
Boosting Performance of Transactional

Memory through Transactional Read

Tracking and Set Associative Locks

By

Amir Ghanbari Bavarsad

A Thesis submitted in partial fulfillment of the requirements of

The Msc. Eng. Degree in

Electrical and Computer Engineering

Faculty of Engineering

Lakehead University

Thunder Bay, Ontario

ProQuest Number: 10611955

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Pro

ProQuest 10611955

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106 - 1346

Thunder Bay, Ontario, Canada

April 2013

11

ABSTRACT

Multi-core processors have become so prevalent in server, desktop, and even embedded

systems that they are considered the norm for modem eomputing systems. The trend is likely

toward many-core processors with many more than just 2, 4, or 8 cores per CPU. To benefit from

the increasing number of cores per chip, application developers have to develop parallel

programs [1]. Traditional lock-based programming is too difficult and error prone for most of

programmers and is the domain of experts. Deadlock, race, and other synehronization bugs are

some of the challenges of lock-based programming. To make parallel programming mainstream,

it is necessary to adapt parallel programming by the majority of programmers and not just

experts, and thus simplifying parallel programming has become an important challenge.

Transactional Memory (TM) is a promising programming model for managing concurrent

accesses to the shared memory locations. Transactional memory allows a programmer to specify

a section of a code to be "'transactionar, and the underlying system guarantees atomic execution

of the code. This simplifies parallel programming and reduces the possibility of synchronization

bugs.

This thesis develops several software- and hardware-based techniques to improve performance

of existing transactional memory systems. The first technique is Transactional Read Tracking

(TRT). TRT is a software-based approach that employs a locking mechanism for transactional

read and write operations. The performance of TRT depends on memory access patterns of

applications. In some cases, TRT falls behind the baseline scheme. To further improve

performance of TRT, we introduce two hybrid methods that dynamically switches between TRT

and the baseline scheme based on applications’ behavior.

The second optimization technique is Set Associative Lock (SAL). Memory locations are

mapped to a lock table in order to synchronize accesses to the shared memory locations. Direct

mapped loek tables usually result in collision which leads to false aborts. In SAL, we increase

assoeiativity of the lock table to reduce false abort. While SAL improves performance in most of

the applications, in some cases, it increases execution time due to overhead of lock tables in

software. To cope with this problem, we propose Hardware-SAL (HW-SAL) which moves the

set associative lock table to the hardware. As such, true power of set associativity will be

harnessed without sacrificing performance.

iii

ACKNOWLEDGEMENTS

I would first like to thank my advisor Professor Ehsan Atoofian for taking me on as a student

in the fall of 2011 and provided funding for my research. His hands off advising style was a

perfect fit that allowed me to pursue what I found interesting.

I could not have succeeded without the support of my family and friends. Thanks to my

parents for supporting my decision to pursue this degree. Also I would like to thank my lab-

mates with which I had interesting discussions, whether it was related to research or if it was just

something to pass the time.

IV

TABLE OF CONTENTS

ABSTRACT iii

ACKNOWLEDGEMENTS iv

TABLE OF CONTENTS v

LIST OF FIGURES viii

LIST OF TABLES x

Chapter 1 Introduction 1

1.1 Challenges in Programming for CMPs 1

L1.1 Fine-grained Locking 2

1.1.2 Coarse-grained Locking 2

1.2 Transactional Memory 3

1.3 Thesis Contributions 5

1.3.1 Transactional Read Tracking (TRT) 5

1.3.2 Hardware Set Associative Lock (HW-SAL) 6

1.4 Thesis Organization 6

Chapter 2 Background and Related Work 7

2.1 Multiprocessor Architectures 7

2.2 Challenges in Parallel Programming 8

2.3 Atomic Primitives 9

2.3.1 Compare and Swap 9

2.3.2 Load-locked, Store-conditional 10

2.4 Transactional Memory (TM) 11

2.5 Related Work 12

2.5.1 Transactional Locking II (TL2) 17

2.5.2 Programming with TL2 21

V

2.5.3 Benchmarks 23

2.6 Summary 23

Chapter 3 Transactional Read Tracking 24

3.1 Motivation 24

3.2 Transactional Read Tracking 25

3.2.1 Proof of Correctness: 26

3.3 Performance of TRT 28

3.4 rwConflict Based GV4-TRT (RGVT) 29

3.4.1 Read-Write Conflict 30

3.4.2 Performance of RGVT 30

3.5 Perceptron GV4-TRT (PGVT) 32

3.5.1 Accuracy of contention predictors 35

3.5.2 Performance of PGVT 36

3.6 Summary 37

Chapter 4 Hardware Support for Set Associative Lock (HW-SAL) 39

4.1 Motivation 39

4.2 Gem5 Simulator 40

4.3 Set Associative Locks 41

4.3.1 Frequency of False Conflicts 42

4.3.2 SW-SAL 43

4.3.3 SW-SAL Performance 45

4.4 Hardware SAL (HW-SAL) 47

4.4.1 ISA Augmentation 48

4.4.2 HW-SAL in Gem5 50

4.5 Performance Evaluation 50

VI

4.6 Summary 53

Chapter 5 Conclusions 54

5.1 Future Work 55

Appendix A 56

Appendix B 71

Chapter 6 Bibliography 76

vii

LIST OF FIGURES

Figure 1.1 (a) Fine-grained and (b) coarse-grained lock-version of Sieve of Eratosthenes 3

Figure 1.2 TM-version of Sieve of Eratosthenes 4

Figure 2.1 Clock frequency of different Intel processors over the years 8

Figure 2.2 Architecture of a CMP 9

Figure 2.3 Lock table in TL2 18

Figure 2.4 Structure of an entry of the lock table 19

Figure 2.5 Pseudo code for Eager GV4 19

Figure 2.6 Pseudo code for Lazy GV4 20

Figure 2.7 A sample code using transactional memory for implementation of a counter 22

Figure 3.1 Structure of a single lock entry in TRT 25

Figure 3.2 Pseudo code for TRT 27

Figure 3.3 Speedup in TRT relative to GV4 29

Figure 3.4 Part of Genome program from STAMP vO.9.10 benchmark suite 29

Figure 3.5 Performance of RGVT using rwConflict 31

Figure 3.6 Frequency of GV4 and TRT in RGVT 32

Figure 3.7 Weight vector and input vector in a perceptron 33

Figure 3.8 A program with two threads and two local contention predictors 34

Figure 3.9 Adaptive algorithm 34

Figure 3.10 Lookup and update in a perceptron predictor 35

Figure 3.11 Accuracy of contention predictors with variable history lengths 36

Figure 3.12 Performance of PGVT relative to GV4 37

Figure 3.13 Frequency of GV4 and TRT in PGVT 37

Figure 4.1 Memory address space is mapped to a lock table in TL2 41

Figure 4.2 False conflicts in STAMP benchmarks 42

Figure 4.3 Structure of the lock table in a 2-way SAL 44

Figure 4.4 Performance improvements in SW-SAL relative to the baseline scheme 47

Figure 4.5 Structure of the lock table in HW-SAL 48

Figure 4.6 A HW-SAL with four cores 49

Figure 4.7 Instruction format in Alpha architecture 49

viii

Figure 4.8 SW-SAL and HW-SAL speedup, (a) 2-thread, (b) 4-thread, (c) 8-thread, (d) 16-

thread 52

IX

LIST OF TABLES

TABLE 3.1 Input arguments for STAMP benchmarks 28

TABLE 4.1 Configuration of the processors in Gem5 45

X

Chapter 1 Introduction

The computing industry has been trying to keep up with Moore’s law [2] for almost half a

century. Processors have become smaller and faster as Moore had predicted; however,

limitations such as sub-threshold leakage [3] and other physical constrains in single-core

processors [4] have forced manufacturers to shift their focus from designing complex single-core

processors with higher frequency towards utilizing several simpler cores in a chip to boost

performance and gain more processing power. As such, major chip manufacturers have shifted

towards Chip Multiprocessors (CMPs) since 2000. A CMP provides several processing cores on

the same die, increasing the total processing power. At the same time, the design complexity is

reduced by using the same design for different cores. IBM was the first to release a commercial

CMP: the POWER4 [5] which was followed by Intel [6] and AMD [7].

CMPs by IBM, Intel, AMD, and ARM made CMPs almost ubiquitous in most computing

devices, ranging from workstations to mobile devices and tablets. One of the challenges in CMPs

is that existing sequential programs are unable to utilize all the resources offered by CMPs, since

the parallelism must be declared explicitly in the code and the legacy sequential programs were

not designed with that concept in mind. This has led to creation of a demand for new

programming methodologies to harness the ever-increasing computational power of CMPs.

1.1 Challenges in Programming for CMPs

Synchronization plays a pivotal role in parallel programming. Different threads of execution

need to have a consistent view of the shared data; otherwise, the program would run into

synchronization bugs such as deadlock, priority inversion and starvation [8]. Conventional

parallel programming using locks allows a programmer to synchronize accesses to the shared

data.

There are two types of locking mechanisms to ensure atomicity of parallel programs: Fine-

grained locking and coarse-grained locking. In the next section we present these two types of

locks and provide examples.

1

1.1.1 Fine-grained Locking

In fine-grained locking, in order to synchronize accesses to an object, we split the object into

independently synchronized components, ensuring that at any moment at most one thread

accesses each of those components. The problem with fine-grained locking is its complexity.

Figure 1.1 (a) shows a program for parallel version of “Sieve of Eratosthenes'" using fine-

grained locks. Sieve of Eratosthenes is an algorithm that finds prime numbers up to a certain

limit. In this example, the limit is set to 100. Each entry in array A[] corresponds to a number.

By the end of the program, if an entry is true, the corresponding number is a prime number;

otherwise, it is a composite number. The whole array is divided among processors. Each

processor goes through its share of the array and determines whether the corresponding numbers

are prime numbers or not. In fine-grained locking, each entry of the array has to be protected by

a lock. Before accessing the entry, lock is acquired. After processing the entry, the lock is

released.

1.1.2 Coarse-grained Locking

In coarse-grained locking, we take a sequential implementation of an object, add a lock field,

and ensure that each access to the shared object acquires and releases the lock. The problem with

coarse-grained locking is its lack of scalability. Coarse-grained synchronization works well when

concurrency level is low. However, if too many threads try to access the same object at the same

time, then the object becomes a bottleneck, forcing threads to execute serially. Figure 1.1 (b)

shows a program for parallel version of “Sieve of Eratosthenes” using coarse-grained locks. In

coarse-grained locking, the critical section where the array is being accessed is protected by a

single lock. Each thread needs to acquire the lock before it could access that part of the code.

This reduces the concurrency, since only one thread could have exclusive access to the critical

section at a time. On the other side, in fine-grained loek, each entry of the array is protected by a

separate lock. As such, threads that access different entries of the array can run simultaneously.

This increases concurrency level in the fine-grained lock programs.

The ever-increasing presence of CMPs in different areas of eomputing dictates the need for a

system to provide a scalable, easy to program, and high performance mechanism for

programmers in order to handle complexity of synchronization in their applications. This would

make parallel programming mainstream, enabling average programmers write efficient and bug-

2

free parallel programs. One such method that provides all the aforementioned attributes in highly

abstract level is Transactional Memory (TM).

//Let A be an array of Booleans initially set
//to true
bool A [100];
mutex locks[100];

void* thread_programs(int threadID)
{

for (int i = 0; i<10; i+=threadID)
{

if (A[i] == true)
{

for (intj =i^; j <n; j+=i)
{

mutex_lock(lock[j]);
A[j] = false;
mutex_unlock(lock[j]);

}
}

}

//Let A be an array of Booleans initially set
//to true
bool A [100];
mutex lock;

void* thread_programs(int threadID)
{

for (int i = 0; i<10; i+=threadID)
{

mutex_lock(lock);
if (A[i] == true)

for (mt j = r; j <n; j+-i)
{

A|j] = false;
}

}
mutexunlock(lock);

}

(a) Fine-grained lock (b) Coarse-grained lock

Figure 1.1 (a) Fine-grained and (b) coarse-grained lock-version of Sieve of Eratosthenes.

