
PARALLEL ALGORITHMS FOR

THE ITERATIVE SOLUTION OF

LARGE SPARSE LINEAR SYSTEMS

A thesis submitted to

Lakehead University

in partial fulfillment of the requirements

for the degree of

Master of Science

by

Jurgen Krettmann

1982

ProQuest Number: 10611694

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

ProQuest 10611694

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106 - 1346

ACKNOWLEDGMENTS

I wish to thank ray supervisor. Professor M.W. Benson,

for his advice and encourageraent during the•preparation of

this thesis.

The use of approxiraate inverse for preconditioning the

conjugate gradient method was suggested by Dr. P. O.

Frederickson, Los Alamos National Laboratory, Los Alamos,

New Mexico.

Finally, I would like to thank Ahmoi for her support

during the preparation of this thesis.

Abstract

In this thesis we are concerned with iterative parallel

algorithms for solving finite difference equations arising

from boundary value problems. We propose various new

methods based on approximate inverses. The Jacobi iterative

method for the solution of linear equations is highly

parallel. Its slow convergence rate, however, has initiated

the study of a variety of acceleration techniques. We

introduce the “Diagonal-Block” and the "Least Squares"

techniques for calculating approximate inverses which lead

naturally to generalized Jacobi methods that are well suited

to parallel processing. In addition, the calculations

required to establish the iterative process can be done in

parallel. A convergence theorem for a one-dimensional model

problem is given. Gauss-Seidel versions of these methods

are also considered. These versions converge faster but

often at the cost of decreased parallelism.

Preconditioning has been successfully used in

conjunction with the conjugate gradient method. Many such

techniques use an approximation M to the matrix A of the

linear system under consideration and solve a system of the

form M z = d at each iteration. If, however, an

approximate inverse is used, the solution z = M*' d

only involves a matrix-vector multiplication v/hich is well

suited to parallel computation. We examine the

i

Least-Squares techniques for Diagonal-Block and

preconditioning the

the

conjugate gradient method.

Numerical results are presented. The proposed Jacobi

like and Gauss-Seidel like methods are compared with

parallel Gauss-Seidel methods in a class of parallel

algorithms proposed by Evans and Barlow (1982). The

preconditioned conjugate gradient methods are compared with

the plain conjugate gradient method. In all cases the speed

of convergence increased substantially, but often at the

expense of increased computational work. In some cases it

was necessary to assume the number of processors to be on

the order of N (the number of unknowns) in order to gain

an advantage from parallel processing.

11

LIST OF ITERATIVE METHODS

Abbreviation

PGSl

PGS2

JDBl(I)

JDB2(I)

GOBI(I)

GDB2(I)

JLSQl(I)

JLSQ2(I)

GLSQl(I)

GLSQ2(I)

CG

DBCGl(I)

DBCG2(T)

LSQCGl(I)

LSQCG2(I)

Explanation

A Parallel Gauss-Seidel Version for
the one dimensional model problem.

A Parallel Gauss-Seidel Version for
the two dimensional model problem.

Jacobi Diagonal-Block methods for
the one dimensional model problem.

Jacobi Diagonal-Block methods for
the two dimensional model problem.

Gauss-Seidel Diagonal-Block methods
for the one dimensional model problem.

Gauss-Seidel Diagonal-Block methods
for the two dimensional model problem.

Jacobi Least-Squares methods for
the one dimensional model problem.

Jacobi Least-Squares methods for
the two dimensional model problem.

Gauss-Seidel Least-Squares methods
for the one dimensional model problem.

Gausss-Seidel Least-Squares methods

Conjugate Gradient Method

Diagonal-Block Conjugate Gradient methods
for the one dimensional model problem.

Diagonal-Block Conjugate Gradient methods
for the two dimensional model problem.

Least-Squares Conjugate Gradient methods
for the one dimensional model problem.

Least-Squares Conjugate Gradient methods
for the two dimensional model problem.

iii

CONTENTS

Page

I. INTRODUCTION 1

II. CONCEPTS OF PARALLEL COMPUTATION 5

11.1 Classification of Parallel Computers 6

11.2 Model of Parallel Computation 8

11.3 Parallel Linear System Solvers 13

III. LINEAR STATIONARY METHODS 20

111.1 General Convergence Theorem 21

111.2 Rates of Convergence 25

111.3 Generalized Jacobi Methods 27

111.3.1 Jacobi Method 27

111.3.2 Jacobi Diagonal-Block Methods 28

111.3.3 Jacobi Least-Squares Methods 34

III. 4 Generalized Gauss-Seidel Methods 36

IV. - GENERALIZED CONJUGATE GRADIENT METHODS 38

V. NUMERICAL EXPERIMENTS 48

BIBLIOGRAPHY 72

APPENDIX A ; Model Problems 74

APPENDIX B 78 : Programs for Data Organization

APPENDIX C : Programs for finding Approximate Inverses 91

APPENDIX D : Programs for the Parallel Gauss-Seidel 99

Algorithms PGSl and PGS2

APPENDIX E : Programs for Parallel Jacobi like 105

Methods using Approximate Inverses

APPENDIX F : Programs for Parallel Gauss-Seidel like lo8

Methods using Approximate Inverses

APPENDIX G : Programs for Preconditioned Conjugate 113

Gradient Methods using Approximate Inverses

APPENDIX H : Miscellaneous Programs. 117

1

I. INTRODUCTION

In this thesis, we consider linear systems arising in

connection with the numerical solution of boundary value

problems. These linear systems are large and sparse. We

propose several iterative algorithms that are based on

approximating the inverse of the coefficient matrix of the

linear system. Our main objective is to investigate the use

of these approximate inverses for linear stationary methods

(see chapter 3) and preconditioned conjugate gradient

methods (see chapter 4) as a means to enhance the rate of

convergence.

The iterative methods in this thesis, however, can be

extremely costly in a computational sense (especially for

large linear systems). This suggests the concurrent use of

many processing elements in order to improve the speed of

computation and to handle large volumes of data. Massively

parallel computers, as assumed in this thesis, are not yet

available, but the development of VLSI circuits has made

them feasible (Siegel, 1982, Haynes, 1982). Moreover, it

is an open problem how expensive the interconnection between

processors will be and what limitations that will pose on

the speed of computation. The interconnection requirements

will not be considered in our model of computation. The

methods under consideration, however, involve mainly

matrix-vector products which can be computed very

efficiently on a linear-connected systolic array as

considered by Kung and Leierson (see Haynes, et al.l982).

No control of the data items is required once it is input

into the array. Systolic arrays can be thought of as part

of a larger computer system replacing certain software

routines (Haynes, et al.1982).

In chapter 2 we discuss certain aspects of parallel

computation and establish a general model of a parallel

computer which sets the background for comparing our

iterative processes. In section II.3 we develop two

parallel versions of the Gauss-Seidel iterative methods,

PGSl and PGS2, that exploit the sparsity structure of the

matrices under consideration. These methods serve as a

basis of comparison for the methods using approximate

inverses that are developed in the chapters that follow.

We will use two examples to illustrate our results (see

appendix A). We consider Young's two dimensional model

prpblem (Young,1971,pp. 2-4) and its one dimensional analog.

The one dimensional model problem provides a relatively

simple test problem for studying our proposed algorithms.

In chapter 3, we deal with linear stationary methods of

the form ^ ^ ^ u ^ + Bb to solve the linear

system Au = b . In sections III.l and III. 2 v/e develop

some standard convergence results. According to these

results we attempt in section III.3 to create approximate

inverses B such that the spectral radius of I-BA is as

3

small as possible. The approximate inverse B is required

to satisfy a certain sparsity structure and the non-zero

entries are determined in a way that BA approximates the

identity. Two different techniques are developed^. the

Diagonal-Block (DB) and the Least-Squares (LSQ) technique

(Benson,Frederickson,1981,Benson,1973). The corresponding

approximate inverses are used in Jacobi like and

Gauss-Seidel like iterations. In case of the Diagonal-Block

(DB) approximate inverses, we give a convergence result for

the Jacobi like methods applied to the one-dimensional model

problem. All experiments have been carried out on sparse

matrices. We remark that these techniques for approximating

the inverse are not necessarily restricted to such matrices.

The Least-Squares technique, however, is highly expensive if

the coefficient matrix is dense.

In chapter 4, we develop a generalized conjugate

gradient method for solving linear systems and discuss its

main properties. This method can be used in conjunction

with an approximation M to the coefficient matrix A. In

this case a linear system of the form Mz = d must be

solved at each iteration. Applying the DB or LSQ

approximate inverses to this method, we can compute the

vector z by matrix-vector multiplication.

In chapter 5, we present the results of our numerical

experiments on the two model problems considered. Two sets

of algorithms are compared with respect to two measures, the

speed of convergence and the amount of computational work

per iteration. The latter varies with the number of

independent processors that are assumed. The linear

stationary methods of chapter 3 are compared v/ith the

Gauss-Seidel methods PGSl and PGS2 of chapter 2 and the

preconditioned conjugate gradient methods are compared with

the plain conjugate gradient method. It was found that the

number of iterations is reduced significantly when

approximate inverses are used. Moreover, the "better" the

inverse of the coefficient matrix is approximated, the fewer

iterations are needed in most cases. If we include the

second measure of comparison, this result cannot be obtained

in all cases. We observe that in many cases the linear

stationary methods using the proposed approximate inverses

are shown to be advantageous over the parallel Gauss-Seidel

methods of chapter 2, if an appropriate number of processors

is assumed. The same result applies to the preconditioned

conjugate gradient methods and the conjugate gradient

method. Finally we comment that all parallel algorithms in

this thesis are simulated on a uniprocessor.

5

II. CONCEPTS OF PARALLEL COMPUTATION

The advances in parallel computer systems during the

last decade have brought a new aspect to the classification

of numerical algorithms: sequential vs. parallel. The

concept behind parallel computing is that programs are

designed to have paths of independent calculations in order

to make use of many processors at a time. For optimal

efficiency, programs using P processors should run P times

faster than otherwise identical programs using only one

processor. However, "experience and theory show that the

actual speed-up is often much less" (Heller,1978).

The first section of this chapter is devoted to a

general discussion of parallel computers. In the second

section, we develop our model of parallel computation and

outline some of the problems occurring in this field. In

the third section, we present several parallel algorithms

for solving linear systems arising from differential

equations.

6

II.1 CLASSIFICATION OF PARALLEL COMPUTERS

Thus far, no single parallel computer systeni can be

considered as the dominant one. Our interest here is in the

following two important classes of parallel computers, first

defined by Flynn, 1966.

Instructions for each processor in a multi - processor

system come either from a central control unit or from the

individual processor. In the first case, the system has

only one stream of instructions in execution at a given

time, but each processor may affect many different data.

This is the single - instruction stream multiple - data

stream model (S I M D). SIMD machines are best suited

for algorithms requiring the same operation on large arrays

of independent data. Examples of this type are array

processors, pipeline processors, associate processors and

bit - slice processors (Stone,1973). The more general

multiple - instruction stream multiple - data stream model

(M I M D) is configured as multiple independent processing

elements with no processor having overall control. MIMD

machines-are capable of executing different instructions

simultaneously, and each instruction may. operate on a

different datum. For complex programs, the processors are

initially allocated to independent (parallel) paths, which

they execute until completion. Communication among the

individual processors still takes place in order to share

information and to otherwise cooperate in the solution of

7

the problem (synchronization may take place).

The following discussion will emphasize SIMD machines,

since the iterative methods of the chapters that follow are

ideally suited for vector processes. Moreover, most of the

existing machines are of this type.

The importance of the above characterization of

parallel computer systems lies in the fact that an algorithm

designed for an SIMD machine can be used with essentially

equal efficiency by all systems of that class. For example,

both an ILLIAC IV and a pipeline computer such as

CDC STAR 100 are heavily oriented to vector processes, so

that a good algorithm for one of them will tend to be a good

one for the other one as well. Nevertheless, to design an

algorithm that runs at maximum efficiency on a particular

computer, one may have to take the architecture of that

computer into account, since SIMD computers differ in

specific capabilities. However, it is worthwhile to

investigate algorithms for SIMD computers because the

principle design of an algorithm is usually not affected by

the changes required for optimal efficiency. The same can

be said about algorithms for MIMD computers.(Stone, 1973)

8

II.2 MODEL OF PARALLEL COMPUTATION

There are various models of parallel computation. The

theoretical model assumes unlimited parallelism in the sense

that the number of required processors varies with the size

of the problem under consideration (" sufficiently many

processors ", Heller,1978). Our interest is in the

iterative solution of a linear system of equations with a

banded (or striped) and large matrix, say of order 10^ to

10 . Therefore we prefer the practical model that has a

fixed number of processors, independent of the application.

Nevertheless, we will also for simplicity refer to the

theoretical model, which might be justified by the current

technology that has created the " age of the

microprocessor " thus making the future construction of

computer systems with to processors feasible

(Siegel,1982,see also Haynes,1982).

The precise details of the architectures are

unimportant for our purposes. \'Then we speak of a SIMD

machine, we have in mind a computer system consisting of a

control ’unit, P processing elements (PE's) and an

interconnection network. Each PE consists .of a processor

with its own private memory for intermediate storage, and

each PE also has access to a common memory. The PE's are

connected by a network, and fed instructions by the control

unit. To simplify discussions we make the strong assumption

that any processor can obtain any data in one time step.

9

that is to say we will ignore the time required for data

acquisition and concentrate on the arithmetic time. We

remark that we can convert this computer model into an MIMD

model by storing predetermined instructions in the private

memory of each PE.

The above assumption that each processor can fetch any

data item in one time step (cycle) is somewhat ideal. In

reality, constraints on the computer architecture can create

complex problems of data manipulation, which may result in a

significant loss of processing power. The systolic

architectural concept (see Kung,1982) optimizes the

data-communication structures among the processors at the

price of specialization. This concept results in extremely

high speed and efficient special-purpose systems. The basic

idea is an overlapping of l/O and computation. Each data

item is operated on many times and no further control is

required after the data item is input into the array of

processors. A simple example is the linearly connected

array considered by Kung and Leiserson (see Haynes,et

al1982,p.10).This systolic array can compute a

matrix-vector product of size N with a banded matrix of

bandwidth W in 2N+W time units when W/2 processors are

used. This is fairly close to the 2N time units that are

required when the above idealized computer model is assumed.

Since systolic arrays are very specialized systems of

processors it is desirable that they be part of a larger

computing system. At this point, however, the integration

10

of these special purpose devices into a larger computing

system is an open problem.

In order to evaluate the algorithms and the computer

systems under consideration, it is necessary to have some

measure of efficiency. We mentioned earlier that for a

parallel computer system that can support P simultaneous

processes, the ideal speed-up is P . This leads tO' the

following definitions (Schendel,1981).

Definition 2.1 ;

For a given problem let T(l) be the running time of the best

known (fastest) sequential algorithm, and let T(P) be the

running time of a parallel algorithm using P processors and

solving the same problem. Then the speed-up ratio is

defined as

(2.1) S(P) = T(1)/T(P) .

The speed-up ratio measures the improvement in execution

time using parallelism, but it does not take into account

how well each processor is being used. We may have severe

unemployment among the processors. Therefore we define

efficiency as

(2.2) E(P) = S(P) / P .

To compare parallel algorithms solving the same problem, we

define the effectiveness of a parallel algorithm as

(2.3) F(P) S(P) / (P * T(P))

11

Note that C(P) := P * T(P) measures the cost of the

algorithm. Also F(P) = S(P)/(P*T(P)) = E(P)/T(P) = E(P) *

S(P)/T(1) ,i.e. F(P)^1 , can be seen as a measure for the

speed-up and the efficiency. Therefore we tend to maximize

the function F(P) in order to achieve a good parallel

algorithm. It is not difficult to show that S(P)^ P and

E(P)^ 1 . Although one of our objectives is to obtain

optimal efficiency, it is not practical to choose the number

of processors in order to maximize the function E(P) (

note that E(l) = 1). (Heller,1978)

The ideal speed-up ratio is linear in P, since the

processors are used efficiently in that case. Such speed-up

ratios can be attained in problems that have iterative

structure, such as systems of linear equations and other

vector-matrix problems. A number of factors such as

synchronization, overhead, or input/output (l/O) can cause a

smaller speed-up ratio. Speed-up ratios of the form k * P /

log (P) are still acceptable, but algorithms with a speed-up

ratio of k * log (P) are not suited very well to parallel

computation. (Stone,1973)

In the remainder of this section we describe briefly

some of the problems that occur in parallel computation.

Parallel computation cannot be considered as a trivial

extension of serial computation, in the sense that efficient

serial algorithms cannot necessarily be automatically

transformed into efficient parallel algorithms. In fact.

12

inefficient serial algorithms may even lead to efficient

parallel algorithms and vice versa. Batcher (1968), for

example, has formulated a parallel sorting algorithm that

stems from an inefficient serial sorting algorithm (see

Stone,1973). Moreover, memory access and the interprocessor

communication is crucial for successful exploitation of

parallelism (Haynes,et al.,1982).

We mentioned earlier that the problem of communication

among the processors is crucial to successful exploitation

of parallelism. Therefore the data in parallel computers

must be arranged in memory for efficient parallel

computation. One example is the storage of a matrix in an

unconventional way known as skewed storage (see

Schendel,1981,pp.19-24), which allows for fetching rows and

columns with equal ease. An extension of skewed memory

Storage is given by Budnik and Kuck,1971, who explore

variations of the ILLIAC IV architecture which allow for

fetching rows, columns, diagonals and certain submatrices

with equal efficiency.

The architectural feature of the CDC-STAR, however,

requires- vector operants to be contiguous blocks of memory

locations in order to simplify memory transfers

(Heller,1978). Consequently, the above storage technique

does not apply for the STAR. But the STAR has features that

allow for transposing matrices very efficiently

(Stone,1973).

13

Finally we observe that parallel programs may behave

quite differently numerically than their serial counterpart.

In the next section we describe an iterative algorithm where

the parallel version converges more slowly than the serial

version. However, the convergence rate of the parallel

algorithm can be improved by simple modifications.

II.3 PARALLEL LINEAR SYSTEM SOLVERS

In this section we are concerned with a class of

parallel methods proposed by Barlow and Evans, 1982 (see

also Stone,1973). The methods are parallel forms of the

Gauss-Seidel method.

For example, consider the two dimensional model problem

of appendix A , that is the discretized version of

Laplace's equation on the interior of a square with zero

boundary conditions. First, we consider the so-called

natural ordering of the mesh-points, that is the rows of the

mesh are numbered from bottom to top and the columns are

numbered from left to right. Denoting the solution at an

arbitrary mesh-point in the interior of the square by MP

and the solution at its four neighbours by . N,E,W and S ,

the Jacobi iterative method is

(2.4) MP(i) = [N(i-l) + E(i-l) + W(i-l) + S(i-l)] / 4,

where MP (i) denotes the value of MP at the i'th

iteration. From formula (2.4) one sees that all new values

14

at the mesh-points are calculated from the old values at the

neighbouring mesh-points. Thus, all mesh-points can be

updated in parallel. The convergence rate of the Jacobi

method can be improved by using new data as soon as it

becomes available, but at a cost of reduced parallelism.

Thus, we get the Gauss-Seidel method ;

(2.5) MP(i) = [N(i-l) + E(i-l) + W(i) + S(i)] / 4 .

This method converges much faster than the Jacobi method,

since it makes use of the newer data which are more accurate

than the older data. In the case where the coefficient

matrix A has property A C see Young,1971,pp. 41-42]

the Gauss-Seidel method converges twice as fast as the

Jacobi method.

One simple parallel implementation of the above method

is to update the points on one entire row of the mesh at a

time, starting at the bottom. In this case the iteration

formula is given by

(2.6) MP(i) = [N(i-l) + E(i-l) + W(i-l) + S(i)] / 4.

Since only the point S contributes new data in this

formula, we can expect that this method requires roughly 50%

more iterations than the Gauss-Seidel method.

Scanning the mesh-points by diagonals as shown in

15

Fig. (2.8), we obtain a parallel algorithm that has the

Gauss - Seidel convergence rate (Stone,1973).

43 2 10 18 26 34 42

36 44 3 11 19 27 35

29 37 45 4 12 20 28

22 30 38 46 5 13 21

15 23 31 39 47 6 14

8 16 24 32 40 48 7

1 9 17 25 33 41 49

Fig. (2.8)

The iteration formula for this method is equation (2.5), so

that the rate of convergence is the same as the serial

Gauss-Seidel algorithm. In fact, by theorem 3.4

(Young,1971,p.147) any consistent reordering does not change

the eigenvalues of the iteration matrix. In particular, the

matrix A of the linear system corresponding to a

permutation ^ of the mesh-points is a similarity

transformation of the matrix A associated with the natural

ordering :

A = P A P ,

where the permutation matrix P consists of the columns of

the identity matrix permuted according to (? . Thus we can

see that

^ — I diag A = P (diag A) P ,

where diag A denotes the diagonal matrix associated with

A .

