the 2N tiﬁe units that are
required when the above idealized computer model is assumed.
Since systolic arrays are very . specialized systems of
processors it is desirable that they be part of a larger

computing system. At this point, however, the integration

of these special purpose devices into a larger computing

system . is an open problem.

In order to evaluate the algorithms and. the computer
systems under consideration, it 1s necessary to have some
measure of efficiency. We mentioned earlier that for a
parallel computer system that can support P simultaneous
processes, the ideal speed-up is P . This leads to the

following definitions (Schendel, 1981).

Definition 2.1 :

For a given problem let T(1l) be the running time of the best
known (fastest) sequential algorithm, and let T(P) be the

running time of a parallel algorithm using P processors and

solving the same problem. Then the speed-up ratio 1is

defined as

(2.1) s(p) = T(1)/T(P),

The speed-up ratio measures the improvement 1in execution
time using parallelism, but it does not take into account
how well each processor is being used. We may have severe

unemployment among the processors. Therefore we define

efficiency as
(2.2) E(P) = Ss(p) / P .

To compare parallel algorithms solving the same problem, we

define the effectiveness of a parallel algorithm as

N

(2.3) F(pP) = s(p) / (P * T(P))

10

Note that C(Pp) := P * T(P) measures the cost of the

algorithm. Also F(P) = S(P)/(P*T‘(P)) = E(P)/T(P) = E(P) *
s(P)/T(1) ,i.e. F(P)£ 1l , can be seen as a measure for the
speed-up and the efficiency. Therefore we tend to maximize
the function F(P) in order to achieve a good parallel
algorithm. It 1is not difficult to show that S(P)<& P and

E(P)< 1 . Although one of our objectives is to obtain
optimal efficiency, it is not practical to choose the number
of processors in order to maximize the function E(P) (

note that E(1l) =1). (Heller,1978)

The ideal speed-up ratio is 1linear in P, since the
processors are used efficiently in that case. Such speed-up
ratios can be attained in problems that have iterative
structure, such as systems of linear equations and other
vector-matrix problems. A number of factors such as
synchronizatioﬁ, overhead, or input/output (I/0) can cause a
smaller speed-up ratio. Speed-up ratios of the form k * P /
log (P) are still acceptable, but algorithms with a speed-up

ratio of X * log (P) are not suited very well to parallel

computation. (Stone,1973)

In the remainder of this section we describe briefly
some of the problems that occur in parallel computation.
Parallel computation cannot be considered as a trivial
extension of serial computation, in the sense that efficient
serial algorithms cannot necessarily be automatically

transformed into efficient parallel algorithms. In fact,

11

inefficient serial algorithms may even lead to efficient
parallel algorithms and vice versa. Batcher (1968), for
example, has formulated a parallel sorting algorithm that
stems from an inefficient serial sorting algorithm (see
Stone,1973). Moreover, memory access and the interprocessor
communication 1is crucial for successful exploitation of

parallelism (Haynes,et al.,1982).

We mentioned earlier that the problem of communication
among the processors is crucial to successful exploitation

of parallelism. Therefore the data in parallel computers

must be arranged in memory for efficient parallel
computation. One example is the storage of a matrix in an
unconventional way known as skewed storage (see

Schendel,1981,pp.19-24), which allows for fetching rows and
columns with equal ease. An extension of skewed memory
storage is given by Budnik and Kuck,1971, who explore
variations of the ILLIAC IV architecture which allow for

fetching rows,. columns, diagonals and certain submatrices

with equal efficiency.

The architectural feature of the CDC-STAR, however,
requiress vector operants to be contiguous blocks of memory
locations in order to simplify memory transfers
(Heller, 1978). Consequently, the above storage technique
does not apply for the STAR. But the STAR has features that

allow for transposing matrices very efficiently

(Stone,1973).

12

Finally we observe that parallel programs may behave
quite differently numerically than their serial cgunterpart.
In the next section we describe an iterative algorithm where
the parallel version converges more slowly than the serial

version. However, the convergence rate of the parallel

algorithm can be improved by simple modifications.

II.3 PARALLEL LINEAR SYSTEM SOLVERS

In this section we are concerned with a class of

parallel methods proposed by Barlow and Evans, 1982 (see
also Stone,1973). The methods are parallel forms of the

Gauss—-Seidel method.

For example, consider the two dimensional model problem
of appendix A ., that 1is the discretized version of
Laplace's equation on the interior of a square with zero
boundary conditions. First, we consider the so-called
natural ordering of the mesh-points, that is. the rows of the
mesh are numbered from bottom to top and the columns are
numbered from left to right. Denoting the solution at an
arbitrary mesh-point in the interior of the sgquare by MP

and the solution at its four neighbours by . N,E,W and S

’

the Jacobi iterative method is

(2.4) 'MP(i)_= [N(i-1) + E(i-1) + W(i-1) + s(i-1) 1/ 4,

where MP (1) denotes the wvalue of MP at the i'th

iteration. From formula (2.4) one sees that all new values

13

at the mesh-points are calculated from the old values at the
neighbouring mesh-points. Thus, all mesh=-points can be
updated in parallel. The convergence rate of the Jacobi
method can be improved by wusing new data as soon as it
becomes available, but at a cost of reduced parallelism.

Thus, we get the Gauss-Seidel method :
(2.5) MP(i) = [N(i=1) + E(i-1) + W(i) + S(i) 1/ 4 .

This method converges much faster than the Jacobi method,
since it makes use of the newer data which are more accurate
than the older data. In the case vwhere the coefficient
matrix A has property A [see Young,1971,pp. 41-42]

the Gauss-Seidel method converges twice as fast as the

Jacobi method.

-

One simple parallel implementation of the above method
is to update the points on one entire row of the mesh at a
time, starting.at the bottom. In this case the iteration

formula is given by
(2.6) MP(i) = [N(i-1) + E(i-1) + W(i-1) + s(i) 1 / 4.

Since only the point S contributes new data in this

formula, we can expect that this method requires roughly 5¢%

more iterations than the Gauss-Seidel method.

Scanning the mesh-points by diagonals as shown in

14

Fig. (2.8), we obtain a parallel algorithm that has the

Gauss - Seidel convergence rate (Stone,1973).

43 2 19 18 26 34 42

36 44 3 11 19 27 35
29 37 45 4 12 20 28
22 3¢ 38 46 5 13 21
15 23 31 39 47 6 14
8 16 24 32 40 48 7

1 9 17 25 33 41 49
Fig. (2.8)

The iteration formula for this method is equation (2.5), so
that the rate of convergence 1is the same as the serial
Gauss-Seidel algorithm. In fact, by theorem 3.4

(Young,1971,p.147) any consistent reordering does not change

the eigenvalues of the iteration matrix. 1In particular, the
matrix x of the 1linear system corresponding to a
permutation @ of the mesh-points is a similarity

transformation of the matrix A associated with the natural
ordering :

A = p'a p,

where the permutation matrix P consists of the columns of
the identity matrix permuted according to d . Thus we can
see that

. ~ -1
diag A = P (diag A) P ,

where diag A denotes the diagonal matrix associated with

A .