1.2 Transactional Memory

Transactional memory (TM) [9] is a new parallel programming model which is viewed by

many as a replacement for lock-based programming. In TM, programmers mark sections of

programs that access shared data as transactions and the underlying system ensures correct

execution of the programs. Non-conflicting transactions execute in parallel and those

transactions that conflict are aborted and restarted without the programmer having to worry

about issues such as deadlock. Transactions are atomic [9]: each transaction either commits or

aborts (its effects are discarded). Transactions are linearizable [9]: each committing transaction

takes effect instantaneously at some point between start and end of the transaction.

Figure 1.2 shows the TM version of Sieve of Eratosthenes. Contrary to the lock versions, in

transactional memory version of the program, only the critical section is defined using

TM BEGIN and TM END and the programmer does not need to deal with the complexity of

3

locks and synchronization. If two transactions access an element of the array simultaneously,

then the underlying system aborts and restarts one of the two transactions. As such, a

programmer does not need to deal with synchronization of threads.

//Let A be an array of Booleans initially set
//to true
bool A [100];
void* thread_programs(int threadED)
{

for (int i = 0; i<10; i+=threadID)
{

if (A[i] == true)
{

for (int j = i^2; j < n; j+=i)
{

TMBEGINO;
A[j] = false;
TMENDO;

}
}

}
J

Figure 1.2 TM-version of Sieve of Eratosthenes.

TM provides several semantics for the programmers in order to make the synchronization of

the code more abstract. These semantics are as follow:

1. Critical sections represented by transactions are atomic; they either successfully
complete or abort.

2. Transactions are isolated and outside of transactions cannot see interim updates,
3. Transactions are plaeed in the code and there is no need to protect them with data types

such as locks in an explicit manner by the programmers.

Transactional memory theoretically allows a programmer to concentrate more on defining

where the critical sections should be in a coarse grained manner, but not have to worry about

scalability and atomicity. The underlying system would guarantee those properties.

Transactional memory comes with three variants: Hardware Transactional Memory (HTM)

[10] [11], Software Transactional Memory (STM) [12] [13], or Hybrid Transactional Memory

[14]. Hardware Transactional Memory (HTM) exploits transactional caches to hold speculative

data, track ownership of shared data, and detect conflicts among transactions. While HTM makes

transactional memory fast, it increases hardware complexity and is not flexible. In addition, both

4

HTM and hybrid approaches require new features in hardware which do not exist in current

processors, i.e. transactional cache. STM, however, can use available features of current

processors and comes with fewer intrinsic limitations imposed by hardware structures, such as

buffer size and caches. The downside of STM is that it is not as fast as HTM.

All Transactional Memory systems should offer some sort of non-blocking behaviour. A non-

blocking behaviour guarantees that the threads that are contending for a shared resource do not

have their execution postponed indefinitely. There are several forms of non-blocking behaviour:

• Wait-freedom [15]: is the strongest non-blocking guarantee of progress. An algorithm
is wait-free if every operation has a limit on the number of steps the algorithm will take
before the operation completes. This property is critical for real-time systems as long as
the performance cost is not too high.

• Lock-freedom [16]: allows individual threads to starve but guarantees the system-wide
progress. An algorithm is considered lock-free when the threads run sufficiently long
enough that at least one of them makes progress. All wait-free algorithms are lock-free.

• Obstruction-freedom [17]: is possibly the weakest natural non-blocking progress
guarantee. An algorithm is obstruction-free if at any point, a single thread executed in
isolation (i.e., with all obstructing threads suspended) for a limited number of steps will
complete its operation. All lock-free algorithms are obstruction-free.

1.3 Thesis Contributions

This thesis proposes two optimization techniques for STMs: Transactional Read Tracking

(TRT) and Hardware Set Associative Lock (HW-SAL).

1.3.1 Transactional Read Tracking (TRT)

Current state of the art STM uses a global clock as a timestamp in order to maintain

consistency among transactions. This causes contention over the global clock and dramatically

impedes scalability, especially when the number of concurrent threads increases. TRT employs a

distributed method that alleviates the need for the global clock, and so improves scalability and

performance.

Although an effective method, TRT proves to be slower than baseline scheme, depending on

the data access patterns of the benchmarks. A natural question would be whether the different

advantages of TRT and its counterpart could be combined to gain maximum speed up. We

5

propose two adaptive methods that combine both techniques in order to avoid the shortcomings

of each of the techniques and gain benefits of the two.

1.3.2 Hardware Set Associative Lock (HW-SAL)

In most recent STM systems, memory addresses are mapped to a lock table using a hash

functions. Hash collision is an intrinsic property of a direct mapped lock table which would

cause false conflicts. False conflict happens when two memory locations are mapped to the same

entry of the lock table. An STM considers false conflict as memory conflict; whereas there is no

actual conflict. False conflict reduces the concurrency of the STM systems. One way to

circumvent this problem is using a set associative lock table. Much like a set associative cache,

each entry of the lock table consists of several nodes. When an address is mapped to an entry, all

nodes are searched for the address. As such, the probability of false conflict is reduced.

However, implementation of SAL in software results in overhead which degrades performance

in some of the benchmarks especially when associativity of the lock table increases.

The final contribution of this thesis is hardware support for SAL. In this work, we propose to

move the lock table from software to hardware which in turn makes the lookup process fast and

improves performance of SAL. There is a single hardware unit which contains the lock table and

each processor can access the table. A programmer uses a set of new instructions provided by

processors to access the table.

1.4 Thesis Organization

The rest of this thesis is organized as follows. In chapter 2, we explain the basic concepts of

multiprocessor architecture and discuss transactional memory. We explain details of Transaction

Locking II (TL2) as an example of state of the art STM. We also discuss related work in this

chapter. In Chapter 3, we cover the motivation behind “Transactional Read Tracking” and

explain details of implementations. Chapter 4 covers the “Set Associative Lock” and presents the

“Hardware Support for SAL”. Finally in chapter 5, we will offer the concluding remarks and

future work for this thesis.

6

Chapter 2 Background and Related Work

In this chapter, we discuss architecture of CMPs and explain TM systems. In section 2.1, we

review multiprocessor architectures. In section 2.2, we review the challenges that exist in

programming for CMPs. Section 2.3 presents a brief overview of primitives provided by

multiprocessors for parallel programming. In section 2.4, we explain Transactional Memory as a

promising programming model for multiprocessor architectures. In section 2.5, we provide an

overview of the related work to this thesis. We also describe details of TL2 as a state of the art

STM in this section. Finally, in section 2.6, we will conclude this chapter with discussion on

challenges of existing STMs.

2.1 Multiprocessor Architectures

The computing industry has gone into a drastic change since the early 2000’s. Before 2000,

chip manufacturers dedicated all transistors on a chip to a single-core processor. In each

generation, the performance of processors was improved by increasing clock frequency.

However, overheating and sub-threshold leakage [3] limits clock frequency. Therefore, chip

manufacturers have shifted their focus to “multicore” architectures, where multiple cores are

integrated on the same die. Figure 2.1 depicts the shift Irom single-core processors to multicore

processors. As the figure shows, the clock frequency of the single core processors has increased

rapidly until early 2000. Then, the rate at which performance increased diminished. Starting in

2005, the clock frequency was slightly reduced. This time marks the advent of multiprocessors.

The manufacturers designed simpler processors with more core units, to provide parallelism.

The introduction of chip multiprocessors has changed the way we develop software. In single-

core processors, increasing clock frequency results in reduction in execution time of programs

and so programs were executed faster without any effort by the programmers. However, this

trend in CMPs results in slow-down of programs since clock frequency of CMPs is reduced due

to power budget.

Figure 2.2 shows architecture of a CMP with four cores. Each core executes an independent

thread. One way to boost performance of applications in CMPs is parallel programming. A

parallel program is composed of several threads and the threads are executed concurrently on a

7

CMP’s cores. It is up to a programmer to utilize processor cores and harness computational

power of the underlying hardware.

2.2 Challenges in Parallel Programming

Parallel programming introduces new challenges to programmers. As mentioned in Chapter 1,

thread synchronization is one of the main concerns in parallel programming. Conventional

constructs for synchronization such as locks and monitors are complicated and error-prone.

Common problems associated with the conventional locking techniques are;

• Priority inversion [8]: occurs when a lower priority process is pre-empted while
holding a lock needed by a higher-priority process.

• Convoying [8]: occurs when a process holding a lock is rescheduled, perhaps by
exhausting its scheduling quantum time, by a page fault, or by some other kind of
interrupt. When such an intermption occurs, other processes capable of running maybe
unable to progress.

• Deadlock [8]: can occur if processes attempt to lock the same set of objects in different
orders. Deadlock avoidance can be awkward if processes must lock multiple data
objects, particularly if the set of objects is not known in advance.

In the next section, we review atomic primitives used in conventional lock-based parallel

Pentium p

Pentium IV core 2

" Pentium III
Celeron^

Pentium Pro . "

Pentium “

80486
 80386 .' '

80286 . .
8080 ‘ '

1970 1975 1980 1985 1990 1995 2000 2005 2010

Production Year

programs.

10000

1000

CJ c
<u

cr
0)

tu

100

10

Figure 2.1 Clock frequency of different Intel processors over the years.

Figure 2.2 Architecture of a CMP.

2.3 Atomic Primitives

There has been extensive debate over the years on what primitives should be provided to

support synchronization [18]. Some researchers have proposed that the user level

synchronization operations, such as locks and barriers, should be supported at the machine level;

meaning that the synchronization “algorithm” itself should be implemented in hardware [18]. As

such, the system provides extensive hardware support which would make synchronization fast

but not flexible. On the other side, software support would have the advantage of flexibility but it

is slower than hardware primitives [18].

All practical synchronization operations rely on some sort of variation of atomic read-modify-

write primitive. In this primitive, the value of a memory location is read, modified and written

back atomically without intervening accesses to that location by other processors. Different

synchronization algorithms can be built using this primitive. In the rest of this section, we

discuss two variations of read-modify-write primitive.

2.3.1 Compare and Swap

Compare and Swap (CAS) operation takes three arguments: an address “a" in memory, an

expected value “e", and an updated value “v”. It atomically executes the following steps:

• If the memory at address “a" contains the expected value “e’\ then write the new
value “v” to that address and return the expected value, indicating successful CAS
instruction.

9

• Otherwise leave the memory unchanged and return the value contained in the memory
at address "a", indicating failure of CAS instruction.

IBM 370 [18] was one of the first architectures to support a sophisticated atomic instruction,

the compare-and-swap instruction [18]. This instruction supports synchronization for parallel

programming on uniprocessor or multiprocessor systems. The compare-and-swap (CAS)

instruction is now supported in many modem architectures such as AMD, Intel, and Sun. On

Intel and AMD architectures, it is called CMPXCHG (compare and exchange) [19], while on

SPARCTM it is called CAS [20].

The CAS instmction has one pitfall. Perhaps the most common use of CAS is the following.

An application reads the value "a" from a given memory address, and computes a new value

“cfor that location. It intends to store “c ”, but only if the value "a ” in the address has not been

changed since it was read. One might think that applying a CAS with expected value "a” and

updated value “c ” would accomplish this goal. There is a problem: another thread could have

overwritten the value "a” with another value "b'\ and later write "a” again to the address. The

CAS operation will replace "a" with "c’\ but the application may not have done what it was

intended to do (for example, if the address stores a pointer, the new value “<a ” may be the

address of a recycled object). This problem is referred to as ABA problem [8].

2.3.2 Load-locked, Store-conditional

Some multiprocessors provide a pair of instmctions called load-locked and store-conditional

[18] to implement atomic operations, instead of atomic read-modify-write instructions such as

compare and swap. The first instmction is commonly called load-locked or load-linked (LL). It

loads a memory location into a register. It may be followed by any number of arbitrary

instmctions that modify the value in the register. Then the instmction store-conditional (SC) is

called. It writes the register back to the memory location if and only if no other processor has

written to that memory location since this processor completed its LL.

The LL/SC instmction is supported by a number of modem architectures: Alpha AXP

(ldl_l/stl_c) [21], IBM PowerPC (Iwarx/stwcx) [5] MIPS 11/sc, and ARM (Idrex/strex) [22].

LL/SC does not suffer from the ABA problem, but in practice there are often severe restrictions

on what a thread can do between a LL and the matching SC. A context switch, another LL, or

another load or store instmction may cause the SC to fail.