16

Now,

^ rw G = I - (diag A) A

= P'‘p - p-'p (diag *K f‘ P'^' A P

== P'* (I - P (diag A f' P*‘ A) P

= P*‘ (I - (diag A)"* A) P

= P"' G P ,

where G and G are the iteration matrices of the Jacobi

method for the systems Au = b and A u = b respectively.

Hence G and G have the same eigenvalues and therefore -

by Young's result (see above) - the eigenvalues of the

Gauss-Seidel iteration matrix are the same for the two

systems.

Let T(l) = a * (N**2) be the number of time units

required for the sequential Gauss-Seidel algorithm, where

"a" is the number of required iterations. Then the time

units used by the line-parallel Gauss-Seidel (2.6) and the

diagonal-parallel Gauss-Seidel method (see (2.5) and

fig.(2.8)) are T(N) = 3/2 a N and T(N) = a N respectively,

so that we have a speed-up of 2/3 N for the line-parallel

Gauss-Seidel and a speed-up of N for the diagonal-parallel

Gauss-Seidel method assuming that N processors are

available.

The above idea of constructing, parallel Gauss - Seidel

methods has been generalized by Barlow and Evans (1982). A

matrix A having property A can be rearranged so that

17

D, H

A =

K

where Dj ,i = 1,2 are diagonal matrices., This means that

the indices of the equations of the linear system can be

divided into two disjoint subsets so that the update

equation corresponding to one subset involves only the

components corresponding to the other set. Thus all the

updates within one subset can be done in parallel.

Applying this idea to a tridiagonal matrix we get the

following method

u(j,i+l) = C a(j) * u(j-l,i)

+ c(j) * u(j+l,i)] / b(j) ,

for j odd, and

(2.9)

u(j,i+l) = C a(j) * u(j“l,i+l)

t c(j) * u(j+l,i+l)] / b(j) ,

for j even ,

where i is the iteration index , j is the index for the

j'th component of the vector u and the vectors a , b and

c represent the subdiagonal, the diagonal and the

superdiagonal of the tridiagonal matrix . The above

updating scheme uses "old" data for updating the "even"

components and "new" data for updating the "odd" components.

18

Thus, in the mean^over a sequence of iterations, this method

makes use of one "new" datum for updating one component of

u . For this method we get the same convergence rate as

for the sequential Gauss-Seidel method, since this method

corresponds to a consistent reordering of the matrix A of

the linear system (the same argument as above for the

method using a reordering as shown in Fig (2.8)). Two

steps are needed in order to update all components of u at

each iteration if N/2 processors are available (Hcl is

the integer defined by x ^ fjd < x+1). Since the

convergence rate is the same as for the Gauss-Seidel method

we get a speed-up ratio of N/2 (see equ. (2.1)). In the

chapters that follov/ we refer to this method as the PGSl

method. This method will be used in the numerical section

for the purpose of comparison.

The same idea applies to the solution of the linear

system arising from the discretization of Laplace's equation

in the interior of a square (second model problem) . We

scan the mesh of unknowns by diagonals. Now the updating

scheme consists of updating every second diagonal starting

in the lower left corner with "old" data and then updating

the rest of the mesh-points with "new" data . Note that

during the second half of an iteration all four neighbours

have already been updated during the first half of the

iteration. In the mean (over several iterations) each

component of u is updated with two "new" (updated)

neighbours and two "old" neighbours. Thus the convergence

19

rate is again the same as for the sequential Gauss-Seidel

method, since this method corresponds to a consistent

reordering of the matrix A of the linear system (the same

argument as above). Therefore we can achieve a speed-up of

(N**2)/2 which is an improvement over the diagonal

parallel Gauss-Seidel method (the method based on the

ordering of Fig.(2.8)). On the other hand, the number of

required processors to achieve the above speed-up increases

like 0(N**2). We denote this method for future reference

by PGS2 . The PGS2 method will serve as a basis of

comparison in chapter 5.

Parallel versions of the standard successive

overrelaxation (SOR) method can be constructed in a manner

similar to the parallel Gauss-Seidel methods.

20

III. LINEAR STATIONARY METHODS

Our concern in this section is solely with linear stationary

methods of first degree, which have the form (Young, 1971)

(3.1) ^ ,k€N,

where G is an NxN matrix and L some N vector. The

iterative method (3.1) is used to solve a linear system

Au = b , where we assume throughout that A is a real

nonsingular matrix. Thus the solution of the linear system

exists and is unique, and the solution vector is given

explicitly by

(3.2) u = A*^b

In this chapter, we give some basic definitions and develop

some standard results which set a background for the work to

follow. We also propose a generalization of the well-known
%

Jacobi method based on the idea of approximate inverses.

These methods are ideally suited for parallel processing.

The approximate inverses can also be used in a Gauss-Seidel—

like implementation of (3.1), where each component is

updated sequentially with the most recent data available.

The parallelism is thereby limited to the number of non-zero

entries per row of the iteration matrix G . In some cases,

however, techniques of chapter two can be used to increase

parallelism (see section III.4).

21

III.l GENERAL CONVERGENCE THEOREM

In this section we determine under what conditions the

sequence { defined by (3.1) converges for any

starting vector to the unique solution of the system under

consideration. The following results are developed in Young

(1971) in a more general context than that required for our

purposes. First we give the following

DEFINITION 3.1

The spectral radius of a matrix A is defined as

S(A) = max { lA 1 : X is an eigenvalue of A }.

Before we can establish our main result of this section, we

need

LEMMA 3.2 [Young,1971,p.32]

For^ any matrix norm ((- M

we have

S(A) ^ 11 All

Proof:

Defining the compatible vector norm by

Mvll^ = IjBlf ,

where B is the matrix whose first column is v and all

other elements vanish, we have

IIA v(f ^ IIA (I llvll ,

for all A and v . For any eigenvalue X of A and an

associated eigenvector v we have A v = X v , and hence

/(A vll. = l\l llvll 4 HAII llvll, i.e. |A| ^ IIAII . A
4

22

We also require

LEMMA 3.3 [Young,1971,p. 36]

The following conditions are equivalent

i) lim vll = 0 ,
90

n
for all V €R and any vector norm.

ii) S(A) <1

Proof:

(ii => i)

Suppose S(A) < 1 . By Theorem 3.5 (Young, 1971, p.

there exists for any given £ > 0 a nonsingular matrix

such that

(*) llAll^ S(A) + ^

•I T
where llAll = II M A Mil. and HAIL = S(A A) . Hence,

n & X

C sufficiently small, we have

tlAU^ < 1.

Since |l A"I| ^ ||A I|2 it follows that tfA”ll—>0 . Thus
« ” H

(**) lim l|A*vl|j^ ^ lim II All MvH = 0,
n -> oo n -> CO ^ ^

where is the vector norm defined as in the proof

Lemma 3.2 for the case of the matrix norm |1*U = U-l\ .

(**) implies i) , which completes the first half of

proof.

(i => ii)

Suppose llAvU—>0 and I\A"U does not converge to zero

any vector norm ll • U . Now it is impossible

S(A) < 1 , since by (*) we could find a matrix norm

that U All < 1 . Thus we can find an eigenvalue A

33)

M

for

of

But

the

for

that

such

of A

23

with IXI ^ 1 and a vector such that Av = \v holds.
n «

Hence llAvU = I XI Ml which does not converge to zero.

Therefore condition i) implies that nA''l| converges to zero

for any matrix norm.

Now suppose S(A) ^ 1 . Then, by Lemma 2.2

1^ S(A) 6. II All for any matrix norm. Thus we have

1^ S(A*') ^ I|A"II for all n . Hence ii) is a necessary

condition for i) which completes the proof. m

Now we can state our main result of this section.

GENERAL CONVERGENCE THEOREM 3.4 [Young,1971,p.77]

The iterative method

Gu^ t L

is convergent independent of the starting vector u ^ if and

only if

S(G) < 1 .

Moveover, it converges to the unique solution of the linear

system Au = b if and only if

L = (I-G) A** b

and

S(G) < 1

holds.

24

Proof

If lim u = ^ exists independent of the starting vector

u then

"u - lim u = lim (G u + L)
oo GO

= G (lim u) + L
k—>oo *

= G <> + L ,

i.e. (*) (I-G)a = L.

Defining
= “K- ■“

we get

= G + (I~G) u . Hence

(**)

Now, by Lemma 3.3, lim H£.II= 0 for all
k-> oo

S(G) < 1 holds.

from (*)#

and

if and only if

N

If S(G) < 1 , then det(I-G)=TT (1-A;) + 0 (where the

are the eigenvalues of G) and the equation (I-G)u=L

has a unique solution, say ti. . By Lemma 3.3 we have

II £',^l(->0 ^ as k —> oo , which completes the first part of the

proof.

Since I-G is nonsingular when S(A) < 1 , we get from

^ -1
(*) u «= (I~G) L = A b . Conversely, if the sequence

{ converges to z = A*b then .L= (I-G) A*b ,

which completes the proof. *

25

Finally, we remark that from Lemma 3.2 and Theorem 3.4

we can see that f| G || <1 for some matrix norm is sufficient

for convergence of the iterative method (3.1).

III.2 RATES OF CONVERGENCE

It is important to understand something about the rate of

convergence of different algorithms, since to a certain

extent the rate of convergence of a method is as important

as the fact that it converges; if it converges slowly we

may never be able to see it converge. Therefore, in this

section, we shall outline certain results which give insight

into rates of convergence.

A reasonable algorithm should at least be linearly

convergent in the sense that if the sequence {) is

generated by tUe algorithm and converges to u , then for

some norm ll*il there is a c ^(0,1) and ® such that

(3.3) ^ c . 11 e ^(1 , k^k^,

A
where e^= u^^- u . This guarantees that eventually the

error will be decreased by the factor c < 1 on each

iteration.

We observe that the method (3.1) is linearly convergent

if #IGI(< 1 for some norm (c = HGII , see proof of Theorem

3.4). However, in many cases it appears to be difficult to

show that II G|| < 1 for some matrix norm. This is, for

26

example, the case with our two model problems. We follow

Varga (1962) and define the asymptotic rate of convergence

in terms of the spectral radius. Our interest is in the

behaviour of the term

8^,= (lle^U / l\e.ll)^

as oo •

the proof

We have seen before that e = G e^ ((**) in
k-*\ "

of Theorem 3.4). Thus we can estimate by

Using the fact

(3.4) S(A) = lim (
eo

for any complex matrix G and arbitrary norm (see Varga

1962, p.67. Young, 1971, p.87),we have

K (3.5) lim (- In UG W)= - In S(G) = R (G).

The quantity . R (G) is called the asymptotic rate of

convergence. We remark that R^(G) is an asymptotic value

and does not necessarily reflect the initial behaviour of a

particular iterative process. However, in order to obtain a

high convergence rate of the iteratve process (3.1) , one of

our objectives should be the creation of a matrix G such

that S(G) is as small as possible. At the same time one

must decide if the increased amount of work involved in

reducing S(G) is justified.

27

III.3 GENERALIZED JACOBI METHODS

For our purpose v/e need the iteration (3.1) in a slightly

modified form which is more appropriate for the context of

this section:

(3.6) u^^, = (I - BA) u^ + Bb ,

where B is an NxN matrix. In fact, Theorem 2.6 in Young

(1971, p.68) shows that iteration (3.1) and iteration

(3.6) are equivalent (if B is nonsingular). The matrix

B is serving as an approximate inverse to A . The

concept of an approximate inverse is fundamental to all the

iterative procedures considered in this thesis. The

"better" the approximate inverse B , the faster we expect

the method (3.6) to converge to the unique solution

u*= A*b . In fact, if B = A"* , equation (3.6) shows

that ^ ^ •

111.3.1 JACOBI METHOD

The well-known Jacobi Method uses a diagonal approximate

inverse B , which satisfies the following conditions

(3.7) (BA).. =1 , i = 1,..,N ,

where B is a diagonal matrix. The Jacobi Method is highly

parallel but it shows a slow convergence rate. In the

remainder of this section we define better sparse

approximate inverses and give a convergence proof for the

one dimensional model problem.

28

III.3.2 JACOBI DIAGONAL-BLOCK METHODS

In case of a one dimensional problem these methods use a

p-diagonal (p6N, odd , p4 2N-l) approximate inverse B

that satisfies the following condition

(Benson,Frederickson,1981)

(3.8) (BA)•• = li - jM(p-l)/2 ,

where we assumed that B is a banded matrix with bandwidth

(p-D/2 .

The non-zero elements of the i'th row

approximate inverse B are - according to (3.8)

as the solution of the following linear system;

(3.9)

a.
I-K. ,-k,

a. . a
II

r0

0

1

0

•

0

of the

- defined

where x is some vector and

and

k 1

(p-D/2

i-1

(P“2)/2

if i > (p-l)/2

if i 4 (p-l)/2

if i < N-(p-l)/2

if i >/ N-(p-l)/2

29

and the "1" on the right-hand side of (3.9) is in position

k,+l .

A method of the form (3.6) using an approximate inverse

B defined by (3.8) is referred to as Jacobi

Diagonal-Block Method (JDBl(p)) in the chapters that

follow.

Now we show that the method (3.6) with an approximate

inverse defined by (3.8) converges if applied to our one

dimensional model problem.

Consider a linear system with the tridiagonal matrix

-2 1

1-2 1

(3.10) A =

The systems of the form (3.9) now become

(3.11)

30

with appropriate modifications near the start and the end of

the band of A . Here x is a vector of unknov/ns and the

position of the "1” on the right-hand side is dependent on

the row of the approximate inverse B to be determined (see

formula (3.9)).

Defining the sequence { r } by

r, = 1/2

(3.12)

= (2 - = m / (m +1)

the

of

first and the last component of the solution vector

(3.11) are given by

2 + r)■'
''l

if k, > 0

(- 2 + r)

^ ^ ^x, ■ 2 +

, if k, = 0

, if k > 0
X

f

where k, and

L = k, + k^ + 1

(r - 2)
^ I

kj are the same as in

This can be simplified to

if ^4,=

(3.9)

0

and

(3.13)

(k1) / (k,+ kg^+2)

Thus we have

10. .0 c(l)

0 1 0

0

(3.14) BA =

0

-.5

-.5

d(N-s)

0

c(s+1)

-.5

-.5

0

0

d(N)0 ..01

where s = (p-l)/2 , c(j) = “j/(s+j+l), j = l,..,s+l, and

d(i) = [i - (N+1)] / [s - (i - (N+2)], i = N-s,..,N

The following theorem is an extension of theorem 2.1 of

Young (1971,p. 107) for the special case of our one

dimensional model problem.

32

CONVERGENCE THEOREM 3.5

Consider a linear system with the matrix A given in

(3.10) and the iterative method (3.6) . Let the

approximate inverse B be defined by condition (3.8) .

Then the Jacobi Diagonal-Block Method converge s.

Proof

If S(I-BA) ^1, there exists an eigenvalue yu of I-BA such

that \^\>y 1 . Now det [(I-BA) “ I]= 0 . Denoting the

associated eigenvector of jx by v we have

[(I-BA) -^I] V = 0 . Thus { I-yk/T*(I-BA)} v = 0 and we

have a nontrivial solution v;^ 0 of a homogeneous linear

system. Therefore det C I-I-BA)] = 0 . For our one

dimensional model problem we see from (3.14) that the

nonzero elements of the matrix ^ (I-BA) are less than

one in absolute value (since 1). Hence the

M = I-ya(I-BA) matrix is weakly diagonal dominant (see

Young,1971, p. 107).

Reordering the rows and columns of M , we can get a

matrix M of the form

M

M

I

M.

*2—♦

33

where each block M* is irreducible and weakly diagonally

dominant. Hence by Theorem 2-5.3 (Young, 1971, p 40)

det M = det M 4- 0 ^nd we have a contradiction.

The Diagonal-Block Methods for two dimensional boundary

value problems use a striped approximate inverse that has

p (p = 5 + pp*6 , pp =0,1,..) stripes of non-zero

entries. For an (N**x) matrix A and assuming that

pp < (N-l)/2 , the approximate inverse B with p

stripes of non-zero entries is defined by the following

conditions

(B * A).. = 1
11

(B * A) . = 0 i < N -]< + 1 , k=l, 2, . . , pp+1

(B * A). . = 0
i.i-K

(3.15)

i > k , k=l,2,..,pp+1

(B * A). . = 0 i < N - (N+k) + 1 , k=0,l,..,pp

(B * A). . = 0
•,I4W-K

i < N - (N-k) + 1 , k=0,l,..,pp

(B*A). . =0 i>N-k, k=0, 1, . . , pp
I,

(B*A)-. =0 i>N + k, k=0,l,..,pp

where the indices of the non-zero values of B are the ones

used for the conditions (3.15) .

34

As in the one dimensional case, the non-zero elements

of each row of the approximate inverses B are - according

to (3.15) “ defined as the solution of a small linear

system. For the two dimensional model problem with p = 5

(pp = 0), for instance, a typical system is :

(3.16)

>40100

0- 4100

11-411

001- 40

0010-4

X =

I

In the chapters that follow we refer to methods of the form

(3.6) that use an approximate inverse B defined by

(3.15) with p stripes of non-zero values as the Jacobi

Diagonal-Block (JDB2(p)) Methods.

III.3.3 JACOBI LEAST-SQUARES METHODS

The approximate inverses B for the Jacobi Least-Squares

(JLSQ(p)) Method that are defined in this section have

the same sparsity pattern as the approximate inverses for

the corresponding Jacobi Diagonal-Block Methods. The

non-zero entries of B , however, are (determined in a

different way. Each row of B is defined as the solution

of an overdetermined system of linear equations. Suppose

that the non-zero entries of the i'th row of B are in the

columns ij , i-j , . . , i^ and the indices of the columns of A

(the matrix of the linear system to be solved) that have

35

at least one non-zero element in either one of the rows

i, » i^ » • • » is ji » ja ' • • ' • then the overdetermined

system for the i*th row of B is given by

II* •

a? • • • • •

a- .
‘4il

0

•

0

1

0

0 .

where x is a vector of unknowns and the "1" on the

right-hand side is in the position of the rovj that contains

the diagonal element a** of A .

Solving the above systems for each i in the

least-squares .sense and applying the resulting approximate

inverse to the update formula (3.6) we get the JLSQl(p)

and JLSQ2(p) method (p is the number of stripes with

non-zero enties) for the one dimensional and two

dimensional model problem respectively. We remark that

these methods minimize the Frobenius norm of the iteration

matrix ^ - BAl|p over the set of matrices . B with a given

sparsity pattern . The calculations for each row of B are

uncoupled and hence can be performed in parallel.

36

III.4 GENERALIZED GAUSS-SEIDEL METHODS

As mentioned earlier, each approximate inverse defined above

can also be used in a Gauss-Seidel like implementation of

(3.1) or (3.6) . In this case each component is updated

sequentially so that the most recent data is always used.

This increases the speed of convergence, but at a cost of

decreased parallelism. However, if the number of processors

is not greater than the maximum number of non-zeros of a row

of the iteration matrix I-BA , then a Gauss-Seidel like

method involves the same amount of work per iteration as the

corresponding Jacobi like method. We use this type of

parallel Gauss-Seidel method for solving the two dimensional

model problem and denote these methods by GDB2(p) and

GLSQ2(p) for the diagonal-block and the least-squares

versions respectively. In the one dimensional case we use

this type of method only in conjunction with the

least-squares approximate inverses resulting in the

GLSQl(p) methods, but it can also be defined for

diagonal-block approximate inverses.

In the tridiagonal case we can increase the number of

operations that may be executed simultaneously, when

diagonal-block approximate inverses are used. From (3.14)

we conclude that it is possible to divide the set of row

indices of the iteration matrix I-BA into two disjoint

subsets, such that the update formula for the components

37

corresponding to the one subset only involves components

corresponding to the other subset and vice versa. Thus we

can apply the technique of chapter two to obtain a parallel

Gauss-Seidel version that has more independent calculations

than the above version. In particular, if the approximate

inverse B has p stripes of non-zero entries, the subsets

of indices are the following :

L = [1,..,z,2z+l,..,3z,4z+l,... } n { 1,.«,N)

H = { z+1,..,2z,3z+l,..,4z,5z+l,... }A(1,..,N } ,

where z = (p-l)/2+l and N is the size of the linear

system under consideration. These methods are referred to

as the Gauss-Seidel Diagonal-Block (GDBl(p)) Methods.