Now,

I - (diag A)_| X

(2}
i

- - "l -
=pP'P-P'P (diagX) p'A P

- -‘ -
P'(I-P(diagAh) P'A) P
= P~ (I - (diag Afd A) P

p'c P,

It

N
where G and G are the iteration matrices of the Jacobi

method for the systems Au = b and Au=05b respectively.

Hence G and G have the same eigenvalues and therefore -

by Young's result (see above) - the eigenvalues of the

Gauss-Seidel iteration matrix are the same for the two

systems.

Let T(1) = a * (N**2) be the number of time wunits’

required for the sequential Gauss-Seidel algorithm, where
"a" is the number of required iterations. Then the “time
units wused bj the line-parallel Gauss-Seidel (2.6) and the
diagonal-parallel Gauss-Seidel method (see (2.5) and
fig.(2.8)) are T(N) = 3/2 a N and T(N) = a N respectively,
so that we have a speed-up of 2/3 N for the line-parallel

Gauss-Seidel and a speed-up of N for the diagonal-parallel

Gauss-Seidel method assuming that N processors are
available.
The above idea of constructing parallel Gauss - Seidel

methods has been generalized by Barlow and Evans (1982). A

matrix A Thaving property A can be rearranged so that

16

where D; ,i = 1,2 are diagonal matrices. This means that

the 1indices of the equations of the linear system can be

divided into two disjoint subsets so that the wupdate

equation corresponding to one subset involves only the
components corresponding to the other set. Thus all the

updates within one subset can be done in parallel.

Applying this idea to a tridiagonal matrix we get the

following method
u(jli+l) = L a(]) * u(j"lli)

+ c(3) * u(j+1,1) 1 / v(3) .,

for j odd, and
(2.9)

u(j,i+l) = [a(j) * u(j-1,i+1)

+ c(3) * u(j+1,i+1) 1 / b{(j) .,

for j even ,

-

where 1 1is the iteration index , j 1is the index for the

j'th component of the vector u and the vectors a , b and

c represent the subdiagonal, the diagonal and the

superdiagonal of the tridiagonal matrix . The above

updating scheme uses "o0ld" data for updating the "even"

components and "new" data for updating the "odd" components.

17

Thus, in the mean,over a sequence of iterations, this method
makes use of one "new" datum for updating one component of
u . For this method we get the same convergence rate as
for the sequential Gauss-Seidel method, since this method
corresponds to a consistent reordering of the matrix A of
the 1linear system (the same argument as above for the
method using a reordering as shown in Fig (2.8)). Two
steps are needed in order to update all components of u at
each iteration if N/2 processors are available (ﬁﬁ is
the integer defined by X M < x+1). Since the
convergence rate is the same as for the Gauss-Seidel method
we get a speed-up ratio of N/2 (see equ. (2.1)). 1In the
chapters that follow we refer to this method as the PGS1
method. This method will be used in the numerical section

for the purpose of comparison.

The same idea applies to the solution of the 1linear
system arising'from the discretization of Laplace's equation
in the interior of a square (second model problem) . We
scan the mesh of unknowns by diagonals. Now the updating
scheme consists of updating every second diagonal starting

in the 1lower left corner with "0ld" data and then updating

the rest of the mesh-points with "new" data . Note that
during the second half of an iteration all four neighbours
have already been updated during the first half of the
iteration. In the mean (over several iterations) each

component of u is updated with two "new" (updated)

neighbours and two "old" neighbours. Thus the convergence

18

rate is again the same as for the sequential Gauss-Seidel
method, since this method <corresponds to a consistent
reordering of the matrix A of the linear system (the same
argument as above). Therefore we can achieve a speed-up of
(N**2 })/2 which is an improvement over the diagonal
parallel Gauss-Seidel method (the method based on the
ordering of Fig.(2.8)). On the other hand, the number of
regquired processors to achieve the above speed-up increases
like O(N**2). We denote this method for future reference

by PGS2 . The PGS2 method will serve as a basis of

comparison in chapter 5.

Parallel versions of the standard successive
overrelaxation (SOR) method can be constructed in a manner

similar to the parallel Gauss-Seidel methods.

III. LINEAR STATIONARY METHODS

Our concern in this section is solely with linear stationary
methods of first degree, which have the form (Young, 1971)

(3.1) U= G ue+ L , keN ,

where G is an NxN matrix and L some N vector. The
iterative method (3.1) is wused to solve a linear system
Au = b , where we assume throughout that A is a real
nonsingular matrix. Thus the solution of the linear system

exists and is unique, and the solution vector is given

explicitly by

(3.2) u = n'p

In this chapter, we give some basic definitions and develop
some standard results which set a background for the work to
follow. We also propose a dgeneralization of the well-known
Jacobi method Dbased on the idea of approximate inverses.
These methods are ideally suited for parallel processing.
The approximate inverses can also be used in a Gauss-Seidel-—
like 1implementation of (3.1), where each component is
updated sequentially with the most recent data available.
The parallelism is thereby limited to the number of non-zero
entries per row of the iteration matrix G . 1In some cases,

however, techniques of chapter two can be used to increase

parallelism (see section III.4).

20

IIT.1 GENERAL CONVERGENCE THEOREM

In this section we determine under what conditions the
sequence { uR}NEW defined Dby (3.1) converges for any
starting vector to the unique solution of the system under
consideration. The following results are developed in Young
(1971) in a more general context than that required for our
purposes. First we give the following

DEFINITION 3.1

The spectral radius of a matrix A 1is defined as

S(A) =max { 1Al : A is an eigenvalue of A }.
Before we can establish our main result of this section, we
need

LEMMA 3.2 [Young,1971,p.32]

For_any matrix norm i -if

we have
s(A) £ WAl
Proof:
Defining the compatible vector norm H-ll, by
wvn, = IBI ,
where B 1is the matrix whose first column is v and all

other elements vanish, we have
A <
A vl < uaf uvi_,
for all A and v . For any eigenvalue A of A and an

associated eigenvector v we have A v = A v , and hence

A vy =IN vl & KAl v, i.e. TAL S UAN . a

21

We also require

~

LEMMA 3.3 [Young,1971,p. 36]

The following conditions are equivalent

i) lim fA"vl = @
A= o0

’
for all v €R" and any vector norm.

ii) s(A) <1

Proof:
(i1 => i)
Suppose S(A) <1 . By Theorem 3.5 (Young, 1971, p.33)

there exists for any given & > ¢ a nonsingular matrix M

such that
(*) AN, S(A) + €
-} T ‘/1
where HAN"=IlM A Mﬂ1 and HAHI = Ss(A A) . Hence, for
€ sufficiently small, we have
HAHH < 1.
Since nA"mgﬂéﬂ; it follows that HAﬁLréﬂ . Thus
n
(**) lim AV, £ lim WAl WH, = @,
A= 0o n= o "
where Il is the vector norm defined as in the proof of
Lemma 3.2 for the case of the matrix norm Hthan . But

(**) implies i) , which completes the first half of the

proof.

(i =>1ii)

Suppose NAvl->8 and AA™ does not converge to zero for

any vector norm |-\ . Now it »is impossible that
S(A) <1 , since by (*) we could find a matrix norm such

that {Al <1 . Thus we can find an eigenvalue A of A

with IAM21 and a vector v $# @ such that Av =)\v holds.
L) n
Hence ~HAvil = INWI which does not converge to =zero.