10

2.4 Transactional Memory (TM)

Transactional Memory (TM) was proposed to simplify parallel programming and improve

scalability of programs. Software Transactional Memory (STM) has been a convenient way of

providing necessary constructs for transactional programming. STMs do not require any

modifications in hardware and are available to the programmers through a runtime or compile-

time library.

In TM systems, conflict and version management are the two important aspects of the system

design. Conflict management deals with when conflicts are detected, how they are detected and

which actions should be taken to address them. Version management deals with where and how

the transactional data are kept.

There are two policies for conflict management: Eager and Lazy. In eager policy, a TM system

constantly monitors the transactional execution; as soon as it detects a conflict, it decides which

transaction should be aborted. In this method, since the conflicts are detected at the earliest

possible time, the wasted work due to aborted transactions is minimized. On the other side, lazy

conflict management defers detection of conflicts until the end of transactions. At that point, the

transaction checks all memory locations that are read or written in the transactional section. If

another transaction has changed one or more of these memory locations, conflict happens and

one of the two transactions should be aborted. Lazy conflict management can lead to wasted

work, since a transaction is only aborted at the end of its execution. However, Tomic et al. [23]

observed that it can allow more parallelism than eager policy.

There are also two main classes of version management policies in TMs: eager and lazy. Eager

policy keeps new (speculative) values in-place (in the memory hierarchy) and holds pre-

transactional values somewhere else. Most of TMs buffer the old values in a different location in

memory, using a software-managed log [24] [25] . On the other hand, lazy policy keeps the old

values in the memory hierarchy and holds new values in a log. The new values become visible to

other transactions only during commit.

In the next section, we review previous research work in TM.

11

2.5 Related Work

The concept of Transactional Memory was first introduced by Herlihy and Moss [9]; the basic

idea was to group shared-memory operations into atomic transactions. They changed cache

coherence protocol in multiprocessors to support TM in hardware. A transactional cache

accommodates speculative data generated by transactions. When a transaction successfully

commits, the content of the transactional cache is written into the main memory. The

transactional cache is able to snoop memory operations on the bus from other processors. As

such, it can determine if another processor is trying to gain exclusive access to a cache line

which is currently obtained by a local transaction; if so, the remote transaction would be aborted.

This implies that the protocol is not non-blocking. Starvation is handled in software by backing

off in the case of contention. The main disadvantage of this design is that it requires hardware

modifications for cache coherency protocols.

Shavit and Touitou [26] proposed a lock-free STM. A notable difference from Herlihy is that

they abort contending transactions, instead of recursively helping them; non-blocking behaviour

is still guaranteed because aborted transactions help the transaction that aborted them before

retrying. Their design only supports static transactions, in which the set of accessed memory

locations is known in advance. However, this STM cannot support transactions that access

memory locations that are allocated dynamically through operations such as malloc().

To alleviate the problem with static transactional programming, Moir [27] presents a lock-free

and wait-free STM design which offers a dynamic transactional support, in contrast with Shavit

and Touitou's static interface. The lock-free design divides the transactional memory into fixed-

size blocks which form the unit of concurrency. A header array contains a word-size entry for

each block in the memory, consisting of a block identifier and a version number. In their design,

if two transactions conflict, then one of them aborts. In this scheme, transactions that do not

access shared memory locations can execute simultaneously. The design also suffers from the

same drawbacks as the conditionally wait-free MCAS [28] on which it builds: bookkeeping

space is statically allocated for a fixed-size heap, and the read operation is potentially expensive.

Also, the read-set of the transaction has to be validated in order to make sure that it has not been

changed since the start of a transaction.

12

Herlihy et al. [29] have implemented an obstruction-free dynamically sized STM, meaning

that memory blocks can be created and destroyed on the fly. Their implementation builds on a

readily available form of the CAS primitive. A novel feature of their obstruction-free STM

implementation is its use of modular contention managers to ensure progress in practice. Also,

the design is disjoint-access-parallel [28]; meaning that processes that access disjoint sets of

words in the shared memory, can progress concurrently as long as they do not interfere with each

other. These features significantly decrease contentions in many multiprocessor applications.

Dice et al. [12] introduce Transactional Locking II, an STM based on commit-time locking

and a novel global clock scheme for validation. Unlike all other STMs, TL2 fits seamlessly with

any memory system life-cycle, including those using malloc()/free(). Also, unlike all other lock-

based STMs it efficiently avoids periods of unsafe execution, that is, using its novel version-

clock validation, user code is guaranteed to operate only on consistent memory states. It uses a

table of Locks in order to maintain consistency of transactions. The overall performance

improvement is notably higher compared to both lock-based and non-blocking STM systems.

Due to aforementioned qualities of TL2, we use this system as a baseline for our optimization

techniques.

Spear et al [30] proposed global commit counter to reduce overhead of incremental validation.

In invisible read policy, a reader detects read-write conflicts by incrementally validating open

objects at the cost of quadratic number of objects. To reduce cost of validation, a global counter

records the number of transactions that attempt to commit. When a transaction opens an object,

the transaction skips incremental validation if the counter has not changed since the last time the

reader checked its objects. As such, costly exhaustive validations can be avoided if transactional

write operations happen rarely. However, this method does not distinguish access to different

fields of an object and results in unnecessary serialization if transactions access disjoint memory

locations.

Mannaeswamy and Govindarajan [31] studied cache behavior of STMs and showed that global

clock misses are responsible for up to 38% of transactional misses in Stamp benchmark suite.

They proposed a compiler optimization technique, which is called selective partition timestamp

(SPTS), to reduce cost of the global clock. SPTS, partitions disjoint instances of data structures

and assigns each partition to a separate pool. Each pool has its own local clock and data

13

structures within a pool compete for the local clock. As such, contention over the central global

clock reduces. One of the restrictions of SPTS is that it decides on data structure partitions in

compile-time and so needs to use a conservative approach to select candidate shared data

structures for partitioning. As an example, if a data structure is passed to an external tunction,

whose source code is not visible to the compiler, the compiler cannot apply SPTS to the data

structure.

Riegel et al. [32] introduced a mechanism which uses real-time clocks to optimistically

synchronize concurrent transactions. They also exploited externally synchronized clocks as the

time base for better scalability. Their scheme requires external support and focuses on scalability

of time base itself.

Avni and Shavit [13] introduced thread-local clock (TLC) technique to allow transactions to

operate on consistent states without the global clock. In TLC, each thread has a local clock which

is initialized to zero and is incremented by one at the start of every new transaction. There is also

a thread local array that has an entry per thread recording timestamp of the thread. When a

transaction commits it writes its thread id and timestamp into the associated lock. To validate

read-set, all locks corresponding to the transactional read operations are checked to be unlocked.

Then, the timestamp of each lock is checked to make sure that it is less than the associated thread

j’s entry in the thread local array. If the check fails then thread j’s entry in the array is updated

with the new timestamp. While TLC eliminates central global clock, it increases abort rate since

the new timestamp of a committed transaction is not transferred to other transactions

immediately. Instead, other transactions notice the new timestamp when their validations fail. As

such, TLC may degrade performance despite of the fact that it eliminates the central clock. In

addition, Avni and Shavit evaluated TLC with micro benchmarks which are not representative of

real applications.

Atoofian [33] introduced “Set Associative Locks” (SAL) to reduce false aborts in STMs. In

time-based STMs, different memory locations might be mapped to the same entry of the lock

table. This creates false aborts and degrades performance. Atoofian proposed SAL which

increases associativity of the lock table and reduces false aborts.

Many HTM implementations have been proposed since Herlihy and Moss introduced

Transactional Memory. Ananian et al. [34] proposed UTM which was the first eager HTM

14

system that supports unbounded transactions. By placing transactional modifications across the

memory hierarchy and storing metadata on the side, it is able to execute transactions of any size.

Hammond et al. [35] proposed a new shared memory model: Transactional memory

Coherence and Consistency (TCC). TCC provides a model in which atomic transactions are

always the basic unit of parallel work, communication, memory coherence, and memory

reference consistency. TCC hardware combines all writes from each transaction region in a

program into a single packet and broadcasts this packet to the permanent shared memory states

atomically as a large block. This simplifies the coherence hardware because it reduces the need

for small, low-latency messages and completely eliminates the need for conventional snoopy

cache coherence protocols, as multiple speculatively written versions of a cache line may safely

coexist within the system. Meanwhile, automatic, hardware-controlled rollback of speculative

transactions resolves any correctness violations that may occur when several processors attempt

to read and write the same data simultaneously. The cost of this simplified scheme is higher

inter-processor bandwidth.

Chafi et al. [36] proposed Scalable TCC which presents a scalable TM implementation for

directory-based distributed shared memory systems. This scheme is live lock free without the

need for user-level intervention. The design is a scalable implementation of optimistic

concurrency control that supports parallel commits with a two-phase commit protocol. It uses

write-back caches and filters coherence messages. The scalable design is based on Transactional

Coherence and Consistency (TCC), which supports continuous transactions and fault isolation.

Moore et al. [24] proposed LogTM in order to simplify the version management mechanism

by keeping the pre-transactional state in a software-managed log; in case of an abort, the values

in the software log will be written back to memory. Also using Read-Write cache bits [37]

LogTM is able to eagerly detect conflicts. Yen et al. proposed LogTM-SE [25] in order to

decouple the transactional state from caches by summarizing the memory accesses in signatures

[38], LogTM-SE uses signatures to summarize a transaction’s read and write-sets and detects

conflicts on coherence requests (eager conflict detection). Transactions update memory “in

place” after saving the old values in a per-thread memory log (eager version management).

Finally, a transaction commits locally by clearing its signature, resetting the log pointer, etc.,

while aborts must undo the log.

15

To accelerate the abort recovery and reduce the pressure on the write signature, FASTM [10]

implements a hybrid version management mechanism. It takes advantage of the processor’s

cache hierarchy to provide fast abort recovery. FASTM uses a novel coherence protocol to buffer

the transactional modifications in the first level cache and to keep the non-speculative values in

the higher levels of the memory hierarchy. This mechanism allows fast abort recovery of

transactions that do not overflow the first level cache. FASTM keeps the pre-transactional state

in a software-managed log, which permits the eviction of speculative values and enables

transparent execution even in the case of cache overflow.

DynTM [11] presents the first fully-flexible HTM system that permits the simultaneous

execution of transactions using complementary version and conflict management strategies.

DynTM utilizes a novel coherence protocol that allows tracking conflicts among eager and lazy

transactions. Both the eager and the lazy execution modes of DynTM exhibit very high

performance compared to modem HTM systems. Also, the DynTM lazy execution mode

implements local commits, avoiding expensive commit arbitration. In addition, lazy transactions

share the majority of hardware support with eager transactions, reducing cost of implementation

substantially.

IBM zEC12 [39] is the first general purpose server which incorporates transactional memory.

In zEC12, IBM used transactional memory to enable software to better support concurrent

operations that use a shared set of data such as financial institutions processing transactions

against the same set of accounts. zEC12 exploits up to 120 processing cores, supporting speeds

of 5.5 GHz the highest clock speed CPU ever produced for commercial sale [40]. The

architecture of the cores is a superscalar out-of-order pipeline with new instmction for

transactional memory support.

BlueGene [41] is a supercomputing project that provides an ultra-scale technical computing

platform to solve the most challenging problems facing engineers and scientists at faster, more

energy efficient, and more reliable rates than ever before. Wang et al. [42] evaluated the

performance of transactional memory applications on IBM’s BlueGene/Q platform. They first

provided a detailed description of the BG/Q HTM implementation and overhead. Then, they

presented a thorough examination of parallel benchmarks for TM system on BG/Q. Also, they

describe how the best-effort HTM support in BG/Q can be complemented with a software stack

16

that includes the kernel, the compiler, and the runtime system to deliver the simplicity of a TM

programming model.

In this thesis, we use Transaction Locking II (TL2) [12] to evaluate our optimization

techniques. It is important to note that although we use TL2 in this thesis, our optimization

techniques are general and can be employed in any other time-based STMs [32] [43]. In the next

section, we explain details of TL2.

2.5.1 Transactional Locking II (TL2)

Time-based transactional memories exploit a time base to impose order among transactions

and reason about consistency of transactional data. In this section, we focus on TL2 as a time-

based STM.