They are as parallel as the Gauss-Seidel method of

chapter 2, that is, they can benefit from as many parallel

processors as . the number of unknowns. We remark that this

is a very special case. The extension of these ideas to

more general cases could be a topic for future

investigation.

38

IV. GENERALIZED CONJUGATE GRADIENT METHODS

In this chapter we are concerned with generalized

conjugate gradient methods that minimize the error

functional over subspaces of increasing dimension

(Chandra,1978). Solving the linear system Ax = b with an

NxN symmetric and positive definite matrix is equivalent

to minimizing the functional

(4.1) E(x) = (A (x^-x) , x^-x) ,

where x^ is the solution of the linear system under

consideration and (' / •) denotes the usual vector

inner-product (this notation will be used throughout this

chapter).These methods generate for each iterate x a

direction p^^ of local descent in the sense that there is

an <x. such that E(x^ + a.Pj^) < E(Xj^) for

0.6 (0, . The next iterate is of the form

x^^^ ~ PK parameter a is chosen as the

minimum of the error functional E along the direction

Pi^ . The directions and the parameter are chosen in such a

way that the sequence of gradients { grad(E(Xj^))

converges to zero. The idea behind this approach is that if

II grad(E(x^)) 1| is small then usually x is near a zero

of grad E while the fact that { E(x,^)) is decreasing

indicates that this zero of grad E is probably a minimizer

of E . In fact, the directions are pairwise M-orthogonal

for some symmetric positive definite matrix M and the x

39

obtained actually minimizes the error functional on the

affine subspace + span(p^^,p^ ,..,p^) ,where is the

starting vector (see Chandra,1978).Thus we get the important

property that, theoretically, the solution of a linear

system with an NxN positive definite matrix is obtained

in at most N steps.

The conjugate gradient method (proposed by Hesteness

and Stiefel in 1952 as a direct method for solving linear

systems) did not, in practice, perform as well as it was

expected to from its theoretical properties. The solution

procedure was often seriously perturbed by accumulating

round-off errors (even for small systems). However,

extensive numerical tests v/ith the CG-method used as an

iterative method has shown it to be an efficient method for

solving large sparse systems (Chandra,1978,Concus,et

al.,1976).

Before we discuss the generalized conjugate gradient

methods in the form mentioned above, we proceed as follows.

The CG algorithm can be generalized using a matrix

splitting, A = M - N . At each iteration, then, a system

with coefficient matrix M must be solved. For rapid

convergence, the matrix M should, .in some sense,

approximate A, that is, the matrix BA , where B = M** ,

should approximate the identity. Now, solving the linear

40

system Ax = b is equivalent to solving

(4.2) M X = N X + b

where N = M - A.

Using this approach, the CG algorithm can be stated as a

higher order method of the form

(4.3) X. + +

where and ^ are real ' parameters and the

vector z is defined by

(4.4) M - b - ^ }

where M *= B . The question of choosing an appropriate

matrix splitting is equivalent to the question of choosing

an appropriate matrix for scaling (preconditioning). Thus,

the matrix B serves for preconditioning the linear system

to be solved ;

(4.5) B A X = B b .

Many iterative methods can be described by (4.3) .

The Richardson second order method and the Chebyshev

semi-iterative method are examples of such a method (see

Young,1971,pp. 361-367). Our interest here is in the

following generalized conjugate gradient algorithm using the

above preconditioning technique. This algorithm is also of

the form (4.3) .

41

Algorithm 1 [Concus, et al.,1976 3

Let be a given vector. Let M be an arbitrary" nxn

positive definite and symmetric matrix.

1.) Solve M Zj, = b - A x^

and set OJf = 1

2.) Compute #Mz^)/(z^ /^z^) ,

For k = 1,2,...

3.) Compute

4.) Compute

,M)/(z^. ,A z^) ,

- (' -
(z ^ ,M z)

--)'■ ()

X. = X + 6J. (0^1^ z ^ + x^
KH(k-i ' k K K

It can be shown (see Concus,et al.,1976), that the

calculated vectors i are M-orthogonal if we assume

that M is positive definite and M and N are symmetric.

The CG algorithm (M - I in the above algorithm) does

not require an estimation of the extreme eigenvalues while

the Richardson and Chebyshev methods, for example, do.

Thus, in cases where nothing is known about the eigenvalues

of the coefficient matrix, the CG method should be used.

Also, the CG method behaves optimally for a wider class of

matrices , than competing methods such as SOR. (see

Concus,et al.,1976 and Chandra,1978)

42

To be more efficient in terms of storage, the following

equivalent form of algorithm 1 can be used (see

Chandra,1978).

Algorithm 2 [Chandra, 1978]

Let be an initial approximation to the solution of

(4.5) or (4.2) . Let M be a given nxn positive

definite and symmetric matrix. Compute the residual

then solve

M z = r
o o

for Zgand set p^= ^ “ 0,1,2,... iteratively

compute steps (1) through (6)

r b - A X o

(1) aj^ = ()/(p,^ # A p,<)

(2)

(3) r r K A p^

(4) Solve M z^^,= r^^, for z^^,

(5)

(6) P = + b w p

43

In the numerical chapter we use algorithm 2 in a

slightly different form in conjunction with the approximate

inverses defined in chapter 3 . Instead of solving a

linear system at each iteration we compute the vectors d(^

by multiplying the residuals with the approximate inverse

B . When DB approximate inverses are used, these methods

are referred to as DBCG1(T) and DBCG2(I) for the one and

two dimensional model problems respectively (I is the

number of non-zero stripes in the approximate inverse). In

the case of LSQ approximate inverses, these methods are

referred to as LSQCG1(I) and LSQCG2(1) . We remark that

B*** need not be positive definite and symmetric in the

actual implementation. This assumption was made to ensure

the finite termination property.

In order to see that algorithm 1 and algorithm 2

are equivalent in the sense that for the same starting

vector they create in the absence of round-off. error the

same sequence ^ ^ rewrite equation (2) of the

second algorithm :

^ k-l'' ’'X ■ ""“-I) 5

and hence

Comparing (4.6) with step (4) in the first algorithm ,

44

we get the following condition for the parameters

(4.7)

a K "

1 + (a ^kii .

But, condition (4.7) holds for the parameters

and as defined in the above algorithms,

be seen as follows :

a , b

This can

For k = 0 both equations in (4.7) hold, since ~ P® '

b^ = 0 and CU| = 1 .
Now,

1 (PK ^ (M-N) p^)

M z„)

(z ^ ,M z ^)

_ (z^ ,(M-N)) + b^.,(P,<., - (M-N) p^.,) - 2bjz^ ,N z)

(z ^ ,M z ^)

because the vectors { z |^ } are M-orthogonal and each
K

vector p 4, is a linear combination of { z • }
^ I I

Thus

1

a
K

1 1 1

oC k

+ 2 b
I

where we used (see Concus,et al.,1976)

(z ^ ,N z^„) = (z ^ Wk

and

(z ,N z •) = 0 for j < k-1 .
Px o

45

Supposing

we get
“h-,-

K-l

= A _ _AK .
I c^„., k-1 / = a;

-.1
k-« V

Thus we have proved the first condition of (4.7) by

induction. From this result we get

a ^
1 + — = 1 +

^ k-i

CJ k-i\

•^k ®‘k-i

= 1 , X - b,..

= 1 +

' '^w-l

 J^k-J

---)"' (Ju /

-1
= I 1 - (<XH b^.,)/(0‘k-, «K ’ ^ ,

which proves that the second condition in (4.7) also holds

for the parameters defined in algorithms 1 and 2 .

The speed with which the generalized conjugate gradient

algorithm converges depends strongly on the choice of the

preconditioning matrix M (or B). For r^pid convergence
-I

one seeks a splitting so that M N = I-BA has small or

nearly equal eigenvalues or that it has small rank (see

Chandra,1978,th.4.1 and th.3.5). Also we require that M

retain any desirable features of A such as sparsity and

that the system of equations with coefficient matrix M be

46

easily solvable. However, when approximating the inverse of

A it is desirable that the approximate inverse B be

almost as sparse as A .

Several suggestions in the past few years have been

made concerning the choice of M for matrices A which

arise from discrete approximation to boundary value

problems. Stone (1968), for example, determined the matrix

M by altering the coefficient matrix A in such a way

that the LU-decomposition of the perturbed matrix is sparse

in nature. An incomplete LU~decomposition of A is used

for the family of Incomplete Cholesky Conjugate Gradient

(ICCG) methods (Meijerink, van der Vorst,1977). During the

calculation certain elements are neglected in the L and

U matrices in order to keep the preconditioning matrix M

sparse. These methods are not ideally suited for vector

computers because of the forward - backward substitutions

involved.

Dubois, Greenbaum and Rodrigue (1977) replaced the

incomplete factorization with an incomplete inverse using a

truncated Neumann series. Thus they avoid solving a linear

system -of the form M z = d at each iteration. The

matrix - vector multiplications required gan be computed

efficiently on a parallel computer. The idea of

approximating the inverse of A was further developed by

Johnson and Paul (1980,1981). In 1980 they introduced a new

class of methods called incomplete inverse conjugate

gradient Jacobi (IICGJ) methods, while in 1981 they

suggested a parameterized form of the incomplete inverse and

showed how to select the parameters in order to optimize the

convergence of the algorithm. For our test series

numerical chapter we use the diagonal - block

defined in the previous chapter.

Finally we remark that the choice M = I , N

leads to the basic unmodified CG algorithm.

in the

inverses

= I - A

48

V. NUMERICAL EXPERIMENTS

We carried out numerical experiments to demonstrate and

compare the efficiency of the methods presented in the

previous chapters. For the purpose of comparison v/e used

the one and two dimensional model problems of appendix A .

Each iterative process was started with the same initial

guess x^= (1,...,1)

For each test problem the exact solution of the linear

system is the zero vector, so that the absolute error of the

current iterate can be easily computed. We stopped the

iterations when this error was reduced below a specified

value.

The methods using an approximate inverse allow us to

reduce the number of iterations necessary to achieve a

specified accuracy, but often at the expense of increasing

the work involved in each iteration (see tables 5.1-5.3).

Therefore we used two measures, the number of iterations and

the number of multiplications (including divisions), to

compare the methods. We ignored the number of additions

(including subtractions), since a rough estimate of the work

per iteration is sufficient for our purposes.

49

We also ignored in our work measures the calculations

required to establish the iterative process. This greatly

simplifies our estimates and is a reasonable approach when

the linear system must be solved for many right hand sides.

We remark, however, that the small linear systems involved

in the calculation of each row of the approximate inverse

B can be solved in parallel. For our model problems the

diagonal block systems are easy to solve and, except for the

ones at the edges, are all alike (see (3.16)). Also,

these systems can be solved independently of one another.

Thus, if the cost for computing B is ignored, the set-up

work consists solely of forming the matrix G = I - B A ,

when methods of the form (3.6) are used. This can also be

avoided by rewriting the update formula in the form

u^ + B(-Au,^ + b) . But this would increase the

amount of work per iteration for the situations we consider.

However, we note that there exist approximate inverses

where it is more advantageous to use the above iteration

formula instead of using the iteration matrix G .

A parallel machine as described in chapter 2 with P

independent processors can calculate P multiplications

simultaneously with no overhead for data transfer or any

other data manipulation. This leads us to define a parallel

time unit T(P) as the time required for P independent

multiplications. An almost iinmediate observation concerning

each of the Jacobi like methods is that they can benefit

from as many parallel processors as the number of many

50

multiplications involved in computing Gu . The methods of

chapter 2, PGSl and PGS2, and the Gauss-Seidel like methods

for our dimensional model problem consist of two sequential

update passes per iteration. However, a small number of

processors (less than N, the number of unknowns) can be

equally exploited by the Gauss-Seidel like and the Jacobi

like methods using the same approximate inverse in the one

dimensional case (see table 5.1). The Gauss-Seidel like

methods that we are using for the two dimensional model

problem are calculating each component of Gu sequentially,

so that the parallelism of these methods is limited to the

number of nonzeros in a row of the iteration matrix.

In the one dimensional case we find that there are

about 2N multiplications necessary for computing the

matrix-vector product Gx , where G = I-BA , if the

Diagonal-Block (DB) approximate inverses are used (N) .

Thus, assuming that N is an upper bound for the number of

independent processors, the work necessary for one iteration

of the parallel Gauss-Seidel method PGSl (see chapter 2)

is the same as the work involved for one iteration of the

JDBl(I) or the GDBl(I) methods (see chapter 3). If

more than 2N parallel processors are available, the work

needed for the Jacobi like iterations is only half of the

work needed for the Gauss-Seidel like iterations (see

table 5. 5.1).

51

Compared to the DB-technique, the Least-Squares (LSQ)

technique creates more nonzeros in the iteration matrix G .

The number of multiplications per iteration of the

JLSQl(I) (I = 3,5,7,...) methods is (I+2)*N . The

numerical experiments showed that the JLSQl(I) methods

converged about as fast as the corresponding JDBl(I)

methods, so we conclude that it does not pay to use the

iteration matrix I-BA with a least-squares approximate

inverse for our one dimensional model problem. The same

conclusion applies to our two dimensional model problem.

There the costs C(I) for the JDB2(I) (I = 5,11,17,..)

methods are C(I) = (S + { (I+l)/6 - 1] 4) N multiplications

per iteration (see table 5.2), while the costs per iteration

for the JLSQ2(I) methods are C(I) + I . However, as

mentioned above, there are cases where the iteration formula

u^ + B(“Au + b) is less costly than the formula

involving I-BA .

The conjugate gradient method (CG) needs 5N +2

multiplications per iteration plus a matrix-vector product

involving the matrix A of the linear system to be solved.

The preconditioned conjugate gradient methods

(DBCG(I) or LSQCG(I), I = 5,11,17...) need one additional

matrix-vector product involving the approximate inverse B

(see tables 5.1 and 5.3). To initiate the iterative process

the CG method requires one matrix-vector product Au in

order to calculate the first residual as well as a vector

inner-product. The overhead for the DBCG(I) or LSQCG(I)

52

methods consists of the computation of the approximate

inverse B plus the two matrix-vector products Au and

Bu plus one vector inner-product. As above, we choose to

neglect this overhead.

The CG and the preconditioned conjugate gradient

methods are less parallel than the above Jacobi like

methods. Only step (2) and step (3) in algorithm 2 of

chapter 4 can be computed in parallel, so that we have five

sequential steps that have to be computed for each

iteration. Also, the two divisions in step (1) and (5)

require two full time units no matter how many parallel

processors are available. We may therefore have severe

unemployment among the processors. The parallelism of these

methods is limited to the calculation of the matrix-vector

products, the vector inner-products and the scalar-vector

products (see tables 5.4-5.6).

In tables 5.1 - 5.3 we summarize the operation counts

for the methods under consideration. In our tables we do

not include the operation counts for the methods using the

least-squares technique. The number of multiplications per

iteration for linear stationary methods using this technique

is obtained by simply adding the factor ItN to the number

of multiplications necessary for one iteration of the

corresponding method using a DB approximate inverse with

I stripes of non-zero entries. For the preconditioned

conjugate gradient methods the cost for a matrix-vector

product involving a LSQ-approximate inverse is the same as

53

if a DB-approximate inverse were used, so that the total

cost per iteration does not change either. Furthermore,

since N is large we ignored edges effects in the operation

counts. Also, for simplicity the size of the linear system

N in each column of any table is always assumed to be a

multiple of the number P of independent processors. Thus

each given fraction of N is an integer value. The tables

5.4 -5.6 exemplify the different degrees of parallelism

(as discussed above) of the methods under consideration.

The functions T(P),S(P),E(P) and F(P) are the parallel time

unit, the speed-up ratio, the efficiency and the

effectiveness as defined in chapter 2 .

In order to graph computational work versus convergence

rate, we have selected the methods PGSl and PGS2 as the

basis of comparison for the linear stationary methods of the

form (3.6) . All these methods are shown in terms of

equivalent iterations of PGSl or PGS2 respectively. For

example, the JDB2(5) method in two dimensions, which

requires 8 time units per iteration using N processors,

is allowed 1/2 iteration per computational work unit,

since one iteration of PGS2 requires just 4 time units

in that case. The CG method serves as a basis of

comparison for the preconditioned conjugate gradient

methods.

54

In tables 5.7-5.11 we give the number of iterations to reduce

the error by a specified factor for the methods under consideration for

various numbers of unknowns. The JDB1(3) and the JDB2(5) methods

reduce the number of iterations compared to the PGSl and PGS2 methods

respectively roughly by a factor of 1/2. The methods JDB1(5) and

JDB2(11] further reduce the iteration number roughly by the same factor.

However, table 5.11 indicates that as the number of stripes in the

approximate inverses increases the advantage gained by including still

more stripes diminishes. The method JDB2(35) , for example, reduces

the number of iterations compared to the JDB2(29) method only by a

factor of 0.98 .

The convergence rates of the JLSQ2(I) methods are somewhat worse

than the convergence rates of the JDB2(I) methods. In the one

dimensional case, however, the JLSQl(I) methods converge significantly

slower than the corresponding JDBl(I) methods. In particular, the

JLSQl(3) method converges only as fast as the parallel Gauss-Seidel

version PGSl. This is still an improvement by a factor of 2 over

the convergence rate of the standard Jacobi method in the cases under

consideration [The Jacobi method takes 5260,20832 and 46729

iterations for 100, 200 and 300 unknowns respectively to reduce

the maximum norm of the error to less than .1).

Figures 5.12 and 5.13 show the computational work in terms of

equivalent iterations of the PGSl and PGS2 methods respectively

55

versus the error of the Jacobi like methods with various DB approximate

inverses. We observe that the JDB2(17) method does not give an improve-

ment over the JDB2(11) method.

Tables 5.7 and 5.9 indicate that the Gauss-Seidel like methods,

GOBI(I) and GDB2(I) , improve the convergence, rate of the corresponding

JDBl(I) and JDB2(I) methods by a factor of 2. The parallelism of the

GDB2(I) methods is limited to the number of non-zeros per row in the

iteration matrix I-BA. Thus we have to assume a small number of processors

in order to gain an advantage over the JDB2(I) methods. In figure 5.14

we compare the GDB2(I) and JDB2(I) methods assuming 16 independent

processors. The methods GDB2(11) and GDB2(17) are more efficient than

the corresponding methods JDB2CH) and JDB2(17) in this case.

Tables 5.8 and 5.10 show the rate of convergence of the conjugate

gradient and the preconditioned conjugate gradient methods. It was found

that preconditioning improves the rate of convergence. This is shown for

the DBCG2(I) (1=5,11,17) methods in figure 5.15. Similar results have

been obtained for the LSQCG2(I) methods. The improvement is smaller

than the increase in the computational work unless the number of processors

is assumed to be on the order of N (the number of unknowns]. This is

shown in figures 5.16-5.18.

In conclusion approximate inversion techniques provide an effective

means for developing parallel algorithms for the iterative solution of

large sparse linear systems arising in connection with the numerical

solution of boundary value problems. In particular the diagonal-block

extensions of the Jacobi method performed very well in a parallel

environment. The Gauss-Seidel methods in the one dimensional case

usually produced an additional improvement. The same result could be

accomplished in the two dimensional case when the number of processors

was assumed to be small. Finally, in special cases, our approximate

inversion techniques proved effective for preconditioning the conjugat

gradient method.

57

WORK REQUIREMENTS IN ONE DIMENSION

T(l) T(15) T(N) T(2N) T(7N)

PGSl
JDBI(I)
GDBl(I)

2N
2N
2N

2/15 N
2/15 N
2/15 N

CG 8N + 2 8/15 N + 2 10 8
DBCG1(3) IIN + 2 11/15 N + 2 13 10
DBCG1(5) 13N + 2 13/15 N + 2 15 11
DBCG1(7) 15N +2 N + 2 17 12

7
8
8
8

Table 5.1 : Work requirements for the methods solving
the one dimensional model problem. T(l)
is the number of multiplications per
iteration. T(P) is the number of time
units per iteration using P processors.
N is the order of the linear system.

58

WORK REQUIREMENTS IN TWO DIMENSIONS

T(l) T(16) T(N) T(16N)

PGS2
JDB2(5)
JDB2(11)
JDB2(17)

4N
8N
12N
16N

1/4 N
1/2 N
3/4 N

N

4
8
12
16

GDB2(5)
GDB2(11)
GDB2(17)

8N
12N
16N

N
N
N

N
N
N

N
N
N

Table 5.2 requirements in the two dimensional
^) for linear stationary

Work
case (N = n
methods. T(P)
per iteration

is number
using P

of time units
processors.