Therefore condition i) implies that nay converges to zero

for any matrix norm.

Now suppose s(a) > 1 . Then, by Lemma 2.2
1< s(A) € A for any matrix norm. Thus we have
1£s(aA") €A™ for all n . Hence 1ii) 1is a necessary

condition for i) which completes the proof. =

Now we can state our main result of this section.

GENERAL CONVERGENCE THEOREM 3.4 [Young,1971,p.77]

The iterative method

U, = Gu, + L
is convergent independent of the starting vector u, if and
only if
S(G) <1 .

Moveover, it converges to the unique solution of the 1linear
system Au = b if and only if
- L = (1-G) A" v
and
s(G) < 1

holds.

23

Proof
If lim u, = Q exists independent of the starting vector
x> oo
u then
PN _ ' _ .
U = limu ;= lim (G u + L)
K-> oo kK-> oo

G (lim uK) + L
K-> on

=G+ L ,

i.e. (*) (1-¢)Q

L.

Defining E,=u,~T we get from (*),

— A —
Uy, = G u, + (I-G) ©@ . Hence Ei™ G &y and
K

(**) Ex= G €°°

Now, by Lemma 3.3, 1lim NEN= @ for all g, if and only if
K-> <o
S(G) < 1 holds.

N
If S(G) < 1 , then det(I-G)=.Tr(l—)i) + @ (where the
AS are the eigenvalues of G) ana-Lhe equation (I-G)u=L
has a unique solution, say a . By Lemma 3.3 we have
HEN20 > as k~>» @@, which completes the first part of the

proof.

Since I-G is nonsingular when S{(A) < 1 , we get from

(*) T« (I-6G)L=AD. Conversely, if the sequence

-1 -1
{ uk}ksm: converges to z =ADb then L= (I-G) A Db,

which completes the proof. .

24

Finally, we remark that from Lemma 3.2 and Theorem 3.4
we can see that HiGll < 1 for some matrix norm is sufficient

for convergence of the iterative method (3.1).

III.2 RATES OF CONVERGENCE

It is important to understand something about the rate of
convergence of different algorithms, since to a certain
extent the rate of convergence of a method is as important
as the fact that it converges; if it converges slowly we
may never be able to see it converge. Therefore, 1in this

section, we shall outline certain results which give insight

into rates of convergence.

A reasonable algorithm should at 1least be linearly
convergent in the sense that if the sequence { u,]} is

generated by the algorithm and converges to u?* then for

’

some norm W' there is a c €(@,1) and ko> @ such that

(3.3) eyl €c e . k2K

where € = U - u® . This guarantees that eventually the

error will Dbe decreased by the factor ¢ <1 on each

iteration.

We observe that the method (3.1) is linearly convergent

if il < 1 for some norm (¢ = NGl , see proof of Theorem

3.4). However, in many cases it appears to be difficult to

show that NGl < 1 for some matrix norm. This is, for

example, the case with our two model problems. We follow
Varga (1962) and define the asymptotic rate of convergence

in terms of the spectral radius. Our interest is in the

behaviour of the term

)
8“= (ne N / neJlfﬁ

as X=300 . We have seen before that = © S ((**) 1in

the proof of Theorem 3.4). Thus we can estimate Gk by
e ™

Using the fact

(3.4) S(A) = 1lim (ﬁG"H)ZU
K=) o

for any complex matrix G and arbitrary norm (see Varga

1962, p.67, Young, 1971, p.87),we have

. K}"
(3.5) lim (- 1n MG W)= - 1n S(G) = R (G).

K-> had
The quantity . Rm(G) is called the asymptotic rate of
convergence. We remark that RQUS) is an asymptotic value

and does not necessarily reflect the initial behaviour of a
particular iterative process. However, in order to obtain a
high convergence rate of the iteratve process (3.1) , one of
our objectives should be the creation of a matrix G such
that S(G) 1is as small as possible. At the same time one
must decide if the increased amount of work involved in

reducing S(G) is justified.

26

III.3 GENERALIZED JACOBI METHODS

For our purpose we need the iteration (3.1) in a slightly

modified form which is more appropriate for the context of

this section:

where B 1is an NxN matrix. In fact, Theorem 2.6 in Young
(1971, p.68) shows that iteration (3.1) and iteration

(3.6) are equivalent (if B is nonsingular). The matrix
B is serving as an approximate inverse to A . The
concept of an approximate inverse is fundamental to all the
iterative procedures considered 1in this thesis. ?he
"better" the approximaﬁe inverse B , the faster we expect
-the method (3.6) to converge to the unique solution

-l -
u?*= & b . 1In fact, if B = A" , equation (3.6) shows

= u?
that u, 4= u’ .

I1II.3.1 JACOBI METHOD
The well-known Jacobi Method uses a diagonal approximate

inverse B , which satisfies the following conditions

(3'7) (BA)“ =1 ' i= 1,..,N ’

where B 1is a diagonal matrix. The Jacobi Method is highly
parallel but it shows a slow convergence rate. 1In the
remainder of this section we define better sparse

approximate inverses and give a convergence proof for the

one dimensional model problem.

27

IIT.3.2 JACOBI DIAGONAL-BLOCK METHODS
In case of a one dimensional problem these methods use a
p-diagonal (peN, odd , pg€ 2N-1) approximate inverse B
that satisfies the following condition

(Benson, Frederickson, 1981)
(3.8) (BA). = 8is i - j) €(p-1)/2 ,
where we assumed that B 1is a banded matrix with bandwidth

(p-1)/2 .

i

The non-zero elements of the 1i'th row of the
approximate inverse B are - according to (3.8) - defined

as the solution of the following linear system:

E . R]
av~K, 1k, a--ﬂ(rs-k, 2
. . . g
(3.9) i.u": an- ‘ aiext,i x = |1
. . . 2
a: e e e e a: X)

1~K, 1Ky IR ATIALY ! '
e — p

where X is some vector and

-1 (p-1)/2 if i > (p-1)/2
K, =
i-1 if i & (p-1)/2
and
(p-2)/2 if i < N-(p-1)/2
ko=

N-i if i » N-(p-1)/2

28

and the "1" on the right-hand side of (3.9) is in position
k,+1 .

A method of tﬁe form (3.6) using an approximate inverse
B defined by (3.8) is referred to as Jacobi

Diagonal-Block Method (JDBl(p)) in the chapters that

follow.

Now we show that the method (3.6) with an approximate

inverse defined by (3.8) converges if applied to our one

dimensional model problem.

Consider a linear system with the tridiagonal matrix

-2 1 T
1 -2 1
1 ~2 1
(3.18) A = ..
1 -2 1
1 -2 .

The systems of the form (3.9) now become

(3.11) . . . x =11

29

with appropriate modifications near the start and the end of

the band of A . Here x 1is a vector of unknowns and the

position of the "1" on the right—hana side is dependent on

the row of the approximate inverse B to be determined (see

formula (3.9)).

Defining the sequence { r } by

r, = 1/2
(3.12)
-
ry= (2-1r_) =m/(m+1)
the first and the last component of the solution vector f

of (3.11) are given by

-1
(M ep) (r, -2+) o i k>0
£ =
- . _
(-—2+rk1) . 1f k,= 0
Ky
(Tr r) (r, -2+ r,)" if kx> O
ma) ™ K, Ka ! 2
fL=
-1
(r, - 2) + if ky= 0
where k, and Ka are the same as in (3.9) and
L =k, + kg +1 . This can be simplified to
£, = - (kpt 1)/ (k,+ kat 2)
EL= — (kv 1)/ Ukt ke 2).