TL2 employs a validation scheme, called GV4, which relies on a global clock. The global

clock is implemented as a shared counter and is incremented when a transaction commits. In

addition, GV4 exploits a table of locks to synchronize accesses to the shared memory locations.

The memory addresses are mapped to the locks using a hash function. Figure 2.3 shows the

structure of memory and how it is mapped to the lock table entries. Each entry of the lock table

has two sections: lock-bit and version number. The size of each entry in the lock table is equal to

the size of address on the host machine. The least significant bit (LSB) of the lock shows

whether the lock is free or acquired. If the LSB is zero (free), the rest of the lock shows the time

stamp of the last transaction that wrote to a memory location covered by the lock. If the LSB is

one (acquired), the rest of the lock holds the address of the owner transaction. Since the lock is

word-aligned, the LSB can safely represent the status of the lock (free or acquired). Figure 2.4

shows the structure of an entry of the lock table. When a transaction commits, it updates version

number of all locks corresponding to the memory locations that were written by the transaction.

TL2 supports both Eager and Lazy conflict management policies. Figure 2.5 shows the pseudo

code for key functions in Eager GV4. For Eager Policy the following set of operations are

executed:

• At the start of a transactional section, TL2 samples the global clock and stores it in a
thread local variable called read-version (rv).

• Then, it runs through a speculative execution and makes undo logs to restore state of
the transaction in the event of failure. TL2 maintains two sets for each transaction: one

17

for transactional reads, called read-set, and the other one for transactional writes, called
write-set. For each transactional read operation, TL2 checks consistency of the memory
location to be read (line 3). TL2 compares rv and version field of the lock entry
corresponding to the memory address. If rv is greater than or equal to the version field,
then consistency check passes; otherwise, the consistency check fails since the memory
address has been written by another transaction after current transaction has started. In
addition, TL2 checks that the lock entry is free. If any of the aforementioned conditions
are not met, the transaction aborts. In case of a write operation (line 9)Figure 2.6 TL2
tries to acquire the lock corresponding to that memory location at the same time. If lock
acquisition is successful, the memory location will be updated immediately. If the lock
is already acquired, the transaction aborts.

• At commit time (line 24), it increments the global version-clock using the atomic
compare and swap (CAS) operation. Finally, TL2 goes through the write-set and
releases acquired locks by writing the new value of the global clock in to the version
field of the locks and clearing the lock bits.

• In case of abort (line 19), TL2 goes through the write-set and reverts all the changes
made to the shared memory locations and releases all the locks it has acquired so far.

For read-only transactions, the process is much simpler; TL2 samples the global clock at the

start of a transactional section and validates transactional read operations. For validation, TL2

checks that the read location’s lock bit is clear and the timestamp in the lock field is less than the

rw If validation passes then the transaction commits; otherwise, the transaction aborts. Since

there are no write operations, there is no need to increment the value of global clock.

0x1670

0x1671

0x1672

0x1673

0x1674

0x£A09

OxEAlO

Memory

0x000

0x001

0x002

0x199

0x200

Lock Table

Figure 2.3 Lock table in TL2.

18

63 1 0

Version Number Lock Bit

Figure 2.4 Structure of an entry of the lock table.

1 TxLoad(addr) {
2 //if lock entry corresponding to addr is free
3 if (lock(addr) is free and readVersion >= lockVersion)
4 return (Mem[addr]);
5 } else
6 TxAbortO;

7 }
8
9 TxStore (addr, value) {

10 If (lock(addr) is free) {
11 Acquire(lock(addr));
12 Write value in to addr;
13 }
14 else {
15 TxAbortO;
16 }
17 1
18
19 TxAbortO]
20 DropLocksO;
21 RevertMemoryChangesO;
22 }

23
24 TxCommitO {
25 DropLocksO;
26 1

Figure 2.5 Pseudo code for Eager GV4.

Figure 2.6 depicts the pseudo code for Lazy GV4. In Lazy policy, the following sequence of

actions is employed:

• At the start of a transactional section, TL2 samples the global clock and stores it in a
thread local variable called read-version (rv).

• Then, it runs the transaction speculatively. For each transactional read operation (line
1), TL2 checks consistency of the memory location to be read. TL2 compares n> with
version field of the lock entry corresponding to the memory address. If rv is greater
than or equal to the version field, then consistency check passes; otherwise, the

19

consistency check fails since the memory address has been written by another
transaction after current transaction has started. In addition, TL2 checks that the lock
entry is free. If any of the aforementioned conditions are not met, transaction aborts. In
case of a write operation (line 9), TL2 stores the new value in a private memory and
defers updating the shared memory locations to commit time.

• At commit time (line 22), TL2 acquires locks corresponding to its write-set. If lock
acquisition fails then the transaction aborts. When all locks have successfully been
acquired, then it makes the tentative changes to the memory permanent. Then, TL2
releases all the locks and increments the global version-clock using an atomic compare
and swap (CAS) operation.

• In case of abort (line 18), TL2 goes through the write-set and releases all the locks it
has acquired so far.

Figure 2.6 depicts the pseudo code for main functions of GV4.

1 TxLoad(addr) {
2 //if lock entry corresponding to addr is free
3 if (lock(addr) is free and readVersion >= lockVersion)
4 return (Memfaddr]);
5 } else
6 TxAbortf);

7 }
8
9 TxStore (addr, value) {
10 If (lock(addr) is free) {
11 Add the value to write-set
12 }
13 else 1
14 TxAbortO;

15 }
16 }
17
18 TxAbortO {
19 DropLocksO;
20 }
21

22 TxCommitO {
23 AcquireLockForWrite-Set();
24 MakeTentativeChangesPermanentO;
25 DropLocksO
26 }

Figure 2.6 Pseudo code for Lazy GV4.

20

TL2 reduces cost of validation relative to those STMs that require rescanning of the read-set

on every transactional load [30]. However, there are some disadvantages in TL2. The global

clock creates contention since each transaction increments the clock in commit, which results in

costly cache coherency invalidation traffic. Also there is an extreme condition where TL2 leads

to unnecessary aborts. Consider the case where Thread 0 (T^h writes to a shared memory location

and Thread 1 (T/) reads from it. Assume that To writes after Ti has started, but before T/ reads

from the shared location. Since T/ samples the clock at the start of the transactional section, the

version of shared memory location is more than rv. Therefore, validation fails and Tj aborts.

However, To and Tj access the shared memory location at different timestamps and could have

committed successfully. These unnecessary aborts waste processor resources and degrade

performance.

2.5.2 Programming with TL2

TL2 provides several programming constructs for programmers to write transactional

programs:

1) TM STARTUP (): Initializes transactional states and the internal buffers. It also
initiates the lock table.

2) TM_THREAD_ENTER (): creates a new thread of execution. It also initializes the
newly created thread and sets the internal state registers, read-set and write-set buffers
to appropriate values. This is placed at the beginning of the parallel section of a
program.

3) TM BEGIN (): Marks the beginning of a transaction. The thread saves a program’s
state at the start of the transactional section. If later, the transaction aborts, the state of
the program is recovered.

4) TM SHARED READ (address): Loads shared memory value pointed by “address”
into a temporary variable. This causes the memory address to be added to the read-set
of the thread.

5) TM SHARED WRITE (address, value): Stores the “value” into the location in the
shared memory pointed by “address”. This causes the memory address to be added to
the write-set of the thread. If eager policy is employed, the changes to the shared
memory take place immediately. However, if lazy policy is employed, the changes to
the shared memory are deferred until commit time.

6) TM_END (): Marks the end of a transaction. The transaction either successfully
commits and finished execution, or aborts and re-executes from TM_BEGIN().

7) TM THREAD EXIT (): Deallocates memory for internal buffers of the thread. This
is placed at the end of last parallel section of the code.

21

8) TM_SHUTDOWN (); Called at the end of the program in order to release all the
internal buffers and transactional states allocated to the transactional memory system.

1 #defme NUM_OF_THREADS 8
2 long max_count;
3 static int threads_arg[MAX_NUM_OF_THREADS];
4 void func_count (void* argPtr);
5 long shared_counter = 0; //the shared variable
6 int main (int argc, char* argv)
1 {

8 TM STARTUP (NUM OF THREADS);
9 thread_start(func_count, (void*)threads_arg);

10 TM_SHUTDOWN ();
11 return 0;
12 }
13
14 int func_count()
15 {
16 long myld = thread_getld();
17 long local_counter = 0;
18 long tmp = 0;
19 TM THREAD ENTER ();
20 while (local_counter++ < max_count)
21 {
22 TMBEGINO;
23 tmp = (long)TM_SHARED_READ (shared counter);
24 TM SHARED WRITE (shared_counter, tmp +1);
25 TM_END();
26 }//end of while
27 TM_THREAD_EXIT ();
28 }

Figure 2.7 A sample code using transactional memory for implementation of a counter.

Figure 2.7 shows a shared counter implemented in TM. The shared counter is incremented by

each thread. When the value of the thread exceeds a limit, the program finishes. TM STARTUP

creates the number of threads specified by the programmer (line 8) and initializes the internal

data structures of TL2. Then, func_count is passed to thread_start() (line 9). func_count() is a

function which is executed by multiple threads concurrently. In this function,

TM TEIREAD ENTER is called to initialize the internal state of each thread (line 19) and create

the read-set and write-set for each of them. In line 22, TM_BEGIN marks the beginning of the

transactional section. In line 23, TM_SHARED_READ is used to read from shared_counter.

shared_counter is a shared variable and is accessed by all transactions. So, it is necessary to

protect this variable in the transactional section. In line 24, TM SHARED WRITE is called

22

which acquires the lock corresponding to shared_counter. TM_END (line 25) marks the end of

transaction and causes TxCommit to be called. At the end of Transactional Section (line 27),

TM_THREAD_EXIT() deallocates all data structures which were allocated by TM BEGIN.

TM SHUTDOWN (line 10) is called at the end of the application, where all transactions

terminate.

2.5.3 Benchmarks

We use STAMP vO.9.10 benchmark suite [44] to evaluate our work. A brief description of the

benchmarks used in our evaluations is as follows:

• Bayes: A Bayesian network (or a belief network) is a way of representing probability
distributions for a set of variables in a concise and comprehensible graphical manner.

• Kmeans: K-means is a partition-based method and is arguably the most commonly used
clustering technique. K-means represents a cluster by the mean value of all objects
contained in it.

• Labyrinth; Given a maze, this benchmark finds the shortest-distance paths between pairs
of starting and ending points.

• Ssca2: The Scalable Synthetic Compact Applications (Ssca2) benchmark is comprised of
four kernels that operate on a large, directed, weighted multi-graph. STAMP focuses on
Kernel 1, which constructs an efficient graph data structure using adjacency arrays and
auxiliary arrays.

• Vacation: This benchmark implements a travel reservation system powered by a non-
distributed database.

• Genome: This benchmark implements a gene sequencing program that reconstructs the
gene sequence from segments of a larger gene.

2.6 Summary

In this chapter, we presented background for TM systems and discussed related work. We

explained details of TL2. TL2 utilizes a lock table and a novel global clock mechanism to

provide the necessary functions for transactional memory. One of the limitations of the TL2 is

global clock. Global clock is a central variable which is accessed by all transactions. As such,

global clock restricts scalability of TL2 and increases overhead when the number of threads

increases. In the next chapter, we propose TRT to alleviate the overhead of global clock and

improve performance of TL2.

23

Chapter 3 Transactional Read Tracking

In STMs, all transactions should have a consistent view of shared memory locations at all

times [32]. Some STMs [30] use validation technique to avoid inconsistency in transactions. In

this technique, STM rescans all previously read elements on every new transactional load.

Validation is an expensive operation and increases overhead of the implementation and degrades

performance especially in applications with frequent transactional reads [32]. An alternative

approach is a global clock which is used as a timestamp for shared memory locations. While this

method is simple to implement, it results in contention over the global clock, especially when

transactions commit frequently. In this chapter, we introduce Transactional Read Tracking

(TRT) which tracks transactional read and write operations without using a central data structure

such as global clock. TRT removes the burden of the global clock and improves scalability of

STMs.

The rest of this chapter is organized as follows. In section 3.1, we present the motivation

behind this work. In section 3.2, we introduce TRT and explain different aspects of it. In section

3.3, the performance of TRT is reported. In section 3.4, we present a hybrid method to increase

the speedup provided by the system. In section 3.5, we introduce yet another hybrid method to

further increase the performance.