T(l) T(N) T(2N) T(5N) T(llN) T(17N)

CG
DBCG2(5)
DBCG2(11)
DBCG2(17)

.10N + 2
15N + 2
21N + 2
27N + 2

12
17
23
29

9
12
15
18

7
8

10
11

7
8
8
8

Table 5.3 : Work requirements in the two dimensional
case (N = n^) for the preconditioned
conjugate gradient methods. T(P) is the
number of time steps per iteration
using P processors.

59

MEASURES OF PARALLELISM

S(15) S(N) S(2N) T(7N)

PGSl
JDBl(I)
GOBI(I)

15
15
15

N
N
N

N
N
N

N
2 N

N

CG
DBCGK3)
DBCGK5)
DBCGK7)

15
15
15
15

.8 N

.846 N

.886 N

.882 N

N
1.1 N

1.18 N
1.25 N

1.142 N
1.375 N
1.625 N
1.875 N

Table 5.4 : Estimates of the speed-up ratios in the
one dimensional case (see chapter 2 for
definition of S(P)).

E(15) E(N) E(2N) E(7N)

PGSl
JDBl(I)
GDBl(I)

.5
1
.5

.1428

.2856

.1428

CG
DBCGl(3)
DBCGl(5)
DBCGl(7)

.8

.845

.866

.882

.5

.55

.59

.625

.1632

.1964

.2321

.2678

Table 5.5 ; Estimates of efficiency in the one
dimensional case (see chapter 2
for definition of E(P)).

F(15) F(N) F(2N) F(7N)

PGSl
JDBl(T)
GDBl(I)

7.5/N
7.5/N
7.5/N

.25
1
.25

.0714

.285

.0714

CG
DBCGl(3)

DBCGl(5)
DBCGl(7)

1.875/N
1.366/N

1.153/N
1/N

08
.065
0577
.05208

.0625
.055

.0537
.0521

0233
.0245
0290
.0334

Table 5.6 Estimates of effectiveness in the one
dimensional case (see chapter 2 for
definition of F(P)).

60

CONVERGENCE RATE IN ONE DIMENSION
FOR LINEAR STATIONARY METHODS

Number of Iterations

Size N 100 200 300

PGSl 2630 10416 23365

JDB1C3)
JDB1C5)
JDB1C7)

1315
585
329

5207
2314
1302

11678
5190
2920

GDB1(3}
GDBl (5]
GOBI(7]

658
293
165

2604
1158
652

5840
2596
1460

JLSQl(3)
JLSQ1C5]
JLSQl (7)

2629
1314
788

10413
5206
,3124

23354
11677
7006

GLSQl C3)

GLSQ1C5)
GLSQl(7)

1578
752
438

6249
2976
1736

14013
6673
3892

Table 5,7 : Number of iterations to reduce the maximum norm of the
error to at least .1 for the one dimensional model problem
is given. The size N denotes the number of unknowns.

61

CONVERGENCE RATE IN ONE DIMENSION
FOR THE CONJUGATE GRADIENT METHODS

Number of Iterations

Size N 100 200 300

CG 50 100 150

DBCG1(3)
DBCG1C5)
DBCG1(7)

44
35
33

75
55
62

105
89
82

LSQCGl(3)
LSQCGl (5)
LSQCGlC7)

34
33
40

65
58
59

96
83
82

Table 5.8 : Number of iterations to reduce the maximum norm of the
error to at least .01 for the one dimensional model
problem is given. The size N denotes the number of
unknowns.

62

CONVERGENCE RATE IN TWO DIMENSIONS
FOR LINEAR STATIONARY METHODS

Number of Iterations

Size N = n 225 400 625

PGS2 479 833 1282

JDB2(5}
JDB2(I1)
JDB2(17)

187
99
76

323
171
132

496
263
203

GDB2 (5)
GDB2 (11)
GDB2C17)

95
51
39

163
87
67

249
133
102

JLSQ2C5)
JLS02(11)
JLSQ2(17)

262
150
124

453
260
216

696
401
332

GLSQ2(5)
GLSQ2(11)
GLSQ2(17)

143
80
66

247
138
114

378
212
175

Table 5.9 : Number of iterations to reduce the maximum norm of the
- error to at least #0001 for the two dimensional model

problem is given. The size N denotes the number of
grid points.

63

CONVERGENCE RATE IN TWO DIMENSIONS
FOR THE CONJUGATE GRADIENT METHODS

Number of Iterations

Size N = n 225 400 625

CG 23 30 39

DBCG2(51
DBCG2(1I)
DBCG2(17)

17
15
16

25
19
20

28
22
24

LSQCG2(5)
LSQCG2(11)
LSQCG2(17)

18
15
16

21
20
21

23
24
24

Table 5.10 : Number of iterations to reduce the maximum norm of the
error, to at least .00001 for the two dimensional model
problem is given. The size N denotes the number of
grid points.

64

COMPARISON OF DB APPROXIMATE
INVERSES IN TWO DIMENSIONS

Number of Iterations

1
Size N = n 225 400 625

JDB2C5)
JDB2(11)
JDB2(17)
JDB2(23)
JDB2(29)
JDB2(35)

187 323 496
99 171 263
76 132 203
69 118 182
66 113 173
65 111 170

Table 5.11 : Number of iterations to reduce the maximum norm of the
error to at least .0001 for the two dimensional model
problem is given. The size N denotes the number of
grid points.

C
o
m
p
a
r
i
s
o
n

w
i
t
h

V
e
c
t
o
r

M
e
t
h
o
d
s
,

C
o
n
v
e
r
g
e
n
c
e

v
e
r
s
u
s

C
o
m
p
u
t
a
t
i
o
n
a
l

W
o
r
k
,

F
I
G
U
R
E

5
.
1
2

1
0
0

u
n
k
n
o
w
n
s
,

l
e
s
s

t
h
a
n

N

p
r
o
c
e
s
s
o
r
s
.

65

Natural Log Error

. 00 -4.20 3-40
Y R X I 3
2-60 “1.80 -1.00 ".20

r-o

66

Natural Log Error

V n XI s
-9.00 -7.00 -5.00 -3.00 -1.00 1.00 3.00

C
o
m
p
a
r
i
s
o
n

w
i
t
h

V
e
c
t
o
r

M
e
t
h
o
d
s
,

E
q
u
i
v
a
l
e
n
t

I
t
e
r
a
t
i
o
n

P
G
S
2

C
o
n
v
e
r
g
e
n
c
e

v
e
r
s
u
s

C
o
m
p
u
t
a
t
i
o
n
a
l

W
o
r
k
,

2
0

X

2
0

G
r
i
d
,

1
6

p
r
o
c
e
s
s
o
r
s
,

F
I
G
U
R
E

5
,
1
4

67

Natural Log Error

"10.00 - 8 - 00 '6-00
r AXIS

"4.00 ■‘2.00 0.00 2.00

68

Natural Log L QD Error

-21.00 -17.00 -13.00
r RXI3
9.00 “5.00

L
1.00

a o o n
DO 00 CO cri
non
non
ro ts) ro

3.00
JL

69

Natural Log L Error
00

-21.00 -17.00 -13.00 -el 0^^^-5.00 - 1.00 3.00

70

Nj f~j tn
o o o

3 3
X < ^

a> p
►i »-j

O OQ H*
o> CO
3 o

*-$0 3
H- O

rt-
3*

■‘ Ui a>
T O

r+
O O
3 *-$

*-$ "3
C
r+

n> P
f?
r+
3“
O
fX
C/J

(/) p »

o
•-$

o
c
33
rn

m
c
H-
<
P
I—*
(T>

3
rJ-

rt
a>
P

H*
o
3

n
cn

Natural Log L Error
<50

-21.00 -17.00 -13.00 1.00 3.00

C
o
m
p
a
r
i
s
o
n

w
i
t
h

V
e
c
t
o
r

M
e
t
h
o
d
s
,

E
q
u
i
v
a
l
e
n
t

I
t
e
r
a
t
i
o
n

C
G
.

C
o
n
v
e
r
g
e
n
c
e

v
e
r
s
u
s

C
o
m
p
u
t
a
t
i
o
n
a
l

W
o
r
k
,

2
0

X

2
0

G
r
i
d
,

17• 1

5
^

p
r
o
c
e
s
s
o
r
s
.

F
I
G
U
R
E

5
.
1
8

71

Natural Log L Error

-21.00 -17.00
1

13 -1.00

CJU
m

CD

CT}_

0:=:
Gil

a a a n
CO DO W O
n n n
(Tl CD CD
tsJ K) K)

cn
I—*

^ y V /

3.0C
J

72

BIBLIOGRAPHY

M.W. Benson, P.O. FredericXson, 1981, Iterative Solution of
Large Sparse Linear Systems arising in certain
Multidimensional Approximation Problems, to
appear in Util. Math.

M.W. Benson, 1973, Iterative Solution of Large Scale Linear
Systems, Mathematics Report No. 17-73, Lakehead
University,Thunder Bay, Canada.

R.H. Barlow, D.J.Evans, 1982, Parallel Agorithms for the
Iterative Solution to Linear Systems, The Computer
Journal, Vol.25, No.l, pp.56-60.

P. Budnik, D.J. Kuck, 1971, The Organization and Use of
Parallel Memories, IEEE Transations on Computers,
Vol. C-20, No. 12, pp.1566-1569.

R. Chandra, 1978, Conjugate Gradient Methods for Partial
Differential Equations, Ph.D dissertation
Department of Computer Science, Research
Report No.129, Yale University, New Haven, CT.

P. Concus, G.H. Golub, D.P.O'Leary, 1976, A Generalized
Conjugate Gradient Method for the Numerical
Solution of Elliptic Partial Differential Equations
in: Sparse Matrix Computation, Academic Press,
eds.: J.R. Bund, D.J. Rose, pp.1-22.

P.E. Dubois, A. Greenbaum, G.H. Rodrigue, 1979, Approximating
the Inverse of a Matrix for Use in Iterative
Algorithms on Vector Processors, Computing 22,
pp.257-268.

M.J. Flynn, 1966, Very High-Speed Computing Systems,
Proc. IEEE, Vol. 54, pp.1901-1909.

L.S. Haynes, 1982, Highly Parallel Computing:Guest Editor's
Introduction, Computer, Vol.15, No.l, pp.7-8.

L. S. Haynes, R.L.Lau, D.P.Siewiork, D.W. Mizell, 1982, A
Survey of Highly Parallel Computing, Computer,
Vol.15, No.l, pp.9-24.

D. Heller, 1978, A Survey of Parallel Algorithms in Numerical
Linear Algebra, Siam Review, Vol.20, No.4, pp740-773.

M. R. Hestenes, E. Stiefel,52, Methods of Conjugate Gradients
for Solving Linear Systems, Journal Research of the
National Bureau Standards, Vol.49, No.6,
Research Paper 2379, pp.409-436.

73

O. Johnson, G.Paul, 1980, Vector Algorithms for Elliptic
Partial Differential Equations Based on the Jacobi
Method, Research Rep. RC-8372, IBM, T.J. Wilson
Research Center, Yorktown, N.Y., pp.35-351.

O. Johnson, G. Paul, 1981, Optimal Parameterized Incomplete
Inverse Preconditioning for Conjugate Gradient
Calculations, RC. 8644, IBM, Research Rep., pp.1-9.

H.T. Kung, 1981, Why Systolic Architectures?, Computer, Vol.l5,
No.l., pp.37-46.

«

J.A. Meijerink, H.A. van der Vorst, 1977, An Iterative Solution
Method for Linear Systems of which the Coefficient
Matrix is a Symmetric M-Matrix, MOC, Vol.31, No.137,
pp.148-162.

U. Schendel, 1981, Einfuehrung in die Parallele Numerik
Oldenburg Verlag, Muenchen, Wien.

H.J. Siegel, 1979, A Model of SIMD Machines and a Comparison
of various Interconnection Networks, IEEE Trans, on
Comp.,Vol. C-28, No.12, pp.907-917.

H. Stone, 1973, Problems of Parallel Computation; in Complexity
of Sequential and Parallel Numerical Algorithms, ed.
by J.F. Traub, Academic Press, pp.1-16.

H. Stone, 1968, Iterative Solution of Implicit Approximations of
Multidimensional Partial Differential Equations,
SIAM J. Numer. Anal., Vol. 5, No. 3, pp.530-558.

R.S. Varga, 1962, Matrix Iterative Analysis, Prentice-Hall,
Englewood Cliffs, N.J.

Young, 1971, Iterative Solution of Large Linear Systems,
Academic Press.

74

APPENDIX A

MODEL PROBLEMS

Throughout, this thesis we use the following two

examples to illustrate our results. The first model problem

is the one-dimensional analog of Young's model problem (see

Young,1971). This is a simple example of large sparse

systems and it is used for testing and comparing the methods

proposed in this thesis. It arises from the application of

a simple finite difference approximation to the following

one-dimensional boundary value problem:

(A.l) u”(x) = 0 , u(a) = u(b) = 0 ,

a ^ X ^ b ,

where u : [a,b] -—R is a twice continously differentiable

real valued function and udenotes the second derivative

of u . The unique analytic solution to this problem is

u(x) = 0 for all x€ Ca,b] . We seek a numerical solution

to the function that satisfies (A.l) at equally spaced

points in Ca,b] . We first subdivide the interval [a,b]

into Ntl intervals of equal lengh, say h , and then

replace the second derivative by central differences

(A. 2) u'‘(X) ^ [u;,j - 2 u,- + Uj^^]/ h ,

1 — 1,..,N f

where X| = a + i*h, i=l,..,N and x^ = a , ^

u* denotes the approximation of u(x») .

75

Thus using (A.l) and (A.2) we get

“1 I*

(A.3)

-2 1

1-2 1

1-2 1

1 -2

u,

u

0

0

The matrix of the above linear system is nonsingular,

so that the unique solution of the approximate equations

(A. 3) is the zero-vector. We call this the

one-dimensional model problem.

In two dimensions we choose Young's model problem

(Young,1971,pp. 2-3). We seek an approximation to the

function u(x,y) defined on the unit square which satisfies

Laplace's equation

(A.4) ^ ^ ^) = 0 , 0 < x,y < 1 ,

and

(A.5) u (X,y) = 0

on the boundary of square, where Uj^^^ =^u / cl x^ and

u yy = 5^u / S y^ . The solution to this problem is the

zero-function, but we will use it to illustrate our

76

numerical techniques. We superimpose a mesh of horizontal

and vertical lines over the square with a uniform spacing

h = (N+1) * ,for some integer N , and seek to determine

approximate values of u(x,y) at the mesh-points. For each

mesh-point we replace the differential operator by the usual

five-point star difference operator ;

(A.6) [+ U.J., -4 U;. + + Uu,.i]/ h*-

= 'Yj > +

where i,j = 1,..,N , x* = i*h , y. - j*h and U;- denotes

the approximation to u{ i*h,j*h) . Using (A.4) - (A.6)

we get the following sparse linear system of equations

r

(A.7)

-4 1

1-4 1

L
where u

O

1-4 0

0 -4
O

1

o

1-4 1

1 -4

J

/N
u

0

0

0
L J

is an N -vector, and every N‘th element of

the subdiagonal and superdiagonal is a zero and the other

two diagonals are N matrix elements apart from the main

77

diagonal. The matrix of the system (A.7) is nonsingular,

so that the solution is the zero-vector.

78

APPENDIX B

FORTRAN SUBROUTINES FOR DATA ORGANIZATION

For our test series we used a data structure that
«

allows for experiments with any striped matrix. Each matrix

has its non-zero entries stored in an N by NBND array,

where N is the size of the matrix and NBND is the number

of stripes with non-zero entries. The column indices of the

non-zero entries are stored in an N by NBND integer array.

Corresponding elements of these two arrays are in the same

position. When we refer to an approximate inverse B , each

i'th row of these arrays contains non-zeros in its first c.

locations, where C| is the number of non-zeros in the i'th

row of B . The data is organized somewhat differently for

the coefficient matrix A of the linear system to be

solved, since we need to fetch columns of A when computing

the approximate inverse. Therefore each diagonal of A

containing non-zero elements is stored in one column as are

the corresponding indices.

In this appendix we list the FORTRAN subroutines that

create the data structure described above and also the

subroutines that operate on this structure. The subroutine

INPUT2 initializes an array that indicates which diagonals

of the coefficient matrix under consideration contain

non-zero elements. The subroutine INPUTS finds the

corresponding array for the approximate inverse according to

the definitions in chapter 3. These arrays are used by the

subroutines BSTRUCT and ASTRUCT . These subroutines

initialize the index-arrays for the approximate inverse and

the coefficient matrix respectively. The subroutines INIT

and INIT2D initialize the coefficient matrices of the one-

and two-dimensional model problem respectively. The

subroutines MATVEC , ZEILVEC and AX2MAT perform a

matrix-vector and restricted matrix-vector multiplications

respectivly. The subroutine ZEILVEC multiplies a

specified row of a matrix times a vector. This subroutine

is used for the Gauss-Seidel like methods (see appendix F).

The subroutine AX2MAT performs a restricted matrix-vector

multiplication in the sense that only the components between

certain bounds are computed.

c
c
c
c
c
c
c
c
c
c
c
c
c
c

SUBROUTINE INPUT2(NBNDA,INFOA,ND)
THIS SUBROUTINE INITIALIZES AN ARRAY
THAT CONTAINS THE INFORMATION ABOUT
THE POSITIONS OF THE DIAGONALS OF THE
WITH NON-ZERO ENTRIES OF THE COEFFICIENT
MATRIX. IT HANDLES BOTH THE ONE AND
THE TWO DIMENSIONAL CASE.
DESCRIPTION OF PARAMETERS.
NBNDA

ND

INFOA

11

: NUMBER OF NON-ZERO DIAGONALS OF A.
ODD INTEGER VALUE.

: NUMBER OF GRID POINTS PER ROW IN THE
TWO-DIMENSIONAL CASE.

: INTEGER ARRAY OF SIZE (NBNDA-1). CONTAINS
ON OUTPUT THE DISTANCES OF THE DIAGONALS
OF A FROM ONE ANOTHER.

INTEGER NBNDA,ND
DIMENSION INFOA(NBNDA-1)
DO 5 I = 1,NBNDA-1
INFOA(I) = 1
CONTINUE
IF (NBNDA .EQ. 3) GOTO 11
INFOA(2) = ND - 2
INFOA(4) = ND - 2
CONTINUE
RETURN
END

81

C
C
C
C
C
C
C
C
c
c
c
c
c
c
c
c

SUBROUTINE INPUTS(N,ND,NBNDB,NBNDA,INFOB)
THIS SUBROUTINE INITIALIZES AN ARRAY
THAT CONTAINS THE INFORMATION ABOUT
THE POSITIONS OF THE DIAGONALS WITH NON-ZERO
ENTRIES IN THE APPROXIMATE INVERSE B .
IT HANDLES BOTH, THE ONE AND
THE TWO DIMENSIONAL CASE.
DESCRIPTION OF PARAMETERS.
NBNDB

NBNDA

ND

INFOB

10

11

; NUMBER OF NON-ZERO DIAGONALS OF B .
ODD INTEGER VALUE.

: NUMBER OF NON-ZERO DIAGONALS OF THE
COEFFICIENT MATRIX. ODD INTEGER VALUE.

: NUMBER OF GRID POINTS PER ROW IN THE
TWO-DIMENSIONAL CASE.

: INTEGER ARRAY OF SIZE (NBNDB-1). CONTAINS
ON OUTPUT THE DISTANCES OF THE DIAGONALS OF
B FROM ONE ANOTHER.