30

Thus we have

r -
1 0 . . g c(l)
g1 %)
. g
o c(s+1)
—15 1 —05
(3.14) BA = . .
-.5 1. "'05
d(N-s) 1 1]
1] . .
. . o
a(N)g . . 81 N
i)
where s = (p-1)/2 , «¢(j) = —j/(s+j+1), j=1,..,s+1, and

a(i) = [i - (N+1) 1/ [s-(i1-(N+2)]J, i = N-s,..,N.

The following theorem is an extension of theorem 2.1 of

Young (1971,p. 187) for the speciaI- case of our one

dimensional model problem.

31

CONVERGENCE THEOREM 3.5

Consider a linear system with the matrix A given 1in
(3.19) and the iterative method (3.6) . Let the

approximate inverse B be defined by condition (3.8)

Then the Jacobi Diagonal-Block Method converges.

Proof

If S(I-BA) 21, there exists an eigenvalue M of I-BA such
that erZrl . Now det [{(I-BA) —/41 J= @6 . Denoting the
associated eigenvector of /u by \% we have
[(I-BA) —/uI] v=26 . Thus { I—/Ik I-BA)} v = @ and we
have a nontrivial solution v$ @ of a homogeneous linear
system. Therefore det [I—/:Q I-BA)] = @ . For our one
dimensional model problem we see from (3.14) that the
nonzero elements of the matrix /;‘(I-BA) are less than
one 1in absolute value (since V“‘?l). Hence the
M = I—/JZI—BAY matrix is weakly diagonal dominant (see

Young, 1971, p. 187).

Reordering the rows and columns of M , we can get a

~
matrix M of the form

—
—
~

- M'
Mg

=
I

32

where each block ﬁ} is irreducible and weakly diagonally
dominant. Hence by Theorem 2-5.3 (Young, 1971, ©p 40)

det M = det M#$ O and we have a contradiction. []

The Diagonal-Block Methods for two dimensional boundary

value problems use a striped approximate inverse that has

P (p=5+pp*6 , pp =60,1,..) stripes of non-zero
2 . .

entries. For an (Ntx N) matrix A and assuming that

pp < (N-1)/2° , the approximate inverse B with)

stripes of non-zero entries is defined by the following

conditions
(B * A),. =1
"
. 2
(B *nAa). « = @ i <N-Xk +1, k=1,2,..,pp+l
(RE 2
(B * A);;“ = @ i>%kx , k=1,2,..,pp+l
(3.15)
: a
(B * A). = g i <N-(N+k) + 1, k=0,1,..,pp
|’|§Uﬁk
(B*aA)., =2 i <N*- (N-k) + 1, k=8,1,..,pp
L ieN=-K
(B *An). = @ i>»N-%, k=06,1,..,pp
1, 1-N4k
* . = i + ’ =,1,.., ’
(B S, i > N k k=0,1 PP

where the indices of the non-zero values of B are the ones

used for the conditions (3.15)

33

As in the one dimensional case, the non-zero elements

of each row of the approximate inverses B are - according
to (3.15) - defined as the solution of a small linear
system. For the two dimensional model problem with p =5
(pp = 8), for instance, a typical system is :

-4 0 1 0 0O i 'b~

9 -4 1 0 0O %]
(3.16) 1 1 -4 1 1 x =]|1

P 9 1 -4 @ (%]

8 8 1 0 -4 | 2]

In the chapters that follow we refer to methods of the form

(3.06) that wuse an approximate inverse B defined by

(3.15) with p stripes of non-zero values as the Jacobi

Diagonal-Block (JDB2(p)) Methods.

III.3.3 JACOBI LEAST-SQUARES METHODS

The approximate inverses B for the Jacobi Least-Squares

(JLsQ(p)) Method that are defined in this section have
the same sparsity pattern as the approximate inverses for
the corresponding Jacobi Diagonal-Block Methods. The

non-zero entries of B , however, are determined 1in a

different way. Eaéh row of B is defined as the solution
of an overdetermined system of linear equations. Suppose
that the non-zero entries of the i'th row of B are in the
columns iy,ia,..,ig and the indices of the columns of A

(the matrix of the linear system to be solved) that have

34

at least one non-zero element in either one of the rows

i,,i3...41g are j"ja""jx + then the overdetermined

system for the i'th row of B 1is given by

r— T P -
a..s' L) . L] . a:‘s' g
. . %]
. . x =11
. . 4]
ae*’ a' . g
L "‘2 'SIQ L -'
where x 1s a vector of unknowns and the "1" on the

right-hand side is in the position of the row that contains

the diagonal element a of A .

.
i

Solving the above systems for each i in the
least-squares sense and applying the resulting approximate
inverse to the update formula (3.6) we get the JLSQ1(p)
and JLSQ2(p) method (p 1is the number of stripes with
non-zero enties) for the one dimensional and two
dimensional model problem respectively. We remark that
these methods minimize the Frobenius norm of the iteration
matrix I - BA([F over the set of matrices ., B with a given
sparsity pattern . The calculations for each row of B are

uncoupled and hence can be performed in parallel.

35

III.4 GENERALIZED GAUSS-SEIDEL METHODS

As mentioned earlier, each approximate inverse defined above
can also Dbe used in a Gauss-Seidel like implementation of

(3.1) or (3.6) . 1In this case each component is updated
sequentially so that the most recent data is always used.
This increases the speed of convergence, but at a cost of
decreased parallelism. However, if the number of processors
is not greater than the maximum number of non-zeros of a row
of the 1iteration matrix I-BA , then a Gauss-Seidel like
method involves the same amount of work per iteration as the
corresponding Jacobi 1like method. We use this type of
parallel Gauss-Seidel method for solving the two dimensional
model problem and denote these methods by GDB2(p) and
GLSQ2(p) for the diagonal-block and the least-squares
versions respectively. In the one dimensional case we use
this type of method only in conjunction with the
least-squares approximate inverses resulting in the
GLSQl(p) methods, but it «can also be defined for

diagonal-block approximate inverses.

In the tridiagonal case we can increase the number of
operations that may be executed simuitaneously, when
diagonal-block approximate inverses are used. From (3.14)
we conclude that it 1is possible to divide the set of row
indices of the iteration matrix I-BA into two disjoint

subsets, such that the update formula for the components

36

corresponding to the one subset only involves components
corresponding to the other subset and vice versa. Thus we
can apply the technique of chapter two to obtain a parallel
Gauss-Seidel version that has more independent calculations
than the above version. In particular, if the approximate

inverse B has p stripes of non-zero entries, the subsets

of indices are the following :

L=1{1,..,2,22z+1,..,32,42+1,... '} n { 1,..,N}
H={ z+1,..,22,32+1,..,42,5z+1,... }n{ 1,..,N } ,
where =z = (p-1)/2+1 and N is the size of the 1linear

system under consideration. These methods are referred to
as the Gauss-Seidel Diagonal-Block (GDBl(p)) Methods.
They are as parallel as the Gauss-Seidel method of
chapter 2, that is, they can benefit from as many parallel
processors -as . the number of unknowns. We remark that this
is a very special case. The extension of these ideas to

more general cases could be a topic for future

investigation.