3.1 Motivation

In time-based STMs, a transaction increments the clock when it commits. This results in

broadcasting costly coherence invalidations over interconnection network and remote caches

[45]. Therefore, global clock becomes a bottleneck when the number of concurrent transactions

increases, even when there is no conflict among the transactions. Transactional Read Tracking

fTRT) allows transactions to operate on consistent states without the need for a global notion of

time. In TRT, each memory location is associated with a Lock. When a transaction reads a

memory location, it sets a dedicated bit in the corresponding lock entry, indicating that the

memory location has been read by a transaction. When a transaction writes into a memory

location, it checks the read bits of the corresponding lock entry. If all read bits are zero and the

lock has not been acquired, the write operation is successful and the thread continues; otherwise.

24

the thread has to abort. Hence, TRT maintains atomicity of transactions and validates

transactional data without using a global clock.

3.2 Transactional Read Tracking

In this section, we explain details of TRT and discuss how TRT is implemented in software.

Similar to GV4, TRT relies on locks to synchronize accesses to the shared memoiy locations.

Figure 3.1 depicts the structure of a single lock entry in TRT. Each lock consists of a lock bit and

a set of read bits. The lock bit indicates whether the corresponding memory location is locked by

a transaction. When a transaction writes to a memory location it sets the corresponding lock bit.

Read bit / corresponds to thread i and indicates whether thread i has read from the memory

location. When thread i reads from a memory location it sets read bit / of the corresponding lock.

The record of all transactional loads and stores is kept in two sets of logs: read-set and write-set.

Lock Bit

Figure 3.1 Structure of a single lock entry in TRT.

In TRT, the following set of operations is performed when a writing transaction executes:

• Run transactional code: Execute the transactional code, meanwhile, each time a
shared memory location is accessed, the lock entry associated with the memory
location is checked. For transactional read operations, if the lock is free, the lock is
sampled into the thread’s local read-set and the corresponding read bit in the lock is set
using atomic Compare and Swap (CAS) operation [18]; if the lock is already acquired
by another transaction then the current transaction aborts. For transactional write

25

operations, if the corresponding lock is free and all read bits are clear, then the lock is
acquired using CAS. If the lock is already acquired, then two transactions conflict over
a shared memory location. The one which acquires the lock sooner is the winner and
writes into the shared memory location. The other should abort and restart its
transactional section. If a read bit is set, then the writing transaction aborts. This is
necessary to guarantee atomicity of transactional sections.

• Commit: When a transaction reaches the commit step, its transactional data are valid.
The transaction requires clearing the read bits in the lock entries corresponding to its
read-set. In addition, lock entries corresponding to its write-set should be dropped by
clearing the lock bits.

• Abort: If a transaction needs to be aborted, it should revert all changes that it has made
to the shared memory locations. The thread goes through write-set and undoes all write
operations and clears the lock bits. Also, the transaction should clear its read bits in the
lock entries corresponding to its read-set.

Figure 3.2 presents the pseudo code for TRT. When a transaction reads from an address in

memory (TxLoad()), the corresponding lock is examined to ensure that it has not been acquired

by another transaction (line 2). Then, it sets the read bit i to indicate that a transaction in thread i

has read from the address (line 3). When a transaction writes into a memory location (TxStore()),

it checks the lock entry corresponding to input address (line 10). If no other transaction has

read/written from/to the address, then the lock entry is acquired (line 11) and the new value is

written into the memory (line 12); otherwise, the transaction aborts (line 15). When a transaction

aborts (TxAbort()), it goes through all nodes of its read-set and write-set to restore the state of

the lock table (lines 20-21). In addition, all new values written to memory by TxStore() should

be reverted (line 22). When a transaction commits (TxCommit()), all read bits of lock entries

corresponding to read memory locations (line 26) and all lock bits corresponding to written

memory locations should be cleared (line 27). However, contrary to TxAbort(), there is no need

to revert the changes to the memory. Appendix A has the source code for TRT.

3.2.1 Proof of Correctness:

In this section, we prove that TRT algorithm maintains the atomicity and correctness of

programs. The values resulting from any serial execution of transactions are assumed to be

consistent. A parallel program is considered consistent, if a serial execution of transactions

exists, and that generates the same result as the parallel program. Two concurrent transactions

are defined as conflicting when they access the same memory location and at least one of them

26

writes to that location (Read-After-Write, Write-After-Read, and Write-After-Write hazard).

Since TRT allows a thread to write to a memory location only if the location has not been read or

written by any other thread, any of the aforementioned hazards will not happen. For transactional

read operations, any number of threads can read a location as long as it has not been written by

another transaction.

In term of atomicity, the key difference between GV4 and TRT is that TRT uses the first

transactional read or write operation as the linearization point while GV4 uses the start of a

transactional section as the linearization point. Hence, TRT, in contrast to GV4, does not

generate unnecessary aborts as discussed in section 2.5.1.

1 TxLoad(addr) {
2 if (lock(addr) is free) //if lock entry corresponding to addr is free
3 set read bit in lock(addr);
4 return (Mem[addr]);
5 } else
6 TxAbort();

7 1
8
9 TxStore (addr, value) (

10 If (all read bits of lock(addr) are zero and lock(addr) is free) {
11 Acquire! lock(addr));
12 Write value in to addr;
13 }
14 else {
15 TxAbort();
16 }
17 }
18
19 TxAbort!) {
20 RevertReadSetChangesO;
21 DropLocksO;
22 RevertMemoryChangesO;
23 }
24
25 TxCommitO {
26 RevertReadSetChangesO;
27 DropLocksO;
28 !
f igure 3.2 Pseudo code for TRT.

27

3.3 Performance of TRT

In this section, we report performance of TRT. All tests were carried out on two Intel Xeon

E5660 processors running at 2.8 GHz. Each processor has six cores and is capable of running up

to 12 threads simultaneously. Each processor has a 12MB shared L3 cache with 64B cache lines.

Each core has a 32KB instruction cache and a 32KB data cache. TABLE 3.1 presents the input

arguments used for STAMP benchmarks.

TABLE 3.1 Input arguments for STAMP benchmarks

Benchmarks Input Parameters
Bayes -v32 -r4096 -nlO -p40 -i2 -e8 -si
Kmeans -ml5 -nl5

cl6.txt
-to.00001 -i inputs/random-n65536- d32-

Labyrinth -i inputs/random-x512-y512-z7-n512.txt
Ssca2 -s20 -il.O -ul.O -13 -p3
Vacation -n4 -q60 -u90 -rl 048576 -t4194304
Genome -gl6384 -s64-nl6777216

Figure 3.3 presents performance of TRT relative to GV4 in STAMP vO.9.10 benchmarks. The

results were normalized to the execution time of GV4; hence bars less than 1 show performance

improvement. For each benchmark, the number of threads varies between two and 16. While in

some benchmarks, TRT is faster than GV4 on average, i.e. Labyrinth, GV4 works better than

TRT in some others, i.e. Kmeans. The main reason that TRT falls behind GV4 in some

benchmarks is associated with overhead of abort. In TRT, when a transaction aborts it traverses

both read-set and write-set and reverts all the changes made to the lock table. Depending on the

application’s data access patterns, read-set or write-set might grow largely. However, GV4 has

to check only its write-set. This causes extra overhead in some benchmarks and degrades

performance.

To provide better insight into the overhead of abort in TRT, part of a code region taken from

Genome is shown in Figure 3.4. TRT degrades performance of Genome by 83% when the

number of threads is 16. This is the maximum slowdown across STAMP benchmarks. More than

79% of total aborts happen in the transaction shown in Figure 3.4. In previous parts of the code

(not shown in the Figure), the algorithm removes duplicate segments using hash-set and in this

specific part, it iterates over unique segments and computes hashes. Hashes are implemented as

28

2
J 1.8

^ 1.6
0

u 1.4

1 1.2
Ui

H 1
Qi
H 0.8

‘1.0.6

■§ 0.4
o>

0.2

0
Bayes Kmeans Labyrinth Ssca2 Vacation Genome

■ 2 H4 B8 H16 ■ AVG.

Figure 3.3 Speedup in TRT relative to GV4.

linked-lists and in function TMTABLE_INSERT(), all threads compete to insert nodes into the

hashes. Hence, transactions create large read-sets and they try to write in one of them. This

results in dramatic increase in read-write conflicts and the “for loop” in the program exacerbates

this situation.

In the next section, we introduce RGVT which alleviates the overhead of abort and improves

performance of TRT.

for (j = 1; j < segmentLength; j++) {

TM_BEGIN():
status = TMTABLE_INSERT(startHashTables[j], ...);
TM_END();

}

Figure 3.4 Part of Genome program from STAMP v0.9.l0 benchmark suite.

3.4 rwConflict Based GV4-TRT (RGVT)

TRT and GV4 have conflicting effects. While GV4 reduces overhead of abort, it unnecessarily

serializes transactions and increases contention over the central global clock even if transactions

do not conflict. On the other side, TRT eliminates cost of global clock but increases overhead of

abort and introduces read-write conflicts. Hence, none of the two validation policies works well

29

across all applications. Depending on access pattern of shared data structures in a benchmark,

one method may work better than the other.

3.4.1 Read-Write Conflict

One way to combine the best of TRT and GV4 is selecting one of the two techniques based on

number of read-write conflicts. We count the number of read-write conflicts and store it in a

local variable: rwConflict. If rwConflict is more than a pre-determined threshold, GV4 is the

preferred scheme since TRT increases execution time due to overhead of abort. If rwConflict is

less than the threshold, then the preferred validation scheme is TRT since GV4 unnecessarily

serializes the committing transactions.

The reason for switching between GV4 and TRT based on read-write conflicts is that the

number of read-write conflicts greatly affects the performance of TRT. If this number grows, it

results in a large read-set and the likelihood of conflict is high. Aborting a transaction with a

large read-set is a costly operation which degrades performance. It is worthwhile to mention that

if the read-set size grows without creating conflict, TRT will provide acceptable speedup with

respect to GV4.

To prevent change of validation scheme at the middle of a transaction, we use read-write lock

[8] to synchronize transactions. Only one thread is allowed to change the validation scheme (i.e.

thread zero). When a transaction in thread zero decides to change the validation scheme, it

acquires the lock in write-mode, changes the granularity, and releases the lock. All the other

transactions acquire the lock in read-mode at the start of transactional sections and release the

lock when they commit or abort. Using the read-write lock, we guarantee that the validation

scheme changes only when there is no running transaction.

3.4.2 Performance of RGVT

Figure 3.5 presents the performance of RGVT relative to GV4. The value of threshold is set to

10 and is used across all applications. We examined different values for threshold and found that

threshold of 10 results in maximum speed-up. On average, RGVT improves performance across

all benchmarks. Performance of Genome is considerably improved. Genome has a mixed

structure: read-write conflicts are frequent in parts of the benchmark and in the other parts, they

occur rarely. RGVT manages to utilize GV4 for the conflicting parts and TRT for the non-

30

conflicting parts. As such, RGVT improves performance of Genome for all variations of number

of threads. For Labyrinth and Ssca2, TRT and RGVT are similar. In these two benchmarks, read-

write conflicts occur rarely and so, RGVT quite often chooses TRT as the validation scheme.

Kmeans and Vacation are not sensitive to the validation policies and so speedup of both TRT and

RGVT are marginal. Bayes, similar to Genome, has a mixture of high and low read-write conflict

transactions. RGVT adjusts validation policy dynamically and improves performance of Bayes

over all variations of number of threads.

1.2 T
>

Bayes Kmeans Labyrinth Ssca2 Vacation Genome

■ 2 MA as a 16 aAVG.

Figure 3.5 Performance of RGVT using rwConflict.

To provide better insight into RGVT, in Figure 3.6, we report how often transactions execute

in GV4 and TRT modes. For each benchmark, the number of threads varies from two to 16. In

Bayes, Labyrinth and Ssca2, virtually all transactions execute in TRT mode, which confirms the

results presented in Figure 3.5, since speedup in these benchmarks is significant. In Genome,

TRT is chosen as the initial validation method. When the size of the read-set and write-set grows

the rate of read-write conflict increases. As such, rwConflict exceeds the threshold and RGVT

selects GV4 for validation to avoid costly aborts. In Kmeans, quite often, GV4 is selected for

validation. Therefore, sometimes there is performance degradation in this benchmark. This

shows that rwConflict is not very accurate in predicting applications’ behaviour. In the next

section, we discuss a different technique to switch between GV4 and TRT.