INTEGER N,ND,NBNDB,NBNDA
DIMENSION INFOB(2,NBNDB-1)
IF (NBNDA .EQ. 5) GOTO 11
DO 10 I = 1,NBNDB - 1
INFOB(1,1) = 1
CONTINUE
GOTO 22
CONTINUE
IHILF = (NBNDB + 1)/6
JPOINT = 1

230 CONTINUE
DO 200 I = 1,IHILF
INFOB{1,JPOINT) = 1
JPOINT = JPOINT + 1

200 CONTINUE
INFOB(1,JPOINT) = ND - 2 * IHILF
JPOINT = JPOINT + 1
JH = 2 * IHILF - 2
IF (JH .EQ. 0) GOTO 220
DO 210 I = 1,JH
INFOBd, JPOINT) = 1
JPOINT = JPOINT + 1

210 CONTINUE
220 -IF (JPOINT .NE. NBNDB) GOTO 230
22 CONTINUE

RETURN
END

82

C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

SUBROUTINE BSTRUCT (N,NBND,INFO,NRAND,IRAND,INDEXB)
THIS SUBROUTINE INITIALIZES THE INDEX MATRIX OF THE APPROXIMATE
INVERSE B .
DESCRIPTION OF PARAMETERS.
N

NBND
INFO

I RAND

NRAND

INDEXB

5
10

SIZE OF THE APPROXIMATE INVERSE (EQUALS NUMBER THE
OF UNKNOWNS).
NUMBER OF DIAGONALS OF B CONTAINING NON-ZEROS.
TWO DIMENSIONAL INTEGER ARRAY OF SIZE (2,NBND-1).
ON ENTRY, THE ABSOLUTE VALUES OF THE FISRT ROW ARE
THE DISTANCES OF THE DIAGONALS OF B WITH NON-ZEROS FROM
ONE ANOTHER. A NEGATIVE VALUE IN THE FIRST ROW INDICATES
THAT CERTAIN VALUES IN THE DIAGONAL CORRESPONDING TO
THAT VALUE ARE ZEROS. THE CORRESPONDING VALUE IN THE
SECOND ROW OF INFO CONTAINS A POINTER TO THE
ARRAY NRAND WHERE THE ZERO POSITIONS OF THAT
PARTICULAR DIAGONAL ARE GIVEN.
NUMBER OF DIAGONALS WITH NON-ZERO ENTRIES WHERE
CERTAIN ELEMENTS ARE ZERO.
TWO DIMENSIONAL ARRAY OF SIZE N,IRAND .
CONTAINS INFORMATION ABOUT CERTAIN ZERO VALUES
OF THE STORED DIAGONALS OF B (SEE PARAMETER INFO).
TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBNDB .
CONTAINS ON OUTPUT THE INDEX MATRIX OF THE
APPROXIMATE INVERSE.

INTEGER N,NBND,NRAND
DIMENSION INDEXB(N,NBND), INFO(2,50),IRAND(N,NRAND)
IHELP = (NBND - 1) / 2
DO 10 I = 1,NBND
DO 5 J = 1,N
INDEXBCJ,I) = 0
CONTINUE
CONTINUE
DO 20
ISUMl
ISUM2
IZl =
IZ2 =
DO 30
INF -
-IF (
ISUMl

1,N J =
= 0
= 0
0
0
K = 1,IHELP
INFO(1,K)
INF .EQ. 0)

= ISUMl + ABS(
GOTO 11
INF)

30

11

42

IF (ISUMl .GT. (J-1)) GOTO 11
IZl = K
CONTINUE
GOTO 42
CONTINUE
ISUMl = ISUMl - ABS(INF)
CONTINUE
DO 40 K = 1,IHELP
INF = INFO(1,K+IHELP)
IF (INF .EQ. 0) GOTO 22
ISUM2 =.ISUM2 + ABS(INF)

83

IF (ISUM2 .GT. (N-J)) GOTO 22
IZ2 = K

40 CONTINUE
22 CONTINUE

ICOUNT = 0
IF (IZl .EQ. 0) GOTO 50
DO 50 I = 1,IZ1
ICOUNT = ICOUNT + 1
IK = IZl +1-1
INF = INFO(l/I)
IF (INF .LT. 0) GOTO 33

55 CONTINUE
INDEXB(J,ICOUNT) = J - ISUMl
ISUMl = ISUMl - ABS(INFO(l,IK))
GOTO 44

33 CONTINUE
INF = INFO(2,1)
IR = IRAND(J,INF)
IF (IR .EQ. 1) GOTO 55
ICOUNT = ICOUNT - 1

44 CONTINUE
50 CONTINUE

ICOUNT = ICOUNT + 1
INDEXB(J,ICOUNT) = J
IF (IZ2 .EQ. 0) GOTO 60
ISUM2 = 0
DO 60 I = 1,IZ2
ICOUNT = ICOUNT + 1
INF = INFO(1,1+IHELP)
ISUM2 = ISUM2 + ABS(INF)
IF (INF .LT. 0) GOTO 66

88 CONTINUE
INDEXB(. J, ICOUNT) = J + ISUM2
GOTO 77

66 CONTINUE
INF = INFO(2,1+IHELP)
IR = IRAND(J,INF)
IF (IR .EQ. 1) GOTO 88
ICOUNT = ICOUNT - 1

77 CONTINUE
60 CONTINUE
20 CONTINUE

RETURN
END

c
c
c
c
c
c
c
c
c
c
c
c

SUBROUTINE ASTRUCT (N,NBND,INFO,INDEXA)
THIS SUBROUTINE INITIALIZES THE INDEX MATRIX OF THE
COEFFICIENT MATRIX A .
DESCRIPTION OF PARAMETERS.
N : NUMBER OF UNKNOWNS , SIZE OF INDEXA.
NBND ; NUMBER OF DIAGONALS OF A CONTAINING NON-ZEROS
INFO : ONE DIMENSIONAL INTEGER ARRAY OF SIZE (NBND-1).

ON ENTRY, IT CONTAINS
THE DISTANCES OF THE NON-ZERO DIAGONALS OF A
FROM ONE ANOTHER.

INDEXA: TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBNDA
CONTAINS ON OUTPUT THE INDEX-MATRIX OF THE
COEFFICIENT MATRIX A .

INTEGER N,NBND
DIMENSION INDEXA(N,NBND), INFO(NBND-l)
IHELP = (NBND - 1)/2
DO 10 1=1,NBND
DO 5 J=1,N
INDEXA(J,I) = 0

5 CONTINUE
10 CONTINUE

DO 20 I = 1,N
INDEXAd, IHELP+1) = I
ISUM = 0
DO 30 J = 1,IHELP
IK = IHELP + 1 - J
INF = INFO(J)
IF (INF .EQ. 0) GOTO 11
ISUM = .ISUM + INF
IF ((I-ISUM) .LE.

30
11

40
22
20

INDEXA(I,IK
CONTINUE
CONTINUE
ISUM = 0
DO 40 J =
IK = IHELP
INF = INFO
IF (INF
TSUM = ISUM

)
0

ISUM
) GOTO 11

IHELP
1 + J
IHELP

.EQ. 0
+ INF

+

)
J)
GOTO

IF (ISUM
INDEXA(I, IK
CONTINUE
CONTINUE
CONTINUE
RETURN
END

GT.
) =

(N-I))
I + ISUM

22

GOTO 22

85

C
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

SUBROUTINE COLFETCH (N,NBND,INFO,J,A,COL,ICOL)
THIS SUBROUTINE FETCHES THE J'TH COLUMN OF THE ARRAY
STORING THE COEFFICIENT MATRIX AND ALSO THE J'TH COLUMN
OF THE CORRESPONDING INDEX-MATRIX. REMARK, THE INDEX-MATRIX
IS NOT NEEDED AS INPUT PARAMETER.
DESCRIPTION OF PARAMETERS.
N
NBND
INFO

J
COL

I COL

NUMBER OF UNKNOWNS .
NUMBER OF DIAGONALS OF A CONTAINING NON-ZEROS.
ONE DIMENSIONAL INTEGER ARRAY OF SIZE (NBND-l).
ON ENTRY, IT CONTAINS
THE DISTANCES OF THE 'NON-ZERO' DIAGONALS OF A
FROM ONE ANOTHER.
TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBNDA .
CONTAINS ON OUTPUT THE 'NON-ZERO' DIAGONALS OF THE
COEFFICIENT MATRIX A .
INTEGER VALUE. DETERMINES THE COLUMN TO BE FETCHED.
REAL ARRAY OF SIZE NBND. CONTAINS ON OUPUT THE
J'TH COLUMN OF A .
INTEGER ARRAY OF SIZE NBND. CONTAINS ON OUTPUT THE
THE COLUMN INDICES OF THE ELEMENTS IN THE ARRAY COL.

IMPLICIT REAL *8 (A-H,0-Z)
INTEGER N,NBND,J
DIMENSION INFO(NBND-1),COL(NBND),ICOL(NBND),A(N,NBND)
IHELP = (NBND-l)/2
DO 10 I = 1,NBND
COL(I) =0.0
ICOL(I) = 0

10 CONTINUE
COL(lHELP+l) = A(J,IHELP+1)
ICOL(IHELP+1) = J
ISUM = 0
DO 20 .1 = 1,IHELP
IK = IHELP +1-1
INF = INFO(I)
IF (INF .EQ. 0) GOTO 11
ISUM = ISUM + INF
IF (ISUM .GT. (N-J)) GOTO 11
COL(IK) = A(J+ISUM,IK)
ICOL(IK) = ISUM + J

20 CONTINUE
11 CONTINUE

-ISUM = 0
DO 30 I = 1,IHELP
IK = IHELP +1+1
INF = INFO(IHELP+I)
IF (INF .EQ. 0) GOTO 22
ISUM = ISUM + INF
IF ((J-ISUM) .LE. 0) GOTO 22
COL(IK) = A(J-ISUM,IK)
ICOL(IK) = J - ISUM

30 CONTINUE
22 CONTINUE

RETURN
END

86

SUBROUTINE INIT(ND,A,RH,XK)
C THIS SUBROUTINE INITIALIZES THE TRIDIAGONAL MATRIX A AND
C THE RIGHT-HAND SIDE RH OF THE LINEAR SYSTEM TO BE SOLVED.
C IT ALSO INITIALIZES THE STARTING VECTOR XK FOR THE ITERATION.
C ND IS THE NUMBER OF SUBINTERVALS AFTER DISCRETIZATION.

INTEGER ND
DIMENSION A(ND-1,3),RH(ND-l),XK(ND-1)
DO 10 I = 1,ND-1
A(I,1) = 1.
A(I,2) = - 2.
A(I,3) = 1.
RH(I) = 0.0
XK(I) = 1.0

10 CONTINUE
A(l,l) = 0.0
A(ND-1,3) = 0.0
RETURN
END

87

SUBROUTINE INIT2D (ND,UNY,A,RH,XK,N)
C THIS SUBROUTINE INITIALIZES THE FIVE-DIAGONAL MATRIX A AND THE
C RIGHT-HAND SIDE RH OF THE LINEAR SYSTEM RESULTING FROM THE DISCRE-
C TIZATION OF LAPLACE'S EQUATION ON A NxN SQUARE WITH THE FOLLOWING
C BOUNDARY CONDITIONS ;
C U(X,0) = 0
C U(X,L2) = 0
C U(0,Y) = 0
C U(L1,Y) = UNY.
C IT INITIALIZES ALSO THE STARTING VECTOR XK FOR THE ITERATION.
C ND IS THE NUMBER OF SUBINTERVALS ALONG THE X-AXIS.

IMPLICIT REAL *8 (A-H,0-Z)
INTEGER ND,N

C REAL L1,L2,UNY
DIMENSION A(N,5),RH(N),XK(N)
N1 = ND - 1
DO 10 I = 1,N
RH(I) = 0.0
XK(I) = 1.0
DO 20 J = 1,5
A(I,J) = 0.0

20 CONTINUE
10 CONTINUE

DO 30 I = 1,N-1
IF (MOD(I,Nl) .EQ. 0) GOTO 11
A(I,4) = 1.
A(I+1,2) =1.
GOTO 22

11 CONTINUE
RH(I) = - UNY

22 CONTINUE
A(I,3) = -4.

30 CONTINUE
A(N,3) = -4.
RH(N) = - UNY
DO 40 I = 1,N-N1
IK = I + N1
A(IK,1) = 1.
-A U » 5) = 1.

40 CONTINUE
RETURN
END

88

C
C
C
C
C
C
C
C
C
C
c
c
c
c
c
c

SUBROUTINE MATVEC(N,NBND,RM,INDEXM,X)
THIS SUBROUTINE PERFORMS A MATRIX-VECTOR MULTIPLICATION
FOR SPARSE MATRICES STORED IN THE FOLLOWING WAY :
THE NON-ZEROS OF THE I'TH ROW ARE STORED
IN THE I'TH ROW OF THE MATRIX RM AND THE COLUMN INDICES
OF THESE NON-ZEROS ARE STORED IN THE CORRESPONDING POSITIONS
OF THE I'TH ROW OF INDEXM.
DESCRIPTION OF PARAMETERS.
N
NBND
RM

INDEXM

X

11
20

10

30

NUMBER OF COLUMNS.
MAXIMUM NUMBER OF NON-ZEROS PER ROW.
TWO DIMENSIONAL REAL ARRAY OF SIZE (N,NBND).
CONTAINS ON ENTRY THE NON-ZERO ELEMENTS OF
MATRIX INVOLVED (SEE ABOVE).
TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBND.
CORRESPONDING INDEX-MATRIX TO RM AS DESCRIBED ABOVE.

: REAL ARRAY OF SIZE N. CONTAINS ON ENTRY THE VECTOR
OPERAND AND ON OUTPUT THE RESULT.

IMPLICIT REAL *8 (A-H,0-Z)
INTEGER N,NBND
DIMENSION RM(N,NBND), INDEXM(N,NBND), X(N)
REAL SCRATCH(4900),SUM
REAL *8 SCRATCH!2500),SUM
DO 10 I = 1,N
SUM = 0.0
DO 20 J = 1,NBND
INF = INDEXM(I,J)
IF (INF .EQ. 0) GOTO 11
SUM = SUM + RM(I,J) * X(INF)
CONTINUE
CONTINUE
SCRATCH!I) = SUM
CONTINUE
DO 30 I = 1,N
X(I) = SCRATCH!!)
CONTINUE
RETURN
END

89

SUBROUTINE ZEILVEC(I,N,NBND,RM,INDEXM,X)
C THIS SUBROUTINE PERFORMS THE MULTIPLICATION OF A VECTOR AND THE
C I'TH ROW OF A SPARSE MATRIX STORED IN THE FOLLOWING WAY :
C THE NON-ZEROS OF THE I'TH ROW ARE STORED
C IN THE I'TH ROW OF THE MATRIX RM AND THE COLUMN INDICES
C OF THESE NON-ZEROS ARE STORED IN THE CORRESPONDING POSITIONS
C OF THE I'TH ROW OF INDEXM.
C DESCRIPTION OF PARAMETERS.
C I : INTEGER VALUE. DETERMINES THE ROW TO BE SELECTED.
C N : NUMBER OF COLUMNS.
C NBND : MAXIMUM NUMBER OF NON-ZEROS PER ROW.
C RM : TWO DIMENSIONAL REAL ARRAY OF SIZE (N,NBND).
C CONTAINS ON ENTRY THE NON-ZERO ELEMENTS OF
C MATRIX INVOLVED (SEE ABOVE).
C INDEXM: TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBND.
C CORRESPONDING INDEX-MATRIX TO RM AS DESCRIBED ABOVE.
C X : REAL ARRAY OF SIZE N. CONTAINS ON ENTRY THE VECTOR
C OPERAND AND ON OUTPUT THE RESULT.

IMPLICIT REAL *8 (A-H,0-Z)
INTEGER N,NBND,I
DIMENSION RM(N,NBND), INDEXM(N,NBND), X(N)

C REAL SUM
REAL *8 SUM
SUM
DO
INF
IF
SUM

11
20

= 0.0
20 J = 1,NBND
= INDEXM(I,J)
(INF .EQ. 0) GOTO 11
= SUM + RM(I,J) * X(INF)

CONTINUE
CONTINUE
X(I) = .SUM
RETURN
END

90

SUBROUTINE AX2MAT(KI,DIM,N,NBND,RM,INDEXM,X)
C THIS SUBROUTINE PERFORMS A RESTRICTED MULTIPLICATION OF A VECTOR
C AND A SPARSE MATRIX STORED IN THE FOLLOV7ING WAY :
C THE NON-ZEROS OF THE I’TH ROW ARE STORED
C IN THE I'TH ROW OF THE MATRIX RM AND THE COLUMN INDICES
C OF THESE NON-ZEROS ARE STORED IN THE CORRESPONDING POSITIONS
C OF THE I'TH ROW OF INDEXM. THE MULTIPLICATION IS RESTRICTED IN
C THE SENSE THAT ONLY THE COMPONENTS BETWEEN CERTAIN BOUNDS ARE
C COMPUTED.
C DESCRIPTION OF PARAMETERS.
C KI : INTEGER VALUE. USED FOR CALCULATING THE BOUNDS FOR THE
C MULTIPLICATION.
C DIM : INTEGER VALUE. USED FOR CALCULATING THE BOUNDS FOR THE
C MULTIPLICATION.
C N ; NUMBER OF COLUMNS.
C NBND : MAXIMUM NUMBER OF NON-ZEROS PER ROW.
C RM : TWO DIMENSIONAL REAL ARRAY OF SIZE (N,NBND).
C CONTAINS ON ENTRY THE NON-ZERO ELEMENTS OF
C MATRIX INVOLVED (SEE ABOVE).
C INDEXM: TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBND.
C CORRESPONDING INDEX-MATRIX TO RM AS DESCRIBED ABOVE.
C X : REAL ARRAY OF SIZE N. CONTAINS ON ENTRY THE VECTOR
C OPERAND AND ON OUTPUT THE RESULT.

IMPLICIT REAL *8 (A-H,0-Z)
INTEGER N,NBND,KI,DIM
DIMENSION RM(N,NBND), INDEXM(N,NBND), X(N)

C REAL SCRATCH(4900),SUM
REAL *8 SCRATCH(2500),SUM
JL = KI - DIM - 2
JU = KI + DIM + 2
ILOWER = MAX0(1,JL)
lUPPER = MIN0(N,JU)
DO 10 I = ILOWER,lUPPER
SUM = 0.0
DO 20 J = 1,NBND
INF = INDEXM(I,J)
IF (INF .EQ. 0) GOTO 11
SUM = SUM + RM(I,J) * X(INF)
CONTINUE
"CONTINUE
SCRATCH(I) = SUM
CONTINUE
DO 30 I = ILOWER,lUPPER
X(I) = SCRATCH(I)
CONTINUE
RETURN
END

11
20

10

30

91

APPENDIX C

FORTRAN SUBROUTINES FOR FINDING THE DB AND LSQ

APPROXIMATE INVERSES

In this appendix, we list FORTRAN subroutines for

finding Diagonal Block and Least-Squares approximate

inverses in the one and two-dimensional cases (see chapter

3). The subroutine APPRINV handles the one-dimensional

case and the subroutine AINV2 handles the two-dimensional

case. The arguments are explained in the programs.

92

C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

SUBROUTINE APPRINV (N,NBNDA,NBNDB,A,INDEXA,INDEXB,INFOA,IFLAG,B;
THIS SUBROUTINE FINDS A BANDED DIAGONAL OR LEAST-SQUARES APPROXIMATE
INVERSE B OF BANDWIDTH NBNDB .
DESCRIPTION OF PARAMETERS.
N
NBNDA
NBNDB
A

NUMBER OF GRID POINTS.
NUMBER OF 'NON-ZERO' DIAGONALS OF THE COEFFICIENT MATRIX A.
NUMBER OF 'NON-ZERO' DIAGONALS OF THE APPROXIMATE INVERSE B.
TWO DIMENSIONAL REAL ARRAY OF SIZE N,NBNDA. CONTAINS ON
ENTRY THE NON-ZERO DIAGONALS OF THE COEFFICIENT MATRIX IN
ITS COLUMNS.

INDEXA: TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBNDA. CONTAINS
THE COLUMN INDICES OF THE ELEMENTS THAT ARE STORED IN A
MATRIX IN THE CORRESPONDING LOCATIONS.

INDEXB: TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBNDB. CONTAINS,
ON ENTRY THE COLUMN INDICES OF NON-ZERO ELEMENTS OF THE
APPROXIMATE INVERSE B.

INFOA : INTEGER ARRAY OF SIZE (NBNDA-1). CONTAINS ON ENTRY THE
DISTANCES OF THE 'NON-ZERO' DIAGONALS.

B : TWO DIMENSIONAL REAL ARRAY OF SIZE N,NBNDB . CONTAINS ON
OUTPUT THE NON-ZERO ELEMENTS OF THE APPROXIMATE INVERSE
IN THE LOCATIONS GIVEN BY THE ARRAY INDEXB .

IFLAG : INTEGER VALUE. IF’ IFLAG=1 A DIAGONAL-BLOCK APPROXIMATE
INVERSE IS FOUND, A LEAST SQUARES APPROXIMATE INVERSE
IF IFLAG=0.