37

IV. GENERALIZED CONJUGATE GRADIENT METHODS

In this chapter we are concerned with generalized
conjugate gradient methods that minimize the error
functional over subspaces of increasing dimension
(Chandra, 1978). Solving the linear system Ax = b with an

NxN symmetric and positive definite matrix 1is equivalent

to minimizing the functional

(4.1) E(x) = (A (x* x), - x)

’

where x¥* is the solution of the 1linear system under

consideration and (-, <) denotes the usual vector
inner-product (this notation will be used throughout this‘
chapter).These methods generate for each iterate x, a
direction p, of local descent in the sense that there 1is
an q:‘ ‘spch that E(X t o Py } < E(X) for
Q € (0, Q*K) . The next iterate is of the form
Xy = X 19, Py ,where the parameter & is chosen as the
minimum of the error functional E along the direction
Py - The directions and the parameter are chosen in such a
way that the sequence of gradients { grad(E(x,)) h<€w
converges to zero. The idea behind this approach is that if

‘lgrad(E(xK))ll is small then usually x, is near a zero
of grad E while the fact that { E(x,) } is decreasing
indicates that this zero of grad E 1is probably a minimizer

of E . In fact, the directions are pairwise M-orthogonal

for some symmetric positive definite matrix M and the Xen

38

obtained actually minimizes the error functional on the
affine subspace x, + span(p‘,p.,..,px) ,where x, 1is the

starting vector (see Chandra,1978).Thus we get the important
property that, theoretically, the solution of a linear

system with an NxN positive definite matrix is obtained

in at most N steps.

The conjugate gradient method (proposed by Hesteness
and Stiefel 'in 1952 as a direct method for solving linear
systems) did not, in practice, perform as well as it was
expected to from its theoretical properties. The solution
procedure was often seriously perturbed by accumulating
round-cff errors (even for small systems). However,

extensive numerical tests with the CG-method used as an

iterative method has shown it to be an efficient method for

solving large sparse systems (Chandra, 1978, Concus, et

al.,l97e6).

Before we discuss the generalized conjugate gradient
methods in the form mentioned‘above, we proceed as follows.
The CG algorithm can be generalized using a matrix
splitting, A=M--N. | At each iteration, then, a system
with coefficient matrix M must be solved. For rapid
convergence, the matrix M should, .in some sense,
-t

approximate A, that is, the matrix B A , where B = M

should approximate the identity. Now, solving the linear

39

system - Ax

b is equivalent to solving

(4.2) Mx = Nx+DL

where N M - A.

i

Using this approach, the CG algorithm can be stated as a

higher order method of the form

(4.3) Xy = Xt Wiy K, Zg t X, - xk_l)

where Wy and &, are real ' parameters and the

vector z ., is defined by

- . . .
where M = B . The question of choosing an appropriate
matrix splitting 1is equivalent to the question of choosing
an appropriate matrix for scaling (preconditioning). Thus,

the matrix B serves for preconditioning the linear system

to be solved

(4.5) B A x

i
ve}
T

Many iterative methods can be described by (4.3)

The Richardson second order method and the Chebyshev
semi-iterative method are examples of such a method (see
Young, 1971, pp. 361-367). Our interest here is in the

following generalized conjugate gradient algorithm using the

above preconditioning technique. This algorithm is also of

the form (4.3) .

40

Algorithm 1 [Concus, et al.,1976]

Let x, be a given vector. Let M be an arbitrary nxn

positive definite and symmetric matrix.

1.) Solve Mz, =b - A Xx,
and set w, =1
2.) Compute <o = (z2g Mz,)/ (24 Az),
X, = otho,

For X =1,2,...

3.) Compute
“k-_— (Zy lM/ZK)/(Zyg A 2,)

o\ (2, /Mzy,) 1y
Wy =l = 28 =], (k»1)
Dot (2o M o2 ,) @
4.) Compute
xk-uz xx-u +wk+|(d‘(ZK + Xn T xu-n) !

It can be shown (see Concus,et al.,1976), that the

n

calculated vectors { ZKL“° are M-orthogonal if we assume

that M is positive definite and M and N are symmetric.

The CG algorithm (M = I in the above algorithm) does
not require an estimation of the extreme eigenvalues while
the Richardson and Chebyshev methods, for example, do.
Thus, i; cases where nothing is known about the eigenvalues
of the coefficient matrix, the CG method éhould be used.
Also, the CG method behaves optimally for a wider class of

matrices , than competing methods such as SOR. (see

Concus, et al.,1976 and Chandra, 1978)

41

To be more efficient in terms of storage, the following

equivalent form of algorithm 1 can be used (see

Chandra, 1978).
Algorithm 2 [Chandra, 1978]

Let x, be an initial approximation to the solution of
(4.5) or (4.2) . Let M be a given nxn positive

definite and symmetric matrix. Compute the residual

r, = b ~- A Xg 7
then solve
M Zo = r°
for z,and set p,= z, - For kx = ©,1,2,... iteratively

compute steps (1) through (6)

(1) a, =0z, .,)/ (p+ Apg)
(2) Xeo™ Xt oay Py

(3) rw= Tw — ax A Py

(4) Solve M z,, = r,,, for z.,.

(5)) b= Cr 2,0/ . z)
(6) puuz k~|+ by Py

42

In the numerical chapter we use algorithm 2 in a
slightly different form in conjunction with the approximate
inverses defined in chapter 3 . Instead of solving a
linear system at each iteration we compute the vectors dg
by multiplying the residuals with the approximate inverse

B . When DB approximate inverses are used, these methods
are referred to as DBCGl(I } and DBCG2(I) for the one and
two dimensional model problems respectively (I is the
number of non-zero stripes in the approximate inverse). 1In

the case of LSQ approximate inverses, these methods are

referred to as LSQCG1l(I) and LSQCG2(1) . We remark that

B~' need not be positive definite and symmetric in the
actual implementation. This assumption was made to ensure

the finite termination property.

In order to see that algorithm 1 and algorithm 2
are egquivalent in the sense that for the same starting
vector they create in the absence of round-off. error the

same sequence { X } . we rewrite equation (2) of the

second algorithm

.o

Xoiw Xt O x =%) +a ZK'+1§4/ %«“ X = Xy)}
and hence
(4.6) x =%, +a z + 1+ (ayp)/a,) x,0-x.,)

Comparing (4.6) with step (4) in the first algorithm ,

we get the following condition for the parameters

A ¢ T Wiy Ry

(4.7)

1+ (aygb,,)/ ag =V,

But, condition (4.7) holds for the parameters a,, b«

and w, ., %, as defined in the above algorithms. This can

be seen as follows :

For k = 0 Dboth equations in (4.7) hold, since Z, = Pg »
b, = 0 and wW,=1 .
Now,
1 (P+ (M-N) p,)
a (z,, M Z)
_ _(— Z, + D Py (M-N)(=z, + bk_‘p“‘.)
(z, Mz,)
2
_ (z o +(M-N) z) + b.‘_l(p“‘|,(MfN) Py) ~ 2bu (z /N 2z,)
because the vectors { z.‘} are M-orthogonal and each

®
vector p, is a linear combination of { z, 1}, -
Thus e

where we used (see Concus,et al.,1976)

Gz Nz,) =0z, Mz,)V aw, %,
and
(zK,st)=6for j < k-1

44

Supposing
Wy dk_'= ay .y
we get
ot B T P
ay A ks
1 \
ol i) -
= 1] - - ——— = J
(d.‘-' K-1 wk k4 .