31

■ TRT Mode

■ GV4 Mode

24816 24816 24816 24816 24816 24816

Bayes Kmeans Labyrinth Ssca2 Vacation Genome

Figure 3.6 Frequency of GV4 and TRT in RGVT.

3.5 Perceptron GV4-TRT (PGVT)

In this section, we propose a new method which decides on validation policy based on

probability of conflicts in transactions. As we will show later, this method improves performance

more than rwConflict. To speculate the outcome of a transaction, we use a perceptron-based

contention predictor (CP). Perceptron is a neural network which was introduced in 1962 to study

brain function [46]. Jimenez and Lin exploited perceptron and proposed a highly accurate branch

predictor [47]. We use perceptron to speculate outcome of transactions. A perceptron learns a

Boolean function of n inputs. In our case, the function predicts whether a transaction commits or

fails and inputs are global transaction history.

Figure 3.7 shows how a perceptron works. A perceptron is composed of a weight vector (w,)

and an input vector (x,). Elements of the weight vector are signed integers and elements of the

input vector are bipolar, i.e. each x, is either -1, meaning transaction fails or 1, meaning

transaction commits. The output of a perceptron is computed as follows:

n

y = vvo +
n=l

32

A non-negative output is interpreted as predict commit, xo is always 1, so instead of learning

correlation with a previous transaction, the bias weight, learns the bias of the transaction

independent of other transactions.

Once a transaction executes and its real outcome is determined (commit or abort) the

perceptron is trained. If the outcome of the transaction agrees with w,- is incremented;

otherwise, w, is decremented. Intuitively, when there is positive correlation between transaction i

and the current transaction, the w,- becomes large. On the other side, if there is negative

correlation between transaction / and the current transaction, then w, becomes a large negative

number. When there is a weak correlation, then weight remains close to zero and contributes

little to the output.

Figure 3.8 shows the structure of the CP in a program with two threads. Each thread has a local

CP and the local CP is composed of N link-lists. Each node of the link-list has the starting

address of a transaction and a perceptron (weight vector and input vector). We use inline

assembly to read Program Counter (PC). The PC is written into the starting address fields of the

link-list nodes. When a transaction starts, the starting address of the transaction is hashed to an

index i G 0...N-1 into the table of link-lists. Then, a node with matching starting address in the

link-list is selected (if there is no matching node, then we assume that the transaction commits

successfully). The value ofy is calculated as dot product of weight vector and input vector. If y is

non-negative, then the transaction is predicted to commit; otherwise, it is predicted to abort.

Once the actual outcome of the transaction is known, the weight vector is updated and the input

vector is shifted with +1/-1 if the transaction commits/aborts.

Figure 3.7 Weight vector and input vector in a perceptron.

33

Tlireadu Thread; Address of TX—►

Figure 3.8 A program with two threads and two local contention predictors.

Figure 3.9 presents pseudo code for switching between TRT and GV4 in PGVT. Similar to

adaptive TRT, decision is made by thread 0. We use read-write lock to guarantee that when

thread 0 changes validation policy, there is no running transaction.

1 TxStartQ {
2 if(threadID==0) {
3 if (predConflict()==l)

4 {
5 //if perceptron predictor speculates conflict
6 rwLock.acquireForWriteO;
7 //choose GV4 or TRT;
8 rwLock.releaseO;
9 }

10 } else {
11 rwLock.acquireForReadO;
12 }
13 }
Figure 3.9 Adaptive algorithm.

Figure 3.10 shows lookup and update in a perceptron predictor. When a transaction starts it

accesses table of perceptrons using starting address of the transaction (line 1). Then, the CP

computes the dot product of history vector (x[]) and weight vector (w[]) (lines 6-9). If the dot

product is positive or zero, the transaction is predicted to commit; otherwise, it is predicted to

abort. When a transaction commits or aborts, weight vector and history vector are updated in

CPUpdate(). The weight vector is updated when a misprediction happens or when the output is

less than a statically determined threshold (lines 17-25). When the outcome of a transaction

agrees with x[i] (commit_nconflict=x[i]=l or commit_nconflict=x[i]=-l) then w[i] is

incremented; otherwise, w[i] is decremented (line 23). Intuitively, when there is positive

correlation, the weight becomes large. On the other side, when there is negative correlation, the

34

weight becomes negative with large magnitude. In both cases, the weight has a large influence

on the prediction. When there is weak correlation, the weight remains close to 0 and contributes

little to the output of the CP (y). In addition, the history vector is updated (lines 26-29).

1 CPLookup(addr)//addr is starting address of a TX
2 {
3 w[]=Table[hash(addr)];//weight vector is read from table of perceptrons
4 y = w[0];
5
6 for(i= 1; KhistoryLength; i++)
7 {
8 y+=x[i] . w[i]; //computes dot product of history vector and weight vector
9 }

10 return y >= 0 ;

11 }
12
13
14 CPUpdate(addr, commit ncommit) //commit_nconflict=l if a TX commits.
15 // commit nconflict =-l if a TX aborts.
16 {
17 if(y < 0 or miprediction) //if y is less than 0 or CP
18 //mispredicted, then w[] is updated
19
20 {
21 for(i=0; i< historyLength; i++)
22 {

23 w[i] += commit nconflict. x[i];
24 }
25 }
26 for(i= historyLength-1; i>l; i—)
27 {
28 x[i] = x[i-l];
29 }
30 x[l] = commitnconflict;
31 }

Figure 3.10 Lookup and update in a perceptron predictor.

3.5.1 Accuracy of contention predictors

In Figure 3.11, we report accuracy of contention predictors. The predictors are implemented in

the baseline GV4 but are not used for speculation. Note that in a parallel program with n threads,

there are n predictors, one predictor for each thread. We report average data for the n predictors.

35

Accuracy shows how often speculated transactional conflicts turn to be the correct ones.

Figure 3.11 shows accuracy for predictors with variable history lengths. The higher the bar, the

better the prediction. For each benchmark, the number of threads is equal to 16. The history

length changes between one and 32. Accuracy for other number of threads is similar. In Kmeans,

Ssca2, Vacation, and Genome, the accuracy is more than 96%. On average, in Bayes and

Labyrinth, accuracy is 64% and 75%, respectively.

3.5.2 Performance of PGVT

Figure 3.12 depicts the performance of PGVT relative to GV4. On average, PGVT improves

performance across all benchmarks. On average, PGVT improves performance of Stamp

benchmarks from 20% in Bayes to 47% in Labyrinth on average.

100%

c 90%

'4 80%

70%
c

■B 60%

I
S 40%

30%
0
1 20%

4 10%

0%

Bayes Kmeans Labyrinth Ssca2 Vacation Genome

■ HI aM2 aH4 aH8 BHie H32

Figure 3.11 Accuracy of contention predictors with variable history lengths.

To provide better insight into PGVT, in Figure 3.13, we report how often transactions execute

in GV4 and TRT modes. For each benchmark, the number of threads varies from two to 16. As

shown in the Figure, quite often transactions run in TRT mode, which shows that TRT is the

main source of performance.

A quick comparison between the two adaptive methods in this chapter suggests that PGVT

offers a better performance improvement compared to the RGVT in most of the cases. The

reason is that contention predictors tend to be more accurate than rwConflct approach. As such,

PGVT improves performance more than rwConflict approach.

36

■ 2 14 18 B16 ■ AVG.

Figure 3.12 Performance of PGVT relative to GV4.

100% H
>
o
^ 80%

Tf

>

O 60%
T3 C
cd

S 40%
f-

^ 20%
c
(U 3
2 0%

^ 2 4 816 2 4 816 2 4 816 2 4 816 2 4 816 2 4 816

Bayes Kmeans Labyrinth Ssca2 Vacation Genome

■ TRT Mode

■ GV4 Mode

Figure 3.13 Frequency of GV4 and TRT in PGVT.

3.6 Summary

In this chapter, we proposed TRT to alleviate the overhead of global clock in time-based

software transactional memory systems. TRT is a novel method that uses a distributed approach

to eliminate the need for global clock; however, there is an overhead to this method. The

overhead of abort impedes the performance of the system. In order to circumvent this problem,

we proposed two techniques which dynamically select either GV4 or TRT. The first one is

RGVT and relies on the number of rwConflict. The second one exploits perceptron predictors.

Results indicate that both techniques improve the performance over the baseline GV4. However,

37

perceptron-based technique tends to be more accurate in term of predicting the behaviour of

applications. Therefore, it is able to provide performance gain over RGVT.

38

Chapter 4 Hardware Support for Set Associative Lock (HW-SAL)

In this chapter, we present and evaluate “Hardware Support for Set Associative Lock’ to boost

performance of STMs. In section 4.1, we present the motivation behind this technique. In section

4.2, we briefly examine the Gem5 [48] simulator used to evaluate SAL and measure its

performance impact. In section 4.3, a brief overview of false conflicts is presented and we

explain how SAL is implemented in software (SW-SAL). In section 4.4, we discuss hardware

SAL (HW-SAL). Finally, we report speed-up for SW-SAL and HW-SAL in section 4.5.

4.1 Motivation

Most STM systems rely on lock tables to maintain consistency of shared memory locations. A

hash function maps memory locations to the lock table entries. Since memory is larger than the

lock table, it is possible that two or more memory addresses are mapped to the same entry of the

lock table. The aliasing in the lock table results in false conflicts which reduces the concurrency

of the system and impedes performance. In order to address this issue, a mechanism should be

employed that reduces false conflicts of a direct mapped table and has an adequate performance

or better, compared to the direct mapped table. One such mechanism could be employing a better

hash function in order to reduce the probability of false conflicts. However, a single hash

function cannot address the complicated data access patterns of different applications.

Additionally, other methods of hashing, such as open addressing with linear or quadratic probing

[49] or Cuckoo hashing [50] lag performance and they do not eliminate false conflict completely.

Set associative lock system in software was introduced, in order to reduce the false aborts [33];

however, the extra computational overhead of SW-SAL, combined with frequent accesses to the

lock table, increases the cost of SW-SAL. Additionally, to harness the true power of set

associative locks, associativity must be increased which exacerbates the overhead of the system

in software. Therefore, it is prudent to exploit a hardware method to remove false abort and boost

performance. In this chapter, we propose a mechanism that provides hardware support for

Software transactional memoiy systems. In a nutshell, this system moves the lock table to the

hardware in order to alleviate the computational overhead of SW-SAL and also reduce the false

conflicts using high associative lock tables. As such, the true power of SAL could be harnessed

without sacrificing performance.

39

4.2 Gem5 Simulator

We use Gem5 [48] simulator to evaluate performance impact of SAL. The Gem5 simulator

provides a flexible and modular simulation system that is capable of evaluating a broad range of

systems and is widely available to all researchers. This infrastructure provides flexibility by

offering a diverse set of CPU models and memory system models. A commitment to modularity

and clean interfaces allows researchers to focus on a particular aspect of the code without

understanding the entire baseline code. The BSD based license makes the code available to all

researchers without awkward legal restrictions.

The Gem5 [48] simulator is the combination of M5 [51] and GEMS [52] simulators. M5

provides a highly configurable simulation framework, multiple ISAs, and diverse CPU models.

GEMS simulator complements these features with a detailed and flexible memory system,

including support for multiple cache coherence protocols and interconnect models. Currently,

Gem5 supports most of commercial ISAs (ARM, ALPHA, MIPS, Power, SPARC, and x86),

including bootable Linux Operating System on three of them (ARM, ALPHA, and x86).

The Gem5 simulator currently provides four different CPU models, each of which lies at a

unique point in the speed-vs.-accuracy spectrum. AtomicSimple is a minimal single IPC CPU

model. TimingSimple is similar but also simulates the timing of memory references, InOrder is a

pipelined, in-order CPU, and 03 is a pipelined, out-of-order CPU model. Both the 03 and

/wOrr/er models are “execute-in-execute" designs [51].

Each execution-driven CPU model can operate in either System-call Emulation (SE) mode or

Full-system (FS) mode. System-call Emulation (SE) mode avoids the need to model devices or

an operating system (OS) by emulating most of system-level services. Meanwhile, Full-System

(FS) mode executes both user-level and kernel-level instructions and models a complete system

including the OS and devices.