INTEGER N,NBNDA,NBNDB,IFLAG
DIMENSION A(N,NBNDA),B(N,NBNDB),INDEXA(N,NBNDA),INDEXB(N,NBNDB) ,

1 INFOA(NBNDA-1)
REAL MAT(4900,52),RHl(4900),COL(51),X(51)
INTEGER ICOL(51),IVEC(4900),IX(51)
DO 10 I = 1,N
DO 20 J = 1,NBNDB
B(I,J) = 0.0

20 CONTINUE
10 CONTINUE

DO 30 J = 1,N
' IZ = 1
DO 35 I = 1,N
IVEC(I) = 0
RHl(I) =0.0
DO 36 II = 1,NBNDB
MAT(T, II) = 0.0

36 CONTINUE
35 CONTINUE
C FIND DIMENSIONS OF THE OVERDETERMINED SYSTEM AND
C THE COLUMNS OF A THAT ARE INVOLVED.

DO 40 K = 1,NBNDB
INFB = INDEXB(J,K)
IF (INFB .EQ. 0) GOTO 11
ICOUNT = K
DO 50 KK = 1,NBNDA
INFA = INDEXA(INFB,KK)
DO 60 II = 1,N
IF (INFA .EQ. IVEC(II)) GOTO 22

93

60 CONTINUE
IVEC(IZ) = INFA
IZ = IZ + 1

22 CONTINUE
50 CONTINUE
40 CONTINUE
11 CONTINUE

IDIM = IZ - 1
IF (IFLAG .EQ. 0) GOTO 55

C FIND COLUMNS OF A FOR QUADRATIC DIAGONAL-BLOCK SYSTEM.
C SORT OF IVEC.

DO 110 I = 1,IDIM-1
IZ = IVEC(I)
IZl = I
DO 120 II = I+1,IDIM
IF (IZ .LE. IVEC(II)) GOTO 120
IZ = IVEC(II)
IZl = II

120 CONTINUE
IVEC(IZl) = IVEC(I)
IVEC(I) = IZ

110 CONTINUE
C FIND INDEX OF DIAGONAL.

DO 130 I = 1,N
IF (IVEC(I) .EQ. J) IDIAG = I

130 CONTINUE
JHELP = (NBNDB - 1)/2 + 1
DO 140 I = 1,NBNDB
IX(I) = 0

140 CONTINUE
IX(JHELP) = J
1 = 0
JC = ICOUNT - 1

66 IF (JC .EQ. 0) GOTO 77
1 = 1 + 1
ID = IDIAG - I
IF (ID .LE. 0) GOTO 88
IX(JHELP-I) = IVEC(ID)
JC = JC - 1
IF (JC .EQ. 0) GOTO 77

88 CONTINUE
ID = IDIAG + I
-IF (ID .GT. IDIM) GOTO 99
IX(JHELP+I) = IVEC(ID)
JC = JC - 1

99 CONTINUE
GOTO 66

77 CONTINUE
JKZ = 1
DO 150 I = 1,NBNDB
IF (IX(I) .EQ. 0.) GOTO 150
IVEC(JKZ) = IX(I)
JKZ = JKZ + 1

150 CONTINUE
IDIM = ICOUNT

55 CONTINUE
C FIND DIAGONAL BLOCK SYSTEM.

DO 70 I = 1,IDIM
IV == IVEC(I)
CALL COLFETCH(N,NBNDA,INFOA,IV,A,COL,ICOL)
DO 80 II = l,ICOUNT
INFB = INDEXB(J,II)
DO 90 IJ = 1,NBNDA
IK = NBNDA + 1 - IJ
INFA = ICOL(IK)
IF (INFA .EQ. INFB) GOTO 33

90 CONTINUE
GOTO 44

33 CONTINUE
MAT(I,II) = COL(IK)

44 CONTINUE
80 CONTINUE

IF (IV .EQ. J) RHl(I) = 1.0
70 CONTINUE
C SOLVE DIAGONAL BLOCK SYSTEM

IF (IFLAG .EQ. 1) GOTO 111
CALL HOUSE(MAT,RHl,IDIM,ICOUNT,X,JFLAG,4900,51)
GOTO 222

111 CONTINUE
DO 160 I = l,ICOUNT
MAT(I,ICOUNT+l) = RHl(I)

160 CONTINUE
CALL GAUSS(MAT,X,ICOUNT,ICOUNT+1,4900,51)

222 CONTINUE
DO 100 I = l^ICOUNT
B(J,I) = X(I)

100 CONTINUE
30 CONTINUE

RETURN
END

95

C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

SUBROUTINE AINV2 (N,NBNDA,NBNDB,A,INDEXA,INDEXB,INFOA,IFLAG,
1 B,ND)

THIS SUBROUTINE FINDS A DIAGONAL-BLOCK OR A LEAST-SQUARES APPROXIMATE
INVERSE IN THE TWO DIMENSIONAL CASE.
DESCRIPTION OF PARAMETERS.
N
ND
NBNDA
NBNDB
A

INDEXA;

INDEXB:

INFO A

B

I FLAG

NUMBER OF GRID POINTS.
NUMBER OF GRID POINT IN A ROV7 (ND*ND = N) .
NUMBER OF 'NON-ZERO' DIAGONALS OF THE COEFFICIENT MATRIX A.
NUMBER OF 'NON-ZERO' DIAGONALS OF THE APPROXIMATE INVERSE B.
TWO DIMENSIONAL REAL ARRAY OF SIZE N,NBNDA. CONTAINS ON
ENTRY THE NON-ZERO DIAGONALS OF THE COEFFICIENT MATRIX IN
ITS COLUMNS.
TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBNDA. CONTAINS
THE COLUMN INDICES OF THE ELEMENTS THAT ARE STORED IN A
MATRIX IN THE CORRESPONDING LOCATIONS.
TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBNDB. CONTAINS,
ON ENTRY THE COLUMN INDICES OF NON-ZERO ELEMENTS OF THE
APPROXIMATE INVERSE B.
INTEGER ARRAY OF SIZE (NBNDA-1). CONTAINS ON ENTRY THE
DISTANCES OF THE 'NON-ZERO' DIAGONALS.
TWO DIMENSIONAL REAL ARRAY OF SIZE N,NBNDB . CONTAINS ON
OUTPUT THE NON-ZERO ELEMENTS OF THE APPROXIMATE INVERSE
IN THE LOCATIONS GIVEN BY THE ARRAY INDEXB .
INTEGER VALUE. IF IFLAG=1 A DIAGONAL-BLOCK APPROXIMATE
INVERSE IS FOUND, A LEAST SQUARES APPROXIMATE INVERSE
IF IFLAG=0.

IMPLICIT REAL *8 (A-H,0-Z)
INTEGER N,NBNDA,NBNDB,IFLAG,ND
DIMENSION A(N,NBNDA),B(N,NBNDB),INDEXA(N,NBNDA) ,

1 INDEXB(N,NBNDB),INFOA(NBNDA-1)
C REAL MAT(4900,52),RH1(4900),COL(51),X(51)

REAL *8 MAT(2500,52),RHl(2500),COL(51),X(51)
INTEGER ICOL(51),IVEC(4900),IX(51)
DO 10 I = 1,N

. DO 20 J = 1,NBNDB
B(I,J) = 0.0

20 CONTINUE
10 CONTINUE

DO 30 J = 1,N
IZ = 1
DO 35 I = 1,N
IVEC(I) = 0
RHl(I) = 0.0
DO 36 II = 1,NBNDB
MAT(I,II) =0.0

36 CONTINUE
35 CONTINUE
C FIND DIMENSIONS OF THE OVERDETERMINED SYSTEM AND
C THE COLUMNS OF A THAT ARE INVOLVED.

DO 40 K = 1,NBNDB
INFB = INDEXB(J,K)
IF (INFB .EQ. 0) GOTO 11
ICOUNT = K

96

IFFOl = 1
DO 1000 KK = 1,NBNDA
IF (INDEXA(INFB,KK) .NE. 0) GOTO 1111
IFFOl = IFFOl + 1

1000 CONTINUE
1111 CONTINUE

IFF02 = NBNDA
DO 2000 KK = 1,NBNDA
KKK = NBNDA + 1 - KK
IF (INDEXA(INFB,KKK) .NE. 0) GOTO 2222
IFF02 = IFF02 - 1

2000 CONTINUE
2222 CONTINUE

DO 50 KK = IFFOl.IFF02
INFA = INDEXA(INFB.KK)
DO 60 II = l.N
IF (INFA .EQ. IVEC(II)) GOTO 22
IF (A(INFB.KK) .EQ. 0) GOTO 22

60 CONTINUE
IVEC(IZ) = INFA
IZ = IZ + 1

22 CONTINUE
50 CONTINUE
40 CONTINUE
11 CONTINUE

IDIM = IZ - 1
IF (IFLAG .EQ. 0) GOTO 55

C FIND COLUMNS OF A FOR THE QUADRARIC DIAGONAL-BLOCK SYSTEM.
JZ = (NBNDB +1)/6

C WRITE(5,*) JZ
C THE NUMBER OF NON-ZERO STRIPES OF THE APPROXIMATE INVERSE
C PLUS 1 IS REQUIRED TO BE DIVISIBLE BY 6.

IPOINT.= 1
DO 110 I = 1,JZ
II = JZ + 1 - I
ISl = J -(ND - 1)- II + 1
IF (ISl .LE. 0) GOTO 115
IVEC(IPOINT) = ISl
IPOINT = IPOINT + 1

115 CONTINUE
110 CONTINUE

IF (JZ .EQ. 1) GOTO 120
-DO 125 I = l.JZ-1
ISl =J-(ND-1)+I
IF (ISl .LE. 0) GOTO 130
IVEC(IPOINT) = ISl
IPOINT = IPOINT + 1

130 CONTINUE
125 CONTINUE
120 CONTINUE

DO 135 I = 1,JZ
II = JZ + 1 - I
ISl = J - II
IF (ISl .LE. 0) GOTO 140
IVEC(IPOINT) = ISl

IPOINT = IPOINT + 1
140 CONTINUE
135 CONTINUE

IVEC(IPOINT) = J
IPOINT = IPOINT + 1
DO 145 I = 1,JZ
ISl = J + I
IF (ISl .GT. N) GOTO 150
IVEC(IPOINT) = ISl
IPOINT = IPOINT + 1

150 CONTINUE
145 CONTINUE

DO 152 I = 1,JZ
II = JZ + 1 - I
ISl =J+(ND-1)-II+1
IF (ISl .GT. N) GOTO 153
IVEC(IPOINT) = ISl
IPOINT = IPOINT + 1

153 CONTINUE
152 CONTINUE

IF (JZ .EQ. 1) GOTO 154
DO 155 I = 1,JZ-1
ISl =J+(ND-1)+I
IF (ISl .GT. N) GOTO 156
IVEC(IPOINT) = ISl
IPOINT = IPOINT + 1

156 CONTINUE
155 CONTINUE
154 CONTINUE

IDIM = ICOUNT
55 CONTINUE
C FIND DIAGONAL BLOCK SYSTEM.

DO 70 .1 = 1,IDIM
IV = IVEC(I)
CALL COLFETCH(N,NBNDA,INFOA,IV,A,COL,ICOL)
DO 80 II = 1,ICOUNT
INFB = INDEXB(J,II)
DO 90 IJ = l^NBNDA
IK = NBNDA + 1 - IJ
INFA = ICOL(IK)
IF (INFA .EQ. INFB) GOTO 33

90 CONTINUE
•GOTO 44

33 CONTINUE
MAT(I,II) = COL(IK)

44 CONTINUE
80 CONTINUE

IF (IV .EQ. J) RHl(I) =1.0
70 CONTINUE
C SOLVE DIAGONAL BLOCK SYSTEM

IF (IFLAG .EQ. 1) GOTO 111
C CALL HOUSE(MAT,RHl,IDIM,ICOUNT,X,JFLAG,4900,51

CALL HOUSE(MAT,RHl,IDIM,ICOUNT,X,JFLAG,2500,51
GOTO 222

111 CONTINUE

)
)

DO 160 I = l,ICOUNT
MAT(I,ICOUNT+l) = RHl(I)

160 CONTINUE
C CALL GAUSS(MAT,X,ICOUNT,ICOUNT+1,4900,51)

CALL GAUSS(MAT,X,ICOUNT,ICOUNT+1,2500,51)
222 CONTINUE

DO 100 I = 1,ICOUNT
B(J,I) = X(I)

100 CONTINUE
30 CONTINUE

RETURN
END

99

APPENDIX D

FORTRAN SUBROUTINES FOR THE PARALLEL

GAUSS-SEIDEL VERSIONS PGSl AND PGS2

SIMULATED ON A UNIPROCESSOR

This appendix contains FORTRAN subroutines for

performing the parallel Gauss-Seidel methods of chapter 2

that serve as a basis for comparison with the algorithms

using approximate inverses. The subroutine PGAUSS

performs the PGSl method and the subroutine PGAUS2

performs the PGS2 method. The subroutines UPDATE and

UPDAT2 are used in PGAUSS and PGAUS2 respectively.

o

n
o
w

o
 M

100

SUBROUTINE PGAUSS(N,EPS,X,ERR,ICOUNT,XPL,YPL,IPO,IWO,COMP)
C THIS SUBROUTINE COMPUTES ITERATIVELY AN APPROXIMATE SOLUTION
C OF THE LINEAR SYSTEM IN THE ONE DIMENSIONAL CASE.
C A PARALLEL GAUSS-SEIDEL METHOD IS PERFORMED.
C DESCRIPTION OF PARAMETER.
C N ; NUMBER OF UNKNOWNS.
C EPS : ACCURACY. THE ITERATION IS STOPPED WHEN THE ABSOLUTE ERROR
C IS LESS THAN EPS .
C X : REAL ARRAY OF SIZE N . ITERATION VECTOR.
C ERR : REAL VALUE. CONTAINS THE ABSOLUTE ERROR TO
C THE SOLUTION ON OUTPUT.
C ICOUNT: INTEGER VALUE. ITERATION COUNTER.
C THE FOLLOWING PARAMETERS ARE NOT USED FOR THE ITERATIVE
C PROCESS. THEY ARE USED IN SUBROUTINE INITPLOT
C FOR PLOTTING THE ERROR.
C XPL : TWO DIMENSIONAL ARRAY OF SIZE (N,4). CONTAINS
C VALUES OF X-AXIS IN COLUMN ONE.
C YPL : TWO DIMENSIONAL ARRAY OF SIZE (N,4). CONTAINS
C VALUES OF Y-AXIS IN COLUMN ONE
C IPO : INTEGER VALUE. NUMBER OF PLOT-POINTS.
C IWO : INTEGER VALUE. USED FOR SCALING PURPOSES.
C COMP : REAL VALUE. USED FOR SCALING PURPOSES.

INTEGER N,ICOUNT,IPO
REAL EPS,ERR,NORM,NORME,COMP
DIMENSION X(N),XPL(610,4),YPL(610,4)
ICOUNT = 0
IPO = 1
ERR = NORM(X,N)

C ERR = NORME(X,N)
CALL INITPLOT(N,ERR,XPL,YPL,IPO,1,COMP)
IFLA = MOD(N,2)
CONTINUE

FIRST UPDATE SWEEP ; 'ODD' COMPONENTS
K = INT(N/2)
IF (IFLA .EQ. 0) K = K - 1
DO 11 I = 0,K
II = 2 * I + 1
CALL UPDATE(II,X,N)
CONTINUE

END OF FIRST UPDATE SWEEP.
SECOND UPDATE SWEEP : 'EVEN' COMPONENTS.

”K = INT(N/2)
DO 12 I = 1,K
II = 2 * I
CALL UPDATE(II,X,N)

! CONTINUE
END OF SECOND UPDATE SWEEP.

ERR = NORM(X,N)
C ERR = NORME(X,N)

IF (IPO .GT. 610) GOTO 333
IF (MOD(ICOUNT,IWO) .NE. 0) GOTO 333
CALL INITPLOT(N,ERR,XPL,YPL,IPO,1,COMP)

333 CONTINUE
ICOUNT = ICOUNT + 1

101

C IF (MODdCOUNT, 50) . EQ. 0) WRITE (6,*) ICOUNT
IF (ERR .LE. EPS) GOTO 99
IF (ICOUNT .GE. 10000) GOTO 99
GOTO 1

99 CONTINUE
RETURN
END

SUBROUTINE UPDATE(I,X,N)
C UPDATE FORMULA FOR THE GAUSS-SEIDEL METHOD IN ONE DIMENSION.
C USED IN SUBROUTINE PGAUSS.
C DESCRIPTION OF PARAMETERS.
C N : INTEGER VALUE
C I ; INTEGER VALUE. REFERS TO THE COMPONENT
C OF THE ARRAY X TO BE UPDATED.
C X : REAL ARRAY OF SIZE N. CONTAINS ITERATION VECTOR.
C ON OUTPUT, THE I'TH COMPONENT IS UPDATED..

INTEGER I,N
DIMENSION X(N)
IF (I .EQ. 1) GOTO 1
IF (I .EQ. N) GOTO 2
X(I) = (X(I-l) -I- X(I+l)) / 2
GOTO 3

1 CONTINUE
X(l) = X(2)/2
GOTO 3

2 CONTINUE
X(N) = X(N-l)/2

3 CONTINUE
RETURN
END

o
 n

102

C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

SUBROUTINE PGAUS2(N,DIM,EPS,X,ERR,ICOUNT,XPL,YPL,IPO,IWORK,COMP
THIS SUBROUTINE COMPUTES ITERATIVELY AN APPROXIMATE SOLUTION
OF THE LINEAR SYSTEM IN THE TWO DIMENSIONAL CASE.
A PARALLEL GAUSS-SEIDEL METHOD IS PERFORMED.
DESCRIPTION OF PARAMETERS.
DIM : NUMBER OF GRID POINTS (NUMBER OF UNKNOWNS).
N : NUMBER OF GRID POINTS PER ROW.
EPS : ACCURACY. THE ITERATION IS STOPPED WHEN THE ABSOLUTE ERROR

IS LESS THAN EPS .
X ; REAL ARRAY OF SIZE N . ITERATION VECTOR.
ERR : REAL VALUE. CONTAINS THE ABSOLUTE ERROR TO

THE SOLUTION ON OUTPUT.
ICOUNT; INTEGER VALUE. ITERATION COUNTER.
THE FOLLOWING PARAMETERS ARE NOT USED FOR THE ITERATIVE
PROCESS. THEY ARE USED IN SUBROUTINE INITPLOT
FOR PLOTTING THE ERROR FUNCTION.
XPL ; TWO DIMENSIONAL ARRAY OF SIZE (N,4). CONTAINS

VALUES OF X-iAXIS IN COLUMN ONE.
YPL : TWO DIMENSIONAL ARRAY OF SIZE (N,4). CONTAINS

VALUES OF Y-AXIS IN COLUMN ONE
IPO : INTEGER VALUE. NUMBER OF PLOT-POINTS.
IWORK ; INTEGER VALUE. USED FOR SCALING PURPOSES.
COMP : REAL VALUE. USED FOR SCALING PURPOSES.