Thus we have proved the first condition of (4.7) by

induction. From this result we get

a
4 (- 4
1 + —=-—=Db,,= 1+ i w
- (J o k
aga ® K-}
oL 17 € Pk-
O Y L Ry,
K- wK K1 UN
= 1 + e by
e Wy~ oy by,
_ b -
= { 1 - (“k l(-l)/(¢k-' U“) } - wk"l Y]

which proves that the second condition in (4.7) also holds

for the parameters defined in algorithms 1 and 2

The speed with which the generalized conjugate gradient
algorithm converges depends strongly on the choice of the
preconditioning matrix M (or B). For rapid convergence
one seeks a splitting so that. MdN = I-BA has small or
nearly equal eigenvalues or that it has small rank (see
Chandra, 1978,th.4.1 and th.3.5). Also we require that M
retain any desirable features of A such as sparsity and

that the system of equations with coefficient matrix M be

45

easily solvable. However, when approximating the inverse of
A it 1is desirable that the approximate inverse B be

almost as sparse as A .

Several suggestions in the past few years have been

made concerning the choice of M for matrices A which

arise from discrete approximation to boundary value
problems. Stone (1968), for example, determined the matrix
M by altering the coefficient matrix A in such a way

that the LU-decomposition of the perturbed matrix is sparse
in nature. An incomplete LU-decomposition of A is used
for the family of Incomplete Cholesky Conjugate Gradient
(ICCG) methods (Meijerink, van der Vorst, 1977) . During the
calculation certain elements are neglected in the L and
U matrices in order to keep the preconditioning matrix M
sparse. These methods are not ideally suited for vector

computers because of the forward - backward substitutions

involved.

Dubois, Greenbaum and Rodrigue (1977) replaced the

incomplete factorization with an incomplete inverse using a

truncated Neumann series. Thus they avoid solving a linear
system -0of the form Mz =4d at each iteration. The
matrix - vector multiplications required ¢an be computed
efficiently on a parallel computer. The idea of

approximating the inverse of A was further developed by
Johnson and Paul (1980,1981). 1In 1980 they introduced a new
class of methods <called incomplete inverse conjugate

gradient Jacobi (IICGJ) methods, while in 1981 they

46

suggested a parameterized form of the incomplete inverse and
showed how to select the parameters in order to optimize the
convergence of the algorithm. For our test series in the
numerical chapter we use the diagonal - block inverses

defined in the previous chapter.

Finally we remark that the choice M=1I,N=1--A

leads to the basic unmodified CG algorithm.

47

V. NUMERICAL EXPERIMENTS

We carried out numerical experiments to demonstrate and
compare the efficiency of the methods presented in the
previous chapters. For the purpose of comparison we used
the one and two dimensional model problems of appendix A .
Each iterative process was started with the same initial

guess xT= (L,...,1) .

For each test problem the exact solution of the linear
system is the zero vector, so that the absolute error of the
current iterate can be easily computed. We stopped the

iterations when this error was reduced below a specified

value.

The methods using an approximate inverse allow us to
reduce the number of iterations necessary to achieve a
specifiéd accuracy, but often at the expense of 1increasing
the work involved in each iteration (see tables 5.1-5.3).
Therefore we used two measures, the number of iterations and

the number of multiplications (including divisions), to

compare the methods. We ignored the number of additions.

(including subtractions), since a rough estimate of the work
¢

per iteration is sufficient for our purposes.

48

We also ignored in our work measures the calculations
required to establish the iterative process. This greatly
simplifies our estimates and is a reasonable approach when
the 1linear system must be solved for many right hand sides.
We remark, however, that the small linear systems 1involved
in thé calculation of -each row of the épproximate inverse

B can be solved in parallel. For our model problems the
diagonal block systems are easy to solve and, except for the
ones at the edges, are all alike (see (3.16)). Also,
these systems can be solved independently of one another.

Thus, if the cost for computing B 1is ignored, the set-up

work consists solely of forming the matrix G = I - B A ,
when methods of the form (3.6) are used. This can also be
avoided by rewriting the update formula‘ in the form

UL ,= Ut B(-Au, + b) . But this would increase the

amount of work per iteration for the situations we consider.
However, we note that there exist approximate inverses
where it is more advantageous to use the above iteration

formula instead of using the iteration matrix G

A parallel machine as described in chapter 2 with P
independent processors can calculate P multiplications
simultaneously with no overhead for data transfer or any
other data manipulation. This leads us to define a parallel
time unit T(P) as the time required for P independent
multiplications. An almost immediate observation concerning

each of the Jacobi like methods is that they can benefit

from as many parallel processors as the number of

49

multiplications involved in computing Gu . The methods of
chapter 2, PGSl and PGS2, and the Gauss-Seidel like methods
for our dimensional model problem consist of two sequential
update passes per iteration. However, a small number of
processors (less than N, the number of unknowns) can be
equally exploited by the Gauss-Seidel like and the Jacobi
like methods using the same approximate inverse in the one
dimensional case (see table 5.1). The Gauss-Seidel like
methods that we are using for the two dimensional model
problem are calculating each componént of Gu sequentially,
so that the parallelism of these methods is limited to the

number of nonzeros in a row of the iteration matrix.

In the one dimensional case we find that there are
about 2N multiplications necessary for computing the
matrix-vector product Gx , Wwhere G = 1I-BA , if the
Diagonal-Block (DB) approximate inverses are used (N).
Thus, assuming'that N 1is an upper bound for the number of
independent processors, the work necessary for one iteration
of the parallel Gauss-Seidel method PGSl (see chapter 2)
is the same as the work involved for one iteration of the

JDB1(I) or the GDB1l(I) methods (see chapter 3). If
more tﬁgn 2N parallel processors are available, the work

needed for the Jacobi like iterations is oniy half of the

work needed for the Gauss-Seidel 1like iterations (see

table 5. 5.1).

50

Compared to the DB-technique, the Least-Squares (LSQ)
technique creates more nonzeros in the iteration matrix G .
The number of multiplications per iteration of the

JLSQ1(1) (r = 3,5,7,...) methods is (I+2)*N . The
numerical experiments showed that the JLSQ1(I) methods
converged about as fast as the corresponding JDB1(I)
methods, so we conclude that it does not pay to use the
iteration matrix I-BA with a least-squares approximate
inverse for our one dimensional model problem. The same
conclusion applies to our two dimensional model problem.
There the costs C(I) for the JDB2(1I) (I=5,11,17,..)
methods are C(I) =(8 + { (I+1)/6 - 1 } 4) N multiplications
per iteration (see table 5.2), while the costs per iteration
for the JLSQ2(I) methods are C(1) + I . However, as
‘mentioned above, there are cases where the iteration formula

U,,= Uy + B -Au, + b) is 1less costly than the formula

involving I-BA .