The Gem5 simulator includes two different memory system models. Classic and Ruby. The

Classic model (from M5) provides a fast and easily configurable memory system, while the

Ruby model (from GEMS) provides a flexible infrastructure capable of accurately simulating a

wide variety of cache coherence memory systems.

40

In this thesis, we chose to use an ALPHA ISA, since it is a RISC architecture and is more

flexible compared to x86. The simulations are performed using FS simulation model, running a

Linux v2.6 and Timing CPU model with a classis memory model.

4.3 Set Associative Locks

As mentioned earlier, TL2 associates locks with shared memory locations to handle concurrent

accesses to the shared data. The locks are organized as a large table and memory is striped using

a hash function to map memory locations to the table entries. The benefit of the lock table is that

it does not require any manual insertion of locks or modification of data structures. This is in

contrast to per object scheme which requires manual or compiler-assisted insertion of locks in

the data structures of programs [12]. Figure 4.1 depicts locking scheme in TL2.

The size of each entry in the lock table is equal to the size of address on the host machine. The

least significant bit (LSB) of the lock shows whether the lock is free or acquired. If the LSB is

zero (free), the rest of the lock shows the time stamp of the last transaction that wrote to a

memory address covered by the lock. If the LSB is one (acquired), the rest of the lock holds the

address of the owner transaction. Since the lock is word-aligned, the LSB can safely represent

the status of the lock (free or acquired).

0x200
0x210
0x220
0x220
0x240
0x250
0x260
0x270

Lock Table

Memory

Figure 4.1 Memory address space is mapped to a lock table in TL2.

41

A conflict happens when two or more transactions access a memory location and at least one

of the transactions write into the memory. By tracking entries of the lock table, transactions are

able to detect conflicts. The first writing transaction acquires the lock which corresponds to the

memory location. Other transactions find the lock acquired and abort. Since the lock table is

smaller than applications’ data memory footprint, different memory addresses may map to the

same entry of the lock table. For example in Figure 4.1, memory blocks at both addresses 0x210

and 0x240 map to table entry one. This situation is called false conflict. In the event of false

conflict, transactions are aborted conservatively which reduces concurrency level in programs.

4.3.1 Frequency of False Conflicts

In this section, we study the effect of aliasing-induced conflicts (false conflicts) on

concurrency level of benchmarks. Figure 4.2 shows how often failure of transactions is due to

false conflicts. The lock table used in our simulations has 2^° entries. For each benchmark, the

number of threads varies from two to 16. False conflict rate varies over different benchmarks. In

Labyrinth, false conflict is the dominant factor in failure of transactions. On average, 74% of

aborts in Labyrinth are due to false conflicts. On the other side. Genome is the least sensitive

benchmark to false conflicts. On average, 8% of aborts in Genome are induced by false conflicts.

In Ssca2 and Vacation, false conflicts are responsible for 39% and 22% of aborts on average.

Figure 4.2 False conflicts in STAMP benchmarks.

42

Kmeans is not sensitive to false conflicts since the average rate for that benchmark is close to

0%. Bayes however, shows sensitivity to false conflicts in a rate close to 51%. False conflict

degrades performance since transactions that experience false conflicts should abort. In the next

section, we explain SW-SAL technique [33] to reduce aliasing-induced conflicts in STMs.

4.3.2 SW-SAL

The structure of the lock table in Figure 4.1 is similar to a direct-mapped cache in which a

memory address is mapped to exactly one location in the cache (or lock table in the case of

STM). Since there are more memory blocks than the lock entries, transactions compete for lock

entries. To see how current mapping of memory addresses to locks degrades performance,

consider transactions A and B accessing addresses 0x210 and 0x240, respectively and assume

that the address mapping is according to Figure 4.1. To make the situation worse, suppose that

transaction A writes into 0x210 n times and simultaneously, transaction B reads from 0x240. If

transaction A acquires lock after transaction B reads from 0x240, then transaction B aborts since

during validation, it finds the lock is acquired (if transaction A is not committed yet) or it detects

mismatch in version number (if transaction A is already committed). All attempts by transaction

B to read from 0x240 fails although A and B access different memory locations. Transaction B

should wait until transaction A writes into 0x210 n times, then it can read from 0x240. This is

known as false conflict. False conflicts may result in serious problem because they cannot be

foreseen by programmers and may reduce performance significantly. As an example, Damron et

al. [14] demonstrated that performance of their hybrid transactional memory in Berkeley DB

lock subsystem benchmark decreases when scaling from 32 to 48 processors due to hash

collisions in the lock table entries.

Set Associative Lock (SAL) [33] is a software technique that reduces aborts due to false

conflicts. In SAL, a memory addresses is mapped to an entry of the lock. Each entry of the lock

includes a set of nodes. Size of all sets in the lock table entries are the same. For example, in a 2-

way SAL, there are two nodes per set. It is easier to see SAL logically as a two dimensional

table. Figure 4.3 shows a 2-way SAL where each set consists of two nodes, thus giving us rows

and columns. Similarly, a 4-way SAL has four nodes per set. In addition to the fields specified in

Figure 4.1, each node in the lock table has address of memory location which is mapped to the

node. To map a memory address to a node in the lock table, first a unique set of the lock table is

43

specified by a hash function. Then, all nodes in the set are searched for a matching address. If a

matching address is found, then the corresponding node is returned; otherwise, one of the nodes

in the set which is free (its lock bit is zero) is randomly selected and the address field of the node

is overwritten. In the event that all nodes in the set are locked, then a null pointer is returned.

Consider transaction fV, which writes to memory address a that is mapped to set / of the lock

table. If address of one of the nodes in set i matches address a, then transaction JV attempts to

acquire lock field of the matching node; otherwise, transaction If attempts to acquire lock field

of a free node (a free node is a node which its lock field is free). In this case, the most recent

writing transaction to address a has already committed and transaction fV can acquire the lock. If

all nodes of set / are already acquired, then there is no available lock in set / to be acquired by

transaction fV. As such, transaction Waborts.

If a transaction reads a memory address, it allocates a node in the read-set for the

corresponding memory location. In commit, the transaction validates all addresses in the read-

set. Assume that transaction R reads memory address a that is mapped to set / of the lock table. If

address of one of the nodes in set / matches address a, then transaction R checks the lock field of

the matching node. It aborts if the lock is acquired or the version of the lock is more than the

local n\ If there is no matching address in set i then transaction R finds a free node in set /. In

this case, transaction R overwrites the address field of the node. If all nodes of set i are already

acquired, then transaction R aborts.

Lock Table

Figure 4.3 Structure of the lock table in a 2-way SAL.

44

In SAL, if two transactions access two different memory addresses that are mapped to the

same set, then two different nodes of the set may be used for the two addresses. As such, the

frequency of false conflicts is reduced in SAL. On the other side, in the baseline scheme, if the

two memory addresses are mapped to the same entry of the lock table, then one of the two

transactions aborts.

4.3.3 SW-SAL Performance

In this section, we present the performance of SW-SAL. For all our evaluations, we perform

full-system simulations using Gem5 [48] .We model a CMP based on Alpha 21264 architecture.

Each core has a private instruction cache and data cache. TABLE 4.1 shows the configuration of

the processor. Figure 4.4 presents the performance of SW-SAL relative to the baseline scheme.

Positive bars represent speedup under SW-SAL. The associativity of the lock table changes from

2 to 8 and the number of threads varies from 2 to 16.

TABLE 4.1 Configuration of the processors in Gem5.

Benchmarks Input Parameters

Processors 2-16 cores Alpha ISA, 2GHz

L, I&D
Caches

64kB, 2-way associative, 64-byte line
size, 1 cycle latency

LT Cache
Shared 2MB, 8-way associative, 64-byte
line size, 10 cycles latency

Main
Memory

2048MB, 100 cycles latency

SW-SAL improves performance of Labyrinth. This aligns with frequency of false conflicts

reported in Figure 4.2. On average, SAL2, SAL4, and SAL8 improve performance of Labyrinth

by 26%, 27%, and 6% respectively. The associativity of SAL plays an important role in the

performance of SW-SAL. SAL2 and SAL4 outperform GV4 in the Labyrinth benchmark. This is

due to the fact that false conflict reduces as the associativity increases. However, SAL8 does not

provide speedup comparable to SAL2 and SAL4. This is mainly due to the overhead of lock

table. As associativity increases, it takes longer to find a matching node in the lock table. As

such, timing overhead of SAL8 offsets false abort reduction.

45

<u

100%

50%

CH

I ^
fc 2 -50%
a.
-J

< -100%
I

oo
-150%

i
bayes kmeans labyrinth

E
i2 vacation ge to Tie

SW-SAL2 ■ SW-SAL4 SW-SAL8

(a) 2 threads

(U
Qi
o> 0
§

1 o

100%

50%

0%

2 -50%

< -100% 4
I

ly^ -150%

Byes I

._1

krT^e^ns labyrinth 2 va&lion geiiolne

SW-SAL2 ■ SW-SAL4 SW-SAL8

(b) 4 threads

aC
0

B >
I ^ M-l

<U
cu
-3
<
CO 1

cn

SW-SAL2 ■ SW-SAL4 SW-SAL8

(c) 8 threads

46

Figure 4.4 Performance improvements in SW-SAL relative to the baseline scheme.

In Ssca2, Vacation, and Genome, performance improvement is not as significant as in

Labyrinth; in some cases there is performance degradation. On average, in Ssca2, SAL2, SAL4,

and SALS degrade performance by 4%, 37%, and 107%, respectively. In Vacation, SAL2,

SAL4, and SALS degrade performance by 13%, 16%, and 40%, respectively. In Genome, SAL2,

SAL4, and SALS degrade performance by 3%, 19%, and 57%. The reason that SAL falls behind

the baseline scheme for some of the configurations is that the overhead of SAL in lock table is

more than the performance gain of SAL. From the performance improvement reported in Figure

4.4, we conclude that SAL2 is faster than SAL4 and SALS in STAMP vO.9.10 benchmarks. The

simplicity of SAL2 reduces the overhead of the lock table and so, SAL2 is able to improve

performance in some of the benchmarks with moderate and low false conflict rates.

In the next section, we present hardware SAL (HW-SAL) which moves the lock table from

software to hardware to reduce the overhead of lock table in software.

4.4 Hardware SAL (HW-SAL)

Figure 4.5 depicts lock table in HW-SAL. Each entry of the table consists of a set of nodes.

Each node corresponds to a location in the memory. Each node in the lock entry contains the

lock which corresponds to the memory location it represents. It also contains the corresponding

memory address. A timestamp is also added to each node for replacement. The last field of a

47

lock entry is an index which would act as a pointer in software space, pointing to a node in the

lock table.

Lock table is a single memory unit on the processor chip and each core in the processor is

connected to the lock table through a dedicated bus. Figure 4.6 depicts four processors connected

to the lock table. Since the lock table is required to provide a very limited number of operations,

the bus controller will be extremely simple and could be implemented at a very low cost.

4.4.1 ISA Augmentation

To communicate with the lock table in hardware, we add new instructions to the instruction set

of the processor. ALPHA processor has a RISC architecture that makes definition of new

instructions easier compared to CISC architectures such as x86. The Alpha ISA has a fixed

instruction length of 32 bits. Alpha itself is a 64 bit machine; meaning that operands are 64 bits.

Figure 4.7 shows the structure of the instructions in Alpha [21].

In order to add new instructions to Alpha, we used the opcode of integer instructions. We pass

values to the HW-SAL through registers. Before calling a SAL-instruction in software, source

operands of the instruction such as address and lock values are written in to the hardware

registers. The compiler may use some of these registers and overwriting these registers will

corrupt the logic of the program. Therefore, we checkpoint these registers in memory and then

restore their contents after calling HW-SAL instructions.

SetO

Set 1

Set

Node 0

Node 0

Node 0

Node 1

Node 1

Node 1

Timestamp

Index

Lock Table

Figure 4.5 Structure of the lock table in HW-SAL.