IMPLICIT REAL *8 (A-H,0-Z)
INTEGER N, ICOUNT, DIM, IPO, IV70RK
REAL EPS,ERR,NORM,NORME,COMP
DIMENSION X(DIM),XPL(610,4),YPL(610,4)
DIMENSION X(DIM)
REAL *8 EPS,ERR,NORM,NORME
REAL XPL(610,4),YPL(610,4),COMP
ICOUNT = 0 .
ERR = NORM(X,DIM)

C ERR = NORITE (X, DIM)
IPO = 1

. CALL INITPLOT(DIM,ERR,XPL,YPL,IPO,1,COMP)
IFLA = MOD(N,2)

1 CONTINUE
C FIRST UPDATE SWEEP : THE 'ODD' DIAGONALS.
C N IS EXPECTED TO BE GREATER THAN 2.
C BELOW MAIN DIAGONAL.

0) K = K-1

)

K = lNT(N/2)
IF (IFLA .EQ.
DO 11 I = 0,K
II = 2 * I + 1
WRITE(6,*) II
CALL UPDAT2(II,X,N,DIM
JK = II
DO 12 J = 1,N-1
JK = JK + N - 1
JJ = J * N
IF (JK .LE. JJ) GOTO 13
WRITE(6,*) JK
CALL UPDAT2(JK,X,N,DIM)

103

12 CONTINUE
13 CONTINUE
11 CONTINUE
C ABOVE MAIN DIAGONAL.

IF (IFLA .EQ. 0) K = K + 1
DO 14 I = 0,K-1
II = 2 * I + 1
KK = DIM - II + 1

C WRITE(6,*) KK
CALL UPDAT2(KK,X,N,DIM)
JK = KK
DO 15 J = 1,N-1
JK = JK - (N-1)
JJ = (N-J) * N
IF (JK .GT. JJ) GOTO 16

C WRITE(6,*) JK
CALL UPDAT2(JK,X,N,DIM)

15 CONTINUE
16 CONTINUE
14 CONTINUE
C SECOND UPDATE SWEEP ; 'EVEN' DIAGONALS.
C BELOW THE MAIN DIAGONAL.

DO 17 I = 1,K
II = 2 * I

C WRITE(6,*) II
CALL UPDAT2{ II,X,N,DIM)
JK = II
DO 18 J = 1,N-1
JK = JK + N - 1
JJ = J * N
IF (JK .LE. JJ) GOTO 19

C WRITE(6,*) JK
CALL UPDAT2C JK,X,N,DIM)

18 CONTINUE
19 CONTINUE
17 CONTINUE
C ABOVE THE MAIN DIAGONAL.

IF (IFLA .EQ. 0) K = K - 1
DO 110 I = 1,K
II = 2 * I ” 1
KK = DIM - II

C WRITE(6,*) KK
CALL UPDAT2C KK,X,N,DIM)
JK = KK
DO 111 J = 1,N-1
JK = JK - (N - 1)
JJ = { N - J) * N
IF (JK .GT. JJ) GOTO 112

C WRITE(6,*) JK
CALL UPDAT2C JK,X,N,DIM)

111 CONTINUE
112 CONTINUE
110 CONTINUE

ICOUNT = ICOUNT + 1
C IF (MOD(ICOUNT,50) .EQ. 0) WRITE(6,*) ICOUNT

104

ERR = NORM(X,DIM)
C ERR = NORME(X,DIM)

IF (MOD(ICOUNT,IWORK).NE.0) GOTO 1000
1000 CALL INITPLOT(DIM,ERR,XPL,YPL,IPO,1,COMP)

IF (ERR .LT. EPS) GOTO 99
IF (ICOUNT .GE. 6000) GOTO 99
GOTO 1

99 CONTINUE
RETURN
END

C
C
C
C
C
C
c
c
c

SUBROUTINE UPDAT2(I,X,N,DIM)
UPDATE FORMULA FOR THE GAUSS-SEIDEL METHOD IN TWO DIMENSIONS.
USED IN SUBROUTINE PGAUS2.
DESCRIPTION OF PARAMETERS.
N
DIM
I

INTEGER VALUE.
INTEGER VALUE.
INTEGER VALUE.
OF THE ARRAY X

: ARRAY OF SIZE
ON OUTPUT, THE

IMPLICIT REAL *8
INTEGER I,N,DIM
DIMENSION X(DIM)
IF (I .EQ. 1)

I .EQ. DIM
(I .NE. 1)

NUMBER OF GRID POINTS.
NUMBER OF GRID POINTS PER ROW.
REFERS TO THE COMPONENT
TO BE UPDATED.
N . CONTAINS ITERATION VECTOR.
I'TH COMPONENT IS UPDATED.
(A-H,0-Z)

(
(

(I
= (
5

IF
IF
IF (
X(I)
GOTO
CONTINUE
X(l) = (
GOTO 5
CONTINUE
•XCDIM) =
GOTO 5
CONTINUE
X(I) = (
GOTO 5
CONTINUE
X(I) - (
CONTINUE
RETURN
END

GOTO 1
) GOTO 2
AND. (I .LE. N)) GOTO 3

.NE. DIM) .AND. (I .GE. DIM-N)) GOTO 4
X(I-N) + X(I-l) + X(I+1) + X(I+N)) / 4

X(I + 1) 4- X(I+N)) / 4

(X(DIM-N) + X(DIM-l)) / 4

X(I-l) + X(I+1) + X(I+N)) / 4

X(I-N) + X(I-l) 4- X(I4-1)) / 4

APPENDIX E

A FORTRAN SUBROUTINE FOR JACOBI LIKE

METHODS USING APPROXIMATE INVERSES

SIMULATED ON A UNIPROCESSOR

This appendix contains the FORTRAN subroutine DBLOCK

for performing the Jacobi like iterations defined in

chapter 3. These methods use a Diagonal-Block or a

Least-Squares approximate inverse. Depending on the input

parameters the subroutine DBLOCK performs the JDBl(I) ,

JLSQl(I) , JDB2(I) or the JLSQ2(I) iterations.

106

C
C
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

SUBROUTINE DBLOCK(N,NBNDA,NBNDB,A,RH,B,INDEXA,INDEXB/EPS,
1 ERR,XK,JCOUNT,XPLOT,YPLOT,IP,JPOINT,IWOR,COMP)

THIS SUBROUTINE PERFORMS THE ITERATION: X(k+1) = X(k)+B(-A X(k)+RH)
TO SOLVE THE LINEAR SYSTEM A X = RH.
ALL COMPONENTS ARE UPDATED WITH THE COMPONENTS OF X(k) (JACOBI LIKE).
DESCRIPTION OF PARAMETERS.
N
NBNDA
NBNDB
A

RH

NUMBER OF UNKNOWNS.
NUMBER OF 'NON-ZERO' DIAGONALS OF THE COEFFICIENT MATRIX A.

B

INDEXA;

INDEXB:

EPS

NUMBER OF 'NON-ZERO' DIAGONALS OF THE APPROXIMATE INVERSE B.
TWO DIMENSIONAL REAL ARRAY OF SIZE N,NBNDA. CONTAINS ON
ENTRY THE NON-ZERO DIAGONALS OF THE COEFFICIENT MATRIX IN
ITS COLUMNS.
REAL ARRAY OF SIZE N. CONTAINS ON ENTRY THE RIGHT-HAND
SIDE OF THE LINEAR SYSTEM.
TWO DIMENSIONAL REAL ARRAY OF SIZE N,NBNDB . CONTAINS ON
INPUT THE NON-ZERO ELEMENTS OF THE APPROXIMATE INVERSE
TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBNDA. CONTAINS
THE COLUMN INDICES OF THE ELEMENTS THAT ARE STORED IN THE
MATRIX A IN THE CORRESPONDING LOCATIONS.
TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBNDB. CONTAINS,
ON ENTRY THE COLUMN INDICES OF NON-ZERO ELEMENTS OF THE
APPROXIMATE INVERSE B.
ACCURACY. THE ITERATION IS STOPPED WHEN THE ABSOLUTE ERROR
IS LESS THAN EPS .

XK : REAL ARRAY OF SIZE N . ITERATION VECTOR.
ERR : REAL VALUE. CONTAINS THE ABSOLUTE ERROR TO

THE SOLUTION ON OUTPUT.
JCOUNT: INTEGER VALUE. ITERATION COUNTER.
THE FOLLOWING PARAMETERS ARE NOT USED FOR THE ITERATIVE
PROCESS. THEY ARE USED IN SUBROUTINE INITPLOT
FOR PLOTTING THE ERROR FUNCTION.
XPLOT

YPLOT

JPOINT

IP
IWOR
COMP

(N,4). CONTAINS

(N,4). CONTAINS

TWO DIMENSIONAL ARRAY OF SIZE
VALUES OF X-AXIS IN COLUMN ONE
TWO DIMENSIONAL ARRAY OF SIZE
VALUES OF Y-AXIS IN COLUMN ONE
INTEGER VALUE. DETERMINES THE COLUMN OF YPLOT AND XPLOT
TO BE INITIALIZED WITH THE PLOT-POINTS..
INTEGER VALUE. NUMBER OF PLOT-POINTS.
INTEGER VALUE. USED FOR SCALING PURPOSES.
REAL VALUE. USED FOR SCALING PURPOSES.

IMPLICIT REAL *8 (A-H,0-Z)
INTEGER N, NBNDA, NBNDB, JCOUNT, IP, JPOINT, IVJOR
DIMENSION INDEXA (N, NBNDA) , INDEXB (N, NBNDB)-, A (N, NBNDA) ,B(N,NBNDB) ,
RH(N), XK(N)
REAL YPLOT(610,4),XPLOT(610,4)
REAL ERR,NORM,NORME,EPS, SCRAT(4900),COMP
REAL COMP
REAL *8 ERR,NORM,NORME,EPS, SCRAT(2500)
JCOUNT = 0
IP = I
ERR = NORM(XK,N)
ERR = NORME(XK,N)
CALL INITPLOT(N,ERR,XPLOT,YPLOT,IP,JPOINT,COMP)

107

C FIND RESIDUAL B*(-A*XK + RH)
88 DO 10 J = I,N

SCRAT(J) = XK(J)
10 CONTINUE

CALL MATVEC(N,NBNDA,A,INDEXA,XK)
DO 20 I = 1,N
XK(I) = - XK(I) + RH(I)

20 CONTINUE
CALL MATVEC(N,NBNDB,B,INDEXB,XK)

C UPDATE ITERATION VECTOR.
DO 30 I = 1,N
XK(I) = SCRAT(I) + XK(I)
SCRAT(I) = XK(I) - SCRAT(I)

30 CONTINUE
C FIND ERROR.
C ERR = NORM(SCRAT,N)

ERR = NORM(XK,N)
C ERR = NORME(XK,N)

JCOUNT = JCOUNT + 1
IF(MOD(JCOUNT,IWOR).EQ.O) CALL INITPLOT(N,ERR,XPLOT,YPLOT,

1 IP,JPOINT,COMP)
C IF (MOD(JCOUNT,50) .EQ. 0) WRITE(6,*) JCOUNT

IF (ERR .LE. EPS) GOTO 99
IF (JCOUNT .GE. 6000) GOTO 99

C WRITE(6,*) JCOUNT
GOTO 88

99 CONTINUE
RETURN
END

108

APPENDIX F

FORTRAN SUBROUTINES FOR GAUSS-SEIDEL LIKE

METHODS USING APPROXIMATE INVERSES

SIMULATED ON A UNIPROCESSOR

This appendix contains FORTRAN subroutines for

performing the Gauss-Seidel like iterations defined in

chapter 3. These subroutines use a Diagonal-Block or a

Least-Squares approximate inverse. The subroutine GGSl

performs the GDBl(I) or the GLSQl(I) iterations for the

one dimensional case. The subroutine GGS performs the

GDB2(I) and GLSQ2(I) iterations for the two dimensional

case.

109

C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

SUBROUTINE GGSl(N,NBNDA,NBNDB,A,RH,B,INDEXA,INDEXB,EPS,
1 ERR,XK,JCOUNT,XPLOT,YPLOT,IP,JPOINT,IWOR,COMP)

THIS SUBROUTINE PERFORMS THE ITERATION:X(k+I)=X(k)+B(- A X(k) + RH)
TO SOLVE THE LINEAR SYSTEM A X = RH.
THERE ARE TWO UPDATE SWEEPS PER ITERATION. THE SET OF COMPONENTS IS
DIVIDED INTO TWO DISJOINT SUBSETS. THE COMPONENTS WITHIN ONE SUBSET
CAN BE UPDATED IN PARALLEL.
DESCRIPTION OF PARAMETERS.
N
NBNDA
NBNDB
A

RH

B

INDEXA:

INDEXB

EPS :

XK
ERR :

JCOUNT;

NUMBER OF GRID POINTS.
NUMBER OF 'NON-ZERO’ DIAGONALS OF THE COEFFICIENT MATRIX A.
NUMBER OF 'NON-ZERO' DIAGONALS OF THE APPROXIMATE INVERSE B.
TWO DIMENSIONAL REAL ARRAY OF SIZE N,NBNDA. CONTAINS ON
ENTRY THE NON-ZERO DIAGONALS OF THE COEFFICIENT MATRIX IN
ITS COLUMNS.
REAL ARRAY OF SIZE N. CONTAINS ON ENTRY THE RIGHT-HAND
SIDE OF THE LINEAR SYSTEM.
TWO DIMENSIONAL REAL ARRAY OF SIZE N,NBNDB . CONTAINS ON
INPUT THE NON-ZERO ELEMENTS OF THE APPROXIMATE INVERSE
TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBNDA. CONTAINS
THE COLUMN INDICES OF THE ELEMENTS THAT ARE STORED IN A
MATRIX IN THE CORRESPONDING LOCATIONS.
TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBNDB. CONTAINS,
ON ENTRY THE COLUMN INDICES OF NON-ZERO ELEMENTS OF THE
APPROXIMATE INVERSE B.
ACCURACY. THE ITERATION IS STOPPED WHEN THE ABSOLUTE ERROR
IS LESS THAN EPS .
REAL ARRAY OF SIZE N . ITERATION VECTOR.
REAL VALUE. CONTAINS THE ABSOLUTE ERROR TO
THE SOLUTION ON OUTPUT.
INTEGER VALUE. ITERATION COUNTER.

THE FOLLOWING PARAMETERS ARE NOT USED FOR THE ITERATIVE
PROCESS. THE ARE USED IN SUBROUTINE INITPLOT
FOR PLOTTING THEY ERROR FUNCTION.
XPLOT : TV;0 DIMENSIONAL ARRAY OF SIZE (N,4). CONTAINS

VALUES OF X-AXIS IN COLUMN JPOINT .
YPLOT TWO DIMENSIONAL ARRAY OF SIZE (N,4). CONTAINS

VALUES OF Y-AXIS IN COLUMN JPOINT .
JPOINT; INTEGER VALUE. DETERMINES THE COLUMN OF YPLOT AND XPLOT

TO BE INITIALIZED WITH THE PLOT-POINTS..
INTEGER VALUE. NUMBER OF PLOT-POINTS.
INTEGER VALUE. USED FOR SCALING PURPOSES.
REAL” VALUE. USED FOR SCALING PURPOSES.

IMPLICIT REAL *8 (A-H,0-Z)
INTEGER N,NBNDA,NBNDB,JCOUNT,IP,JPOINT,IWOR
DIMENSION INDEXA(N,NBNDA),INDEXB(N,NBNDB),A(N,NBNDA),B(N,NBNDB) ,
RH(N), XK(N)
REAL YPLOT(610,4),XPLOT(610,4)
REAL ERR,NORM,NORME,EPS, SCRAT(4900),COMP
REAL COMP
REAL *8 ERR,NORM,NORME,EPS, SCRAT(2500)
IBOUND = (NBNDB - 1)/2 + 1
JCOUNT = 0
IP = 1
ERR = NORM(XK,N)

IP
IWOR
COMP

110

C ERR = NORME(XK,N)
CALL INITPLOT{N,ERR,XPLOT,YPLOT,IP,JPOINT,COMP)

88 KZEIG = 0
JZAEHL = 0

3 IF (JZAEHL .GT. N) GOTO 1
DO 10 I = l,IBOUND
JZAEHL = KZEIG + I
IF (JZAEHL .GT. N) GOTO 1
DO 20 J = 1,N
SCRAT(J) = XK(J)

20 CONTINUE
CALL AX2MAT(JZAEHL,IBOUND,N,NBNDA,A,INDEXA,SCRAT)
DO 30 J = 1,N
SCRAT(J) = - SCRAT(J) + RH{J)

30 CONTINUE
CALL ZEILVEC(JZAEHL,N,NBNDB,B,INDEXB,SCRAT)
XK(JZAEHL) = SCRAT(JZAEHL) + XK(JZAEHL)

10 CONTINUE
KZEIG = KZEIG + (NBNDB + 1)
GOTO 3

1 CONTINUE
KZEIG = IBOUND
JZAEHL = 0

4 IF (JZAEHL .GT. N) GOTO 2
DO 40 I = 1,IBOUND
JZAEHL = KZEIG + I
IF (JZAEHL .GT. N) GOTO 2
DO 50 J = 1,N
SCRAT(J) = XK(J)

50 CONTINUE
CALL AX2MAT(JZAEHL, IBOUND,N,NBNDA, A, INDEXA, SCR2VT)
DO 60 J = 1,N
SCRAT(J:) = - SCRAT(J) + RH(J)

60 CONTINUE
CALL ZEILVEC(JZAEHL,N,NBNDB,B,INDEXB,SCRAT)
XK(JZAEHL) = SCRAT (JZAEHL) 4- XK(JZAEHL)

40 CONTINUE
KZEIG = KZEIG + (NBNDB + 1)
GOTO 4

2 CONTINUE
ERR = NORM(XK,N)

C ERR = NORME(XK,N)
xJCOUNT = JCOUNT + 1
WRITE(6,*) JCOUNT
IF(MOD(JCOUNT,IWOR).EQ.0) CALL INIT^LOT(N,ERR,XPLOT,YPLOT,

1 IP,JPOINT,COMP)
C IF (MOD(JCOUNT,50) .EQ. 0) WRITE(6,*) JCOUNT

IF (ERR .LE. EPS) GOTO 99
IF (JCOUNT .GE. 6000) GOTO 99

C WRITE(6,*) JCOUNT
GOTO 88

99 CONTINUE
RETURN
END

Ill

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

EPS

XK
ERR

SUBROUTINE GGS(N,NBNDA,NBNDB,A,RH,B,INDEXA,INDEXB,EPS,
1 ERR,XK,JCOUNT^XPLOT,YPLOT,IP,JPOINT,IWOR,COMP)

THIS SUBROUTINE PERFORMS THE ITERATION : X(k+1)=X(k}+B(- A X(k)+RH)
TO SOLVE THE LINEAR SYSTEM A X = RH.
ALL COMPONENTS ARE UPDATED SEQUENTIALLY (GAUSS-SEIDEL LIKE).
DESCRIPTION OF PARAMETERS.
N ; NUMBER OF UNKNOWNS.
NBNDA ; NUMBER OF 'NON-ZERO' DIAGONALS OF THE COEFFICIENT MATRIX A.
NBNDB : NUMBER OF 'NON-ZERO' DIAGONALS OF THE APPROXIMATE INVERSE B.
A : TWO DIMENSIONAL REAL ARRAY OF SIZE N,NBNDA. CONTAINS ON

ENTRY THE NON-ZERO DIAGONALS OF THE COEFFICIENT MATRIX IN
ITS COLUMNS.

RH ; REAL ARRAY OF SIZE N. CONTAINS ON ENTRY THE RIGHT-HAND
SIDE OF THE LINEAR SYSTEM.

B : TWO DIMENSIONAL REAL ARRAY OF SIZE N, NBNDB . CONTAINS ON
INPUT THE NON-ZERO ELEMENTS OF THE APPROXIMATE INVERSE

INDEXA: TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBNDA. CONTAINS
THE COLUMN INDICES OF THE ELEMENTS THAT ARE STORED IN A
MATRIX IN THE CORRESPONDING LOCATIONS.

INDEXB: TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBNDB. CONTAINS,
ON ENTRY THE COLUMN INDICES OF NON-ZERO ELEMENTS OF THE
APPROXIMATE INVERSE B.
ACCURACY. THE ITERATION IS STOPPED WHEN THE ABSOLUTE ERROR
IS LESS THAN EPS .
REAL ARRAY OF SIZE N . ITERATION VECTOR.
REAL VALUE. CONTAINS THE ABSOLUTE ERROR TO
THE SOLUTION ON OUTPUT.

JCOUNT: INTEGER VALUE. ITERATION COUNTER.
THE FOLLOWING PARAMETERS ARE NOT USED FOR THE ITERATIVE
PROCESS. THEY ARE USED IN SUBROUTINE INITPLOT
FOR PLOTTING THE ERROR FUNCTION.
XPLOT : TWO DIMENSIONAL ARRAY OF SIZE (N,4). CONTAINS

VALUES OF X-AXIS IN COLUMN JPOINT .
YPLOT : TWO DIMENSIONAL ARRAY OF SIZE (N,4). CONTAINS

VALUES OF Y-AXIS IN COLUMN JPOINT .
JPOINT; INTEGER VALUE. DETERMINES THE COLUMN OF YPLOT AND XPLOT

TO BE INITIALIZED WITH THE PLOT-POINTS.
INTEGER VALUE. NUMBER OF PLOT-POINTS.
INTEGER VALUE.. USED FOR SCALING PURPOSES.
REAL VALUE. USED FOR SCALING PURPOSES.