The conjugate gradient method (CG) needs 5N +2
muitiplications per iteration plus a matrix-vector product
involving the matrix A of the linear system to be ' solved.
The preconditioned conjugate gradient methods

(DBCG(I) or LSQCG(I), I = 5,11,17...) need one additional
matrix-vector product involving the approximate inverse B
(see tables 5.1 and 5.3). To initiate the iterative process
the CG method requires one matrix-vector product Au in

order to calculate the first residual as well as a vector

inner-product. The overhead for the DBCG(l} oy LSQCG(1I)

51

methods consists of the computation of the approximate
inverse B plus the two matrix-vector products Au and

Bu plus one vector inner-product. As above, we choose to

neglect this overhead.

The CG and the preconditioned conjugate gradient
methods are 1less parallel than the above Jacobi 1like
methods. Only step (2) and step (3) in algorithm 2 of
chapter 4 can bé computed in parallel, so that we have five
sequential steps that have to be computed for each
iteration. Also, the two divisions in step (1) and (5)
require two full time units no matter how many parallel
processors are available. We may therefore have severe
unemployment among the processors. The parallelism of these
methods 1s 1limited to the calculation of the matrix-vector
products, the vector inner—producté and the scalar-vector

products (see tables 5.4-5.6).

In tables 5.1 - 5.3 we summarize the operation counts
for the methods under consideration. In our tables we do
not include the operation counts for the methods wusing the
least-squares technique. The number of multiplications per
iteration for linear stationary methods using this technique
is obtained by simply adding the factor I*N +to the number
of multiplications necessary for one iteration of the
corresponding method using a DB approximate inverse with

I stripes of non-zero entries. For the preconditioned
conjugate gradient methcds the cost for a matrix-vector

product involving a LSQ-approximate inverse is the same as

52

if a DB-approximate inverse were used, so that the total
cost per iteration does not <change either. Furthermore,

since N 1is large we ignored edges effects in the operation

counts. Also, for simplicity the size of the linear system
N in each column of any table is always assumed to be a
multiple of the number P of independent processors. Thus
each given fraction of N 1is an integer value. The tables

5.4 -5.6 exemplify the different degrees of parallelism
(as discussed above) of the methods under consideration.
The functions T(P),S(P),E(P) and F(P) are the parallel time

unit, the speed-up ratio, the efficiency and the

effectiveness as defined in chapter 2

In order to graph computational work versus convergence
rate, we have selected the methods PGSl and PGS2 as the

basis of comparison for the linear stationary methods of the

form (3.6) .. All these methods are shown in terms of
equivalent iterations of PGSl or PGS2 respectively. For
example, the JDB2(5) method 1in two dimensions, which

reqguires 8 time units per iteration using N processors,

is allowed 1/2 iteration per computational work unit,

since one iteration of PGS2 requires just 4 time units

in that case. The CG method serves as a basis of

comparison for the preconditioned conjugate gradient

methods.

53

54

In tables 5.7 - 5.11 bwe give the number of iterations to reduce
the error by a specified factor for the methods under consideration for
various numbers of unknowns. The JDB1(3) and the JDB2(5) methods
reduce the number of iterations compared to the PGS1 and PGS2 methods
respectively roughly by a factor of 1/2. The methods JDB1(5) and
JDB2(11) further reduce the iteration number roughly by the same factor.
However, table 5.11 indicates that as the number of stripes in the
approximate inverses increases the advantage gained by including still
more stripes diminishes. The method JDB2(35) , for example, reduces

the number of iterations compared to the JDB2(29) method only by a

factor of 0.98

The convergence rates of the JLSQ2(I) methods are somewhat worse
than the convergence rates of the JDB2(I) methods. In the one

dimensional case, however, the JLSQ1(I) methods converge significantly

slower than the corresponding JDB1(I) methods. In particular, the
JLSQ1(3) method converges only as fast as the parallel Gauss-Seidel
version PGS1. This is still an improvement by a factor of 2 over
the convergence rate of the standard Jécobi method in the cases under
consideration (The Jacobi method takes 5260,20832 and 46729
iterations for 100, 200 and 300 wunknowns respectively to reduce

the maximum norm of the error to less than .1).

Figures 5.12 and 5.13 show the computational work in terms of

equivalent iterations of the PGS1 and PGS2 methods respectively

55

versus the error of the Jacobi like methods with various DB approximate

inverses. We observe that the JDB2(17) method does not give an improve-

ment over the JDB2(11) method.

Tables 5.7 and 5.9 indicate that the Gauss-Seidel like methods,
GDB1(I) and GDB2(I) , improve the convergence rate of the corresponding
JDB1(I) and JDB2(I) methods by a factor of 2. The parallelism of the
GDB2(I) methods is limited to the number of non-zeros per row in the
iteration matrix I-BA. Thus we have to assume a small number of processors
in order to gain an advantage over the JDB2(I) methods. In figure 5.14
we compare the GDB2(I) and JDB2(I) methods assuming 16 independent
processors. The methods GDB2(11) and GDB2(17) are more efficient than

the corresponding methods JDB2(11) and JDB2(17) in this case.

Tables 5.8 and 5.10 show the rate of convergence of the conjugate
gradient and the breconditioned conjugate gradient methods. It was found
that preconditioning improves the rate of convergence. This is shown for
the DBCG2(I) (I=5,11,17) methods in figure 5.15. Similar results have
been obtained for the LSQCG2(I) methods. The improvement is smaller
than the increase in the computational work unless the number of processors

-

is assumed to be on the order of N (the number of unknowns). This is

shown in figures 5.16-5.18.

In conclusion approximate inversion techniques provide an effective

means for developing parallel algorithms for the iterative solution of

56

large sparse linear systems arising in connection with the numerical
solution of boundary value problems. In particular the diagonal-block
extensions of the Jacobi method performed very well in a parallel
environment. The Gauss-Seidel methods in the one dimensional case
usually produced an additional improvement. The same result could be
accomplished in the two dimensional case when the number of processors
was assumed to be small. Finally, in special cases, our approximate
inversion techniques proved effective for preconditioning the conjugate

gradient method.

WORK REQUIREMENTS IN ONE DIMENSION

. ———e - TV > —— —— - S T — 0 — S WA A D W WA G CEC G Ham A — A S ——— ——— - w—

T(1l) T(15) T(N) T(2N) T(7N)
PGS1 2N 2/15 N 2 2 2
JDB1(1I) 2N 2/15 N 2 1 1
GDB1 (1) 2N 2/15 N 2 2 2
CG 8N + 2 8/15 N + 2 10 8 7
DBCG1(3) 11N + 2 11/15 N + 2 13 19 8
DBCG1(5) 13N + 2 13/15 N + 2 15 11 8
DBCG1(7) 15N + 2 N + 2 17 12 8

Table 5.1 : Work requirements for the methods solving

the one dimensional model problem. T(1)
is the number of multiplications per
iteration. T(P) is the number of time
units per iteration using P processors.
N 1is the order of the linear system.

57

58

WORK REQUIREMENTS IN TWO DIMENSIONS

G S S ——— — ——— — ———————— — t— Y —- T — — — — — ———— - S— - - —

T(1) T(16) T(N) T(16N)
PGS2 4N 1/4 N 4 2
JDB2(5) 8N 1/2 N 8 1
JDB2(11) 12N 3/4 N 12 1
JDB2(17) 16N- N 16 1
GDB2(5) 8N N N N
GDB2(11) 12N N N N
GDB2(17) 16N N N N

 ————— —— - —— . —_ ——— ——— — Y —— e WS e W T —— - ——

Table 5.2 : Work requirements in the two dimensional

case (N = n?) for linear stationary

methods. T(P) is number of time units

per iteration using P processors.

T(1) T(N) T(2N) T(5N) T(11N) T(17N)

CG 10N + 2 12 9 7 7 7
DBCG2(5) 15N + 2 17 12 '8 8 8
DBCG2(11) 21N + 2 23 15 10 8 8
DBCG2(17) 27N + 2 29 18 11 9 8

Table 5.3

Work requirements in the two dimensional
case (N = n*) for the preconditioned
conjugate gradient methods. T(P) is the
number of time steps per iteration

using P processors.

MEASURES OF PARALLELISM

S S - . T A WY D Wk = ————— —— ———— — —— T - —— > - —— - —— _—— G —— —— ————————— o

S(15) S(N) S(2N) T(7N)
PGSl 15 N N N
JDB1(1I) 15 N 2 N 2 N
GDB1(1I) 15 N N N
CG 15 .8 N N 1.142 N
DBCG1(3) 15 .846 N 1.1 N 1.375 N
DBCG1(5) 15 .886 N 1.18 N 1.625 N
DBCG1(7) 15 .882 N '1.25 N 1.875 N

- ——— ———— ————— — — . ——— —— — - - - —— - - "~ S GBS G G GS V. ———— - — ———— -

Table 5.4 : Estimates of the speed-up ratios in the

one dimensional case (see chapter 2 for
definition of sS(pP)).

- S —— W —— G - G— ————— —— ——— — _——-— — ————— - - — ——— - —— o o o——_ -

E(15) E(N) E(2N) E(7N)
PGS1 1l 1 .5 .1428
JDB1 (1) 1 1l 1 .2856
GDB1 (1) 1 1 5 1428
CG 1 .8 .5 .1632
DBCG1(3) 1 .845 .55 .1964
DBCG1(5) 1 866 .59 2321
DBCG1(7) 1l 882 625 2678
Table 5.5 : Estimates of efficiency in the one
dimensional case (see chapter 2
for definition of E(P)).
F(15) F(N) F(2N) F(7N)
PGS1 7.5/N .5 .25 .0714
JDB1 (1) 7.5/N .5 1 .285
GDB1(1I) 7.5/N .5 .25 .0714
CcG 1.875/N .08 .0625 .0233
DBCG1(3). 1.366/N .065 .955 .9245
DBCG1(5) 1.153/N .3577 .8537 3290
DBCG1(7) 1/N .05288 .0521 .93334

. S G W S G G - G D SUR SR GEN Gml A e = - — —— ——— — — — G W W W . p G G — = S P G E— -

Table 5.6 : Estimates of effectiveness in the one
dimensional case (see chapter 2 for
definition of F(P)).

CONVERGENCE RATE IN ONE DIMENSION

FOR LINEAR STATIONARY METHODS

60

Number of Iterations

Size N

100 200 300
PGS1 2630 10416 23365
JDB1(3) 1315 5207 11678
JDB1(5) 585 2314 5190
JDB1 (7) 329 1302 2920
GDB1(3) 658 2604 5840
GDB1 (5) 293 1158 2596
GDB1(7) 165 652 1460
JLSQ1(3) 2629 10413 23354
JLSQ1(5) 1314 5206 11677
JLSQ1(7) 788 3124 7006
GLSQ1 (3) 1578 6249 14013
GLSQ1(5) 752 2976 6673
GLSQ1(7) 438 1736 3892

Table 5.7 : Number of iterations to reduce the maximum norm of the

- error to at least .1 for the one dimensional model problem
N denotes the number of unknowns.

is given.

The size

CONVERGENCE RATE IN ONE DIMENSION
FOR THE CONJUGATE GRADIENT METHODS

Number of Iterations

Size N 100 200 300
CG 50 100 150
DBCG1 (3) 44 75 105
DBCG1 (5) 35 55 89
DBCG1(7) 33 62 82
LSQCG1 (3) 34 65 96
LSQCG1 {5) 33 58 83
LSQCG1 (7) 40 59 82

Table 5.8 : Number of iterations to reduce the maximum norm of the
error to at least .01 for the one dimensional model

problem is given. The size N denotes the number of
unknowns.

CONVERGENCE RATE IN TWO DIMENSIONS
FOR LINEAR STATIONARY METHODS

Number of Iterations

Size N = n? 225 400 625
PGS2 479 833 1282
JDB2(5) 187 323 496
JDB2(11) 99 171 263
JDB2(17) 76 132 203
GDB2 (5) 95 163 249
GDB2(11) 51 87 133
GDB2(17) 39 67 102
JLSQ2(5) 262 453 696
JLS02(11) 150 260 401
JLSQ2(17) 124 216 332
GLSQ2(5) 143 247 378
GLSQ2 (11) 80 138 212
GLSQ2(17) 66 114 175

Table 5.9 : Number of iterations to reduce the maximum norm of the
- error to at least .0001 for the two dimensional model
problem is given. The size N denotes the number of
grid points.

63

CONVERGENCE RATE IN TWO DIMENSIONS
FOR THE CONJUGATE GRADIENT METHODS

Number of Iterations

2
Size N =n 225 400 625
CG 23 30 39
DBCG2 (5) 17 25 28
DBCG2(11) 15 19 22
DBCG2(17) 16 20 24
LSQCG2 (5) 18 21 23
LSQCG2(11) 15 20 24
LSQCG2(17) 16 21 24

Table 5.10 : Number of iterations to reduce the maximum norm of the
error, to at least .00001 for the two dimensional model
problem is given. The size N denotes the number of
grid points.

COMPARISON OF DB APPROXIMATE
INVERSES IN TWO DIMENSIONS

64

Number of Iterations

2

Size N =n 225 400 625
JDB2 (5) 187 323 496
JDB2(11) 99 171 263
JDB2(17) 76 132 203
JDB2(23) 69 118 182
JDB2(29) 66 113 173
JDB2(35) 65 111 170
Table 5.11 : Number of iterations to reduce the maximum norm of the

error to at least
problem is given.
grid points.

.0001 for the two dimensional model

The size

N denotes the number of

65

4D

3

Natural Log L, Error

o PGSl
A JDB1(3)
LY + JDB1(5)
dfe/_. X JDB1(7)
w e
§

o,
. , by .
- m M» ...ur G.J_,rw,
- ; % ot

Y 3 o
L g %

' —_ ~_ ..,..ﬂ "L...*,

4 =,

C . Y €,

b (I % .

_I.. w. _m_ .r.r .L/ﬂ.f

1 Py
m { b .
o .n.

. X, .
| L \ »Jr%
| : 3 g
i _f ..., .@

— \ } % ey
.ﬁ ~_ J
4 L %
w L

e
I”#.
y.a
I ;4'
o3

n
INI.H..I..-.
- Efvlm-
| b W,
m w.ﬂWf
* ! 3 n_
5 .r#..
+ 3 R
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>