IMPLICIT REAL *8 (A-H,0-Z)
INTEGER N, NBNDA, NBNDB, JCOUNT, IP, JPOINT , IV70R
DIMENSION INDEXA(N, NBNDA) , INDEXB (N, NBNDB.) , A (N, NBNDA) , B(N, NBNDB) ,
RH(N), XK(N)
REAL YPLOT(610,4),XPLOT(610,4)
REAL ERR,NORM,NORME,EPS, SCRAT(4900),COMP
REAL COMP,S
REAL *8 ERR,NORM,NORME,EPS, SCRAT(2500)
S = N
S = SQRT(S)
ID = INT(S)
JCOUNT = 0
IP = 1

IP-
IWOR
COMP

ERR = NORM(XK,N)
ERR = NORME(XK,N)
CALL INITPLOT(N,ERR,XPLOT,YPLOT,IP,JPOINT,COMP)
DO 10 I = 1,N
DO 20 J = 1,N
SCRAT(J) = XK(J)
CONTINUE
CALL AX2MAT(I,ID,N,NBNDA,A,INDEXA,SCRAT)
DO 30 J = 1,N
SCRAT(J) = - SCRAT(J) + RH(J)
CONTINUE
CALL ZEILVEC(I,N,NBNDB,B,INDEXB,SCRAT)
XK(I) = SCRAT(I) + XK(I)
CONTINUE
ERR = NORM(XK,N)
ERR = NORME(XK,N)
JCOUNT = JCOUNT + 1
WRITE(6,*) JCOUNT
IF(MOD(JCOUNT,IWOR).EQ.0) CALL INITPLOT(N,ERR,XPLOT,YPLOT,
IP,JPOINT,COMP)
IF (MOD(JCOUNT,50) .EQ. 0) WRITE(6,*) JCOUNT
IF (ERR .LE. EPS) GOTO 99
IF (JCOUNT .GE. 6000) GOTO 99
WRITE(6,*) JCOUNT
GOTO 88
CONTINUE
RETURN
END

APPENDIX G

A FORTRAN SUBROUTINE FOR THE

PRECONDITIONED CONJUGATE GRADIENT ALGORITHM

SIMULATED ON A UNIPROCESSOR

This appendix contains the FORTRAN subroutine PCG

that performs the preconditioned conjugate gradient

algorithm of chapter 4. The subroutine PCG expects an

approximate inverse as an input parameter. If the identity

is used as an approximate inverse, the plain conjugate

gradient algorithm is performed. The subroutines DOTRPRO

and COPY are‘used by PCG . DOTPRO performs the usual

vector inner-product and COPY copies one vector into

another.

o
 o

n
o
n

114

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

SUBROUTINE PCG (N,NBNDA,NBNDB,A,RH,B,INDEXA,INDEXB,EPS,
1 ERR,XK,JCOUNT,XPLO,YPLO,JPO,IWORK,COMP)

DESCRIPTION OF PARAMETERS.
N
NBNDA
NBNDB
A

RH

NUMBER OF UNKNOWNS.
NUMBER OF 'NON-ZERO' DIAGONALS OF THE COEFFICIENT MATRIX A
NUMBER OF 'NON-ZERO' DIAGONALS OF THE APPROXIMATE INVERSE B
TWO DIMENSIONAL REAL ARRAY OF SIZE N,NBNDA. CONTAINS ON
ENTRY THE NON-ZERO DIAGONALS OF THE COEFFICIENT MATRIX IN
ITS COLUMNS.
REAL ARRAY OF SIZE N. CONTAINS ON ENTRY THE RIGHT-HAND
SIDE OF THE LINEAR SYSTEM.
TWO DIMENSIONAL REAL ARRAY OF SIZE N,NBNDB . CONTAINS ON
INPUT THE NON-ZERO ELEMENTS OF THE APPROXIMATE INVERSE
TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBNDA. CONTAINS
THE COLUMN INDICES OF THE ELEMENTS THAT ARE*STORED IN A
MATRIX IN THE CORRESPONDING LOCATIONS.
TWO DIMENSIONAL INTEGER ARRAY OF SIZE N,NBNDB. CONTAINS,
ON ENTRY THE COLUMN INDICES OF NON-ZERO ELEMENTS OF THE
APPROXIMATE INVERSE B.
ACCURACY. THE ITERATION IS STOPPED WHEN THE ABSOLUTE ERROR
IS LESS THAN EPS .
REAL ARRAY OF SIZE N . ITERATION VECTOR.
RETO^ VALUE. CONTAINS THE ABSOLUTE ERROR TO
THE SOLUTION ON OUTPUT.
INTEGER VALUE. ITERATION COUNTER.

THE FOLLOWING PARAMETERS ARE NOT USED FOR THE ITERATIVE
PROCESS. THEY ARE USED IN SUBROUTINE INITPLOT
FOR PLOTTING THE ERROR FUNCTION.

B

INDEXA:

INDEXB

EPS

XK
ERR

JCOUNT

XPLO

YPLO

JPO

IPO
I WORK
COMP

: TWO DIMENSIONAL ARRAY OF SIZE (N,4). CONTAINS
VALUES OF X-AXIS IN COLUMN JPO .

; TWO DIMENSIONAL ARRAY OF SIZE (N,4). CONTAINS
VALUES OF .Y-AXIS IN COLUMN JPO .

: INTEGER VALUE. DETERMINES THE COLUMN OF YPLO AND XPLO
TO BE INITIALIZED WITH THE PLOT-POINTS. IF IWORK = 1,
THE PLAIN CONJUGATE GRADIENT METHOD IS PERFORMED.

; INTEGER VALUE. NUMBER OF PLOT-POINTS.
: INTEGER VALUE. USED FOR SCALING PURPOSES.
: REAL VALUE. USED FOR SCALING PURPOSES.
IMPLICIT REAL *8 (A-H,0-Z)
INTEGER N,NBNDA,NBNDB,JCOUNT,IPO,JPO,IWORK,IW
DIMENSION INDEXA(N,NBNDA),INDEXB(N,NBNDB),A(N,NBNDA),
B(N,NBNDB),RH(N),XK(N)
REAL XPLO(610,4),YPLO(610,4)
REAL ERR,EPS,NORM,NORME,AI,BI,DOTPRO,COMP
REAL RES(4900),SCRATP(4900),SCRATD(4900),
SHELP(4900),SHELP2(4900),SHELP3(4900),SXK(4900)
REAL COMP
REAL *8 ERR,EPS,NORM,NORME,AI,BI,DOTPRO
REAL *8 RES(4900),SCRATP(2500),SCRATD(2500),SHELP(2500)
REAL *8 SHELP2(2500)
REAL *8 SHELP3(2500),SXK(2500)
DO 500 I = 1,N
WRITE(3,*) (INDEXB(I,J),J=1,5)

C500 CONTINUE

115

IF (JPO .NE. 1) GOTO 11
B(l,l) = 1.0
B(l,2) = 0.0
B(l,3) = 0.0
DO 5 I = 2,N
B(I,1) = 0.0
B(I,2) = 1.0
B(I,3) = 0.0

5 CONTINUE
11 CONTINUE

IPO = 1
IW = 0
ERR = NORM(XK,N)

C ERR = NORME(XK,N)
CALL INITPLOT(N,ERR,XPLO,YPLO,IPO,JPO,COMP)
CALL COPY(N,XK,RES)
CALL MATVEC(N,NBNDA,A,INDEXA,RES)

C DO 510 I = 1,N
C WRITE(3,*) RES(I)
C510 CONTINUE

DO 10 I =1,N
RES(I) = RH(I) - RES(I)

10 CONTINUE
CALL COPY(N,RES,SCRATD)

C DO 530 I = 1,N
C WRITE(3,*) (B(I,J),J=1,5)
C530 CONTINUE

CALL MATVEC{N,NBNDB,B,INDEXB,SCRATD)
CALL COPY(N,SCRATD,SCRATP)
JCOUNT = 0

88 CALL COPY(N,SCRATP,SHELP)
CALL COPY(N,XK,SXK)
CALL MATVEC(N,NBNDA,A,INDEXA,SCRATP)
AI = DOTPRO(N,RES,SCRATD)/DOTPRO(N,SCRATP,SHELP)

C ERR = ABS(AI) * NORM(SHELP,N)
DO 20 I = 1,N
XK(I) = XK(I) + AI * SHELP(I)
SHELP3(I) = RES(I)
RES(I) = RES(I) - AI * SCRATP(I)

20 CONTINUE
ERR = NORM(XK,N)

C ERR = NORME(XK,N)
CALL COPY(N,SCRATD,SHELP2)
CALL COPY(N,RES,SCRATD)
CALL MATVEC (N, NBNDB, B, INDEXB, SCRATD).
BI = DOTPRO(N,RES,SCRATD)/DOTPRO(N,SHELP3,SHELP2)
DO 30 I = 1,N
SCRATP(I) = SCRATD(I) + BI * SHELP(I)

30 CONTINUE
JCOUNT = JCOUNT + 1

C IF (MOD(JCOUNT,50) .EQ. 0) WRITE(6,*) ERR
C IF (MOD(JCOUNT,50) .EQ. 0) WRITE(3,*) ERR
C WORK-SCALING IN ONE DIMENSION FOR PCG WITH DBQ(7) COMPARED WITH CG,
C PCG WITH DBQ(3) AND DBQU(5) .
C IF (IW .NE. 3) GOTO 22

n
o
o
n

o
 C

O
o

c
c
c
c
22

C333

99

IF (MOD(ICOUNT,IWORK) .NE. (IWORK-1)) GOTO 33
CALL INITPLOT(N,ERR,XPLO,YPLO,IPO,JPO)
IW = 0
GOTO 33
CONTINUE
IF (MOD(JCOUNT,IWORK) .NE. 0) GOTO 33
CALL INITPLOT(N,ERR,XPLO,YPLO,IPO,JPO,COMP)
IF (JPO .EQ. 4) IW = IW + 1
CONTINUE
IF (MOD(JCOUNT,50) .EQ. 0) WRITE(6,*) JCOUNT
IF (ERR .LE. EPS) GOTO 99
IF (JCOUNT .GE. 6000) GOTO 99
IF (ICOUNT .GT. 1) GOTO 333
IF (JPO .EQ. 2) COMP = 17/12
IF (JPO .EQ. 3) COMP == 23/12
IF (JPO .EQ. 4) COMP = 29/12
CONTINUE
GOTO 88
CONTINUE
RETURN
END

REAL FUNCTION DOTPRO(N,VECl,VEC2)
C THIS SUBROUTINE PERFORMS THE USUAL VECTOR
C INNER-PRODUCT.
C DESCRIPTION OF PARAMETERS.
C N : SIZE OF THE VECTORS.
C VECl : REAL ARRAY OF SIZE N. FIRST VECTOR.
C VEC2 : REAL ARRAY OF SIZE N. SECOND VECTOR.
C USED BY SUBROUTINE PCG.

IMPLICIT REAL *8 (A-H,0-Z)
INTEGER N,NORG
DIMENSION VEC1(N),VEC2(N)
DOTPRO = 0.0
DO 10 I = 1,N
DOTPRO = DOTPRO + VECl(I) * VEC2(I)

10' CONTINUE
RETURN
END

■SUBROUTINE COPY (N,VEC1,VEC2)
C THIS SUBROUTINE COPIES TWO VECTORS OF SIZE N.
C VECl IS COPIED INTO VEC2.
C USED BY SUBROUTINE PCG.

IMPLICIT REAL *8 (A-H,0-Z)
INTEGER N
DIMENSION VECl(N),VEC2(N)
DO 10 I =1,N
VEC2(I) = VECl(I)

10 CONTINUE
RETURtJ
END

APPENDIX H

MISCELLANEOUS SUBROUTINES AND FUNCTIONS

This appendix contains subroutines and functions that

are called by the above subroutines. The subroutine BIOUSE

performs the Householder transformation to solve an

overdetermined linear system in the least-squares sense.

The function NORMl is used by subroutine HOUSE . The

subroutine GAUSS performs the Gauss elimination process.

Both subroutines are called by the subroutines APPRINV and

AINV2 . The subroutine INITPLOT is used by the

subroutines that perform the iterative processes (see

appendix E-F). This subroutine writes the abscissas and

ordinates of the error function into a two dimensional

array. The functions NORM and NOI^E comput the maximum

norm and the Euclidian norm of a vector.

118

SUBROUTINE HOUSE(A,B,N,M,X,IFLAG,ORN,ORM)
C THIS SUBROUTINE USES A HOUSEHOLDER TRANSFORMATION
C TO SOLVE AN OVERDETERMINED SYSTEM OF LINEAR EQUATIONS
C IN THE LEAST SQUARES SENSE.
C DESCRIPTION OF PARAMETERS.
C M NUMBER OF EQUATIONS.
C N NUMBER OF UNKNOWNS.
C ORN MAXIMUM NUMBER OF EQUATIONS.
C ORM MAXIMUM NUMBER OF UNKNOWNS.
C A TWO DIMENSIONAL ARRAY OF SIZE (M,N).ON ENTRY,
C THE MATRIX OF THE COEFFICIENTS OF THE OVERDETERMINED
C SYSTEM MUST BE STORED IN A.ON EXIT,A CONTAINS THE
C UPPER TRIANGULAR MATRIX RESULTING FROM THE
C HOUSEHOLDER TRANSFORMATION.
C B ONE DIMENSIONAL ARRAY OF SIZE (M).ON ENTRY,B MUST
C CONTAIN THE RIGHT HAND SIDE OF THE EQUATIONS.
C X ONE DIMENSIONAL ARRAY OF SIZE (N).ON EXIT,
C X CONTAINS A SOLUTION TO THE PROBLEM.
C IFLAG AN EXIT CODE WITH VALUES ..
C 0 ~ NO PROBLEM OCCURRED.
C 1 - ZERO NORM WHILE UPDATING THE ELEMENTARY
C REFLECTOR MATRIX.
C 2 - ZERO DIVISION OCCURRED IN BACK SUBSTITUTION.

IMPLICIT REAL *8 (A-H,0-Z)
INTEGER I,J,K,M,N,II,JJ,ORN,ORM

C REAL A(ORN,ORM+l),B(ORN),X(ORM)
C REAL V(8000),W(60),NORMl,TEM,Y,T,H

REAL *8 A(ORN,ORM+I) ,B(ORN) ,X(OPvM)
REAL *8 V(2500),W(60),NORMl,TEM,Y,T,H
DO 70 J=1,M
DO 10 I=J,N

10 V(I)=A(.I,J)
II=J

C
C FIND V=(X-Y)/NORMl(X-Y)
C

Y=NORMl(V,N,II)
IF (A(J,J).GE.0.) V(II)=V(II)+Y
IF (A(J,J).LT.0.) V(II)=V(II)-Y
TEM=NORMl(V,N,II)
IF (TEM.EQ.0.) GOTO 90
DO 15 I=J,N

15 V(I)=V(I)/TEM
C
C FIND A=A-2*V*VT*A
C

DO 25 JJ=1,M
W(JJ)=0.0
DO 20 I=J,N

20 W(JJ)=W(JJ)+2.*V(I)*A(I,JJ)
25 CONTINUE

DO 40 I=J,N
DO 30 JJ=1,M

30 A(I,JJ)=A(I,JJ)-V(I)*W(JJ)

CONTINUE 40
C
C FIND B=B-2*V*VT*B
C

T=0.0
DO 50 I=J,N

50 T=T+V(I)*B(I)
DO 60 I=J,N

60 B(I)=B(l)-2.*V(I)*T
70 CONTINUE
C BACK SUBSTITUTION
C

MM=M
X (MM) = B (MM) / A (MM, M)
DO 80 K=1,MM-1
I=MM-K
DO 75 JJ=I+1,M

75 B(I)=B(I)-A(I,JJ)*X(JJ)
C WRITE(3,*) I

X(I)=B(I)/A(I,I)
80 CONTINUE

RETURN
90 IFLAG=1

RETURN
END

REAL *8 FUNCTION NORMl(X,N,J)
C THIS FUNCTION COMPUTES A THE EUCLIDIAN
C VECTOR NORM.
C USED IN SUBROUTINE HOUSE.
C DESCRIPTION OF PARAMETERS.
C X : REAL .ARRAY OF SIZE N. THE NORM
C OF A SUBVECTOR OF X IS COMPUTED
C N ; INTEGER VALUE. SIZE OF VECTOR X
C J : INTEGER VALUE. DETERMINES THE
C SUBVECTOR OF X.

IMPLICIT REAL *8 (A-H,0-Z)
REAL *8 X(N),SUM

C REAL X(N),SUM
INTEGER I,J,N
SUM=0.0
£>0 100 I=J,N

100 SUM=SUM+X(I)**2
NORMl=SQRT(SUM)
RETURN
END

120

C
c
c
c
c
c
c
c
c
c
c
c
c

c
c

SUBROUTINE GAUSS(A,X,N,NP1,NN,NNPl)
THIS SUBROUTINE PERFORMS THE GAUSS ELIMINATION
PROCESS. IT ACCEPTS THE DIMENSIONS OF
THE MATRIX AS VARIABLES.
DESCRIPTION OF PARAMETERS.
A ; TWO DIMENSIONAL ARRAY OF SIZE (NN^NNPl).

CONTAINS ON ENTRY THE COEFFICIENT MATRIX
OF THE LINEAR SYSTEM IN THE FIRST N
ROWS AND THE FIRST NPl-1 COLUMNS OF A
AND ALSO THE RIGHT-HAND SIDE IN COLUMN NPl.

N : INTEGER VALUE. ACTUAL NUMBER OF ROWS OF A.
NPl : INTEGER VALUE. ACTUAL NUMBER OF COLUMNS OF A.
NN ; INTEGER VALUE. MAXIMUM NUMBER OF ROWS OF A.
NNPl : INTEGER VALUE. MAXIMUM NUMBER OF COLUMNS OF A

IMPLICIT REAL *8 (A-H,0-Z)
DIMENSION A(NN,NNP1+1),X(NP1)

BEGIN THE PIVOTAL CONDENSATION
K NAMES THE PIVOTAL ROW

NM1=N-1
DO 600 K=1,NM1
KP1=K+1
L=K

C FIND TERM IN COLUMN K ON OR BELOW MAIN DIAGONAL, THAT
C IS LARGEST IN ABSOLUTE VALUE. AFTER THE SEARCH,
C L IS THE ROW NUMBER OF THE LARGEST ELEMENT

DO 400 I=KP1,N
400 IF(ABS(A(I,K)).GT.ABS(A(L,K))) L=I
C CHECK IF L=K WHICH MEANS THAT THE LARGEST ELEMENT IN
C COLUMN K WAS ALREADY THE DIAGONAL TERM, MAKING
C ROW INTERCHANGE UNNECESSARY

IF(L.EQ.K) GO TO 500
C INTERCHANGE ROWS L AND K, FROM DIAGONAL RIGHT

DO 410 J=K,NP1
TEMP=A(K,J)
A(K,J)=A(L,J)

410 A(L,J)=TEMP
C , ELIMINATE ALL ELEMENTS IN COLUMN K BELOW MAIN DIAGONAL
C ELEMENTS ELIMINATED ARE NOT ACTUALLY CHANGED
500 DO 600 I=KP1,N

FACTOR=A(I,K)/A(K,K)
DO 600 J=KP1,NP1

600 A(I,J)=A(I,J)-FACTOR*A(K,J)
C BACK “SOLUTION

X(N)=A(N,NP1)/A(N,N)
I=NM1

710 IP1=I+1
SUM=0.0
DO 700 J=IP1,N

700 SUM=SUM+A(I,J)*X(J)
X(I)=(A(I,NP1)-SUM)/A(I,I)
1 = 1-1
IF(I.GE.l) GO TO 710
RETURN
END

121

C
C
C
C
c
c
c
c
c
c
c
c
c
c

SUBROUTINE INITPLOT(N,ERR,XPLOT,YPLOT,IPP,I,COMP)
THIS SUBROUTINE WRITES THE COORDINATES OF A POINT TO BE
PLOTTED INTO THE ARRAYS XPLOT AND YPLOT.
DESCRIPTION OF PARAMETERS.
N
ERR
XPLOT

YPLOT

IPP
I
COMP

INTEGER VALUE. NUMBER OF UNKNOWNS.
REAL VALUE. CONTAINS THE ERROR.
TWO DIMENSIONAL ARRAY OF SIZE (610,4).
CONTAINS ON OUTPUT THE X-VALUE OF THE
PLOT-POINT IN POSITION (IPP,I).
TWO DIMENSIONAL ARRAY OF SIZE (610,4).
CONTAINS ON OUTPUT THE Y-VALUE OF THE
PLOT-POINT IN POSITION (IPP,I).
INTEGER VALUE (SEE ABOVE).
INTEGER VALUE (SEE ABOVE).
REAL VALUE. USED FOR SCALING THE X-AXIS.

INTEGER N,IPP,I
REAL ERR,COMP
REAL *8 ERR
DIMENSION XPLOT(610,4),YPLOT(610,4)
REAL COMP,SS
SS = ERR
YPLOT(IPP,I) = ALOG(SS)
XPLOT(IPP,I) = (IPP - 1) * .1 * COMP
IPP = IPP + 1
RETURN
END

REAL FUNCTION NORME(X,N)
C THIS FUNCTION COMPUTES THE EUCLIDIAN
C NORM OF THE VECTOR X OF SIZE N .

INTEGER N
REAL SUM
DIMENSION X(N)
SUM = 0.0
DO 10 I == 1,N
SUM = SUM + X(I) ** 2

10 CONTINUE
NORM = SORT(SUM).
RETURN
•END

122

C THIS
C NORM

C

10

REAL FUNCTION NORM(X,N)
SUBROUTINE COMPUTES THE MAXIMUM
OF THE VECTOR X OF SIZE N.
IMPLICIT REAL *8 (A-H,,0-Z)
INTEGER N
DIMENSION X(N)
REAL SUM
REAL *8 SUM
SUM = ABS(X(l))
DO 10 J = 2,N
IF (SUM .LT. ABS(X(J))) SUM = ABS(X(J))
CONTINUE
NORM = SUM
RETURN
END