48

Figure 4.6 A HW-SAL with four cores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 'S 'D i4 V3 12 '' 10 9 8 7 6 5 4

Rb Unused : 0 i Funclion CJpeode

Opcode

Ra

Ra Li-e'ai s-uncdcn

Rc

Rc

Opcode

Opcode

Opcode

Ra

Ra

Ra

RD

RP

Function

Displacement

sptacement

Rc

Opcode -unclion

Type

inieger operaie

integer operate

literal

Floating-poin:

operate

Memco ‘o^ma;
Branch io?rnat

CALL_PAL
lO'Tnat

Figure 4.7 Instruction format in Alpha architecture.

We add four new instructions in HW-SAL to access the lock table:

• XACTION READLOCKENTRY: It is used to read a lock entry specified by an index. The
index will act as a pointer in software space to the location of the lock in the hardware. The
content of the lock is returned to the processor through the destination operand.

• XACTION ACQUIRELOCK: It tries to acquire an entry of the lock specified by the address
of the shared memory location. The index of the lock is returned through the destination
field.

• XACTION WRITETOLOCK; It writes to an entry of the lock that matches the provided
index. This function returns nothing.

• XACTION SALCAS: It tries to write to an entry of the lock, mimicking the behaviour of
Compare and Swap operation in STM.

49

Appendix B contains the source code for SAL instructions. The opcode for all the instructions

is the same. However, the function and the immediate fields of each instruction determine what

operation should be performed by hardware. The definition of the SAL instructions is provided

as a header file for the software. The assembly language is for the ALPHA processor and could

be adapted for other architectures.

4.4.2 HW-SAL in Gem5

In order to simulate HW-SAL, the Gem5 code should be changed. Gem5 is a mixture of C++

programming language and Python scripting language; modules are implemented in C++ and the

simulation scripts are in Python. Therefore, the HW-SAL modules are implemented in C++.

Appendix B . 1 contains the code where lock data structure is defined and contains a snippet of

this code which defines data structure for lock entries and shows HW-SAL function declarations.

HW-SAL functions are implemented as part of simple_thread class. Therefore, it is convenient to

directly access them from the thread namespace of a processor. As shown in Appendix B. 1, each

lock node has the four fields as discussed earlier. The function headers are also provided in

Appendix B. 1.

Since there is only one lock table in hardware, lock table variable in Gem5 must be declared as

a static variable; meaning that there is only one instance of the lock table during the simulation

and the instance is accessible by other C++ objects.

Associativity of the lock table can be determined through a configuration file. This greatly

increases the flexibility of the simulator; otherwise, each time that a new associativity is desired,

the whole system must be recompiled. Also, the size of the lock table can be changed through a

configuration file at the beginning of the simulation.

4.5 Performance Evaluation

In this section, we report the performance of HW-SAL and SW-SAL compared to the baseline

TL2. Figure 4.8 depicts the speedup gained by HW-SAL and SW-SAL with different number of

threads, ranging from 2 to 16.

50

<
c/2

I

c/2
T3 ^

<
C/2

I

X
c
o.
3

-a
4J U a.

c/2

(a) 2-thread

>
o
o

100%

50%

<
c/2

i
C/2

-o c
-J
<
c/2 I

X

0%

-50%

Q.
3 -o
<U
a.

c/2

-100%

-150%

■ sw2 ■ sw4 ■ sw8 ■ hwl ■ hw2 ? hw4 ■ hw8

(b) 4-thread

51

100%

a -100%
3

-a u u
Cl.

c/3

-150%

■ sw2 ■ sw4 ■ sw8 ■ hwl ■ hw2 9 hw4 ■ hw8

(c) 8-thread

■ sw2 ■ sw4 ■ sw8 ■ hwl ■ hw2 " hw4 ■ hw8

(d) 16-thread

Figure 4.8 SW-SAL and HW-SAL speedup, (a) 2-thread, (b) 4-thread, (c) 8-thread, (d) 16-
thread.

In most of the benchmarks, HW-SAL results in significant speedup over SW-SAL and GV4.

SW-SAL works well with labyrinth, but does not perform well in Bayes and Kmeans. As the

52

associativity of the system grows the performance of SW-SAL reduces due to the timing

overhead of the lock table. Labyrinth responds well to both SW-SAL and HW-SAL. According

to Figure 4.2, the false conflict rate of Labyrinth is very high; therefore both hardware and

software methods are able to provide considerable performance improvements by reducing false

conflicts. For Ssca2, HW-SAL improves the performance because it does not have the overhead

of software. SW-SAL lags behind, since the overhead of execution with high associativity is

more than the performance gained by reducing the false conflicts. The same could be said for

vacation. Genome however, shows a sporadic behaviour. For 2 and 8 threads, SW-SAL manages

to provide performance; however, for 4 and 16 threads, there is a drastic degradation in

performance. On the other hand, HW-SAL provides a steady performance across different

number of threads. For Bayes and Kmeans, the overhead of SW-SAL is too high; hence, SW-

SAL causes slow down across these benchmarks. HW-SAL however, shows great promise and

provides moderate speedup.

On average, HW-SAL improves performance by 65% and 20% over SW_SAL and GV4,

respectively.

4.6 Summary

In this chapter, we presented hardware support for software transactional memory. We

provided a hardware mechanism in order to increase the performance of the state of the art STM

by moving the lock table to the hardware. An associative lock table is crucial to reduce the false

conflicts of STMs. However, an associative lock table in software may degrade performance

especially when degree of associativity increases. On the other side, implementation of the lock

table in hardware eliminates the overhead of the software table and is able to harness the true

power of an associative lock table.

53

Chapter 5 Conclusions

Single core processors have been the focus of computer industry for years; however, due to the

design complexity and power limitations, the industry cannot keep up the improvement pace as

before. Therefore, all the major manufacturers have shifted their focus to chip multiprocessors

(CMP), The advent of CMPs introduces new challenges in both architecture and software. New

programming models have to be developed in order to harness the full potential of CMPs and

new hardware also needs to be designed to further accelerate the speedup. Transactional memory

(TM) has been a promising programming paradigm to simplify parallel programming and

delivers performance comparable to the state of the art conventional lock based techniques.

Software transactional memory (STM) makes transactional memory feasible without the need

of designing new hardware. One of the state of the art STM implementations is TL2, which uses

a global clock as a timestamp in order to provide coherency for shared memory locations.

Although an effective method, the contention over the shared global clock causes an extra

overhead for the system and floods the interconnection network. Also, TL2 uses a direct mapped

lock table which in turn may lead to several memory locations being mapped to the same lock

entry. This causes false abort and impedes the performance of the Transactional Memory system.

In this thesis, we presented Transactional Read Tracking (TRT) which is a distributed method

and does not have the deficiencies of TL2. TRT tracks transactional read and write operations

and aborts transactions if they conflict over shared memory locations. Therefore, TRT manages

to remove the burden of global clock and decreases the rate of unnecessary aborts compared to

TL2. We improved performance of TRT by introducing two dynamic techniques which

alternates between TRT and GV4. The first dynamic technique relies on number of read-write

conflicts and the second one exploits perceptron predictors. We showed that the PGVT is

superior to the RGVT.

Furthermore, we introduced the HW-SAL. In particular, we proposed a method to reduce the

false conflicts that impede the performance of TL2. We proposed moving the lock table into the

hardware and increase the associativity of the table, reducing the likelihood of false aborts. The

HW-SAL was successful and improved performance of SW-SAL significantly.

54

5.1 Future Work

This thesis has shown that providing hardware support for Software Transactional Memory

systems can provide performance improvements. In particular, moving the lock table to hardware

allows the system to exploit higher associativity; this leads to reduction of false conflicts and

performance improvement.

The same technique could be applied to other parts that are bottlenecks in STMs. In particular,

the global clock is one of the main bottlenecks in TL2. The number of cores in CMPs will

increase in future. If the global cloek is implemented in hardware, the traffic generated in

memory hierarchy will be reduced. Also, the operations to read and modify the global clock will

be performed much faster, since it resides in hardware.

The other extension to hardware support for STM would be implementation of thread local

clock (TLC) [13] in hardware. The problem with software implementation of TLC is that

different threads are not updated with the latest value of the clock when they start their

execution. This results in false aborts and degrades performance. In hardware implementation, a

thread can broadcast a message to other processors indicating its current local clock value. As

such, other threads update their local copies of remote clocks. This prevents false aborts in TLC

and improves performance.

55

Appendix A

TRT Implementation Detail

This appendix has source code for RGVT and PGVT.

A.l Adaptive TRT

void
TxStart (Thread* Self, sigjmp_buP envPtr, int* ROFlag, uint32_t pc_addr)
{

PROF_STM_START_BEGIN();

if(Self->startTimeSaved == 0)
{

gettimeofday(&(Self->startTime), NULL);
Self->startTimeSaved = 1;

}

if(Self->UniqID == 0)
{

Self->sc_pc_addr = pcaddr;
sc_tmp_lookup = lookup_sat_count(Self, pc_addr);

if(sc_tmp_lookup == 1)
{
Self->sc_pred_conflict = 1;
Self->sc_num_pred_abort++;

}
}

ASSERT(Self->Mode == TIDLE |1 Self->Mode == TABORTED);
txReset(Self);

if (Adaptive)
{

if (Self->UniqID == 0)
{
if(rwConflict > GV4 THRESHOLD)

{
if(tMode != GV4)//should change validation technique

{
pthread_rwlock_wrlock(&(rw_sync_lock));
tMode = GV4;
pthread_rwlock_unlock(&(rw_sync_lock));

56

}

Self->GV4_switches++;

}
}

else//pass, TRC

if(tMode != TRC)//should change validation technique
{
pthread_rwlock_wrlock(&(rw_sync_lock));
tMode = TRC;
pthread_rwlock_unlock(&(rw_sync_lock));
Self->TRC_switches++;

}
}

if (Self->UniqID != 0)
pthread_rwlock_rdlock(&(rw_sync_lock));

if(tMode == GV4)
Self->G V 4_mode++;

if(tMode == TRC)
Self->TRC_mode++;

if (tMode ==GV4)
Self->rv = GVRead(Self);

ASSERT((Self->rv & LOCKBIT) == 0);
MEMBARLDLDO;

Self->Mode = TTXN;
Self->ROFlag = ROFlag;
Self->IsRO = ROFlag ? *ROFlag ; 0;
Self->envPtr= envPtr;

ASSERT(Self->LocalUndo.put == Self->LocalUndo.List);
ASSERT(Self->wrSet.put == Self->wrSet.List);

Self->Starts++;

PROF_STM_START_END();
}

int TxCommit (Thread* Self)

57

{
PROF_STM_COMMIT_BEGIN();

ASSERT(Self->Mode == TTXN);

/* Fast-path: Optional optimization for pure-readers */
ifdefTL2_OPTIM_HASHLOG

if (Self->wrSet.numEntry == 0)
else /* !TL2_OPTIM_HASHLOG*/

if (Self->wrSet.put == Self->wrSet.List)
endif/* !TL2_OPTIM_HASHLOG*/

{
if(tMode == TRC)

RevertRdS etChanges (S elf);

/* Given TL2 the read-set is already known to be coherent. */
txCommitReset(Self);
tmalloc_clear(Self->allocPtr);
tmalloc_releaseAllForward(Self->ffeePtr, &txSterilize);

if defined(TL2_OPTIM_HASHLOG) && defined(TL2_RESIZE_HASHLOG)
if (Self->wrSet.numLog > HASEILOG INIT NUM LOG) {

/*

* If we are read-only, reduce the number of logs so less time
* iterating over logs only to find that they are empty.
*/

Self->wrSet.numLog—;
}

endif
PROFSTMCOMMITENDO;
PROFSTMSUCCESSO;
gettimeofday(&(Self->stopTime), NULL);
Self->startTimeSaved = 0;
Self->localTxTime += (EHSAN_TIMER_DIFF_SECONDS(Self->startTime, Self-

>stopTime));
if (Self->UniqID != 0)
pthread_rwlock_unlock(&(rw_sync_lock));
return 1;

}

if (TryFastUpdate(Self)) {
txCommitReset(Self);
tmalloc_clear(Self->allocPtr);
tmalloc_releaseAllForward(Self->freePtr, &txSterilize);

#if defmed(TL2_OPTIM_HASHLOG) && defined(TL2_RESIZE_HASHLOG)
if (Self->wrSet.numLog > HASHLOG_INIT_NUM_LOG &&

58

Self->wrSet.numEntry < (HASHLOG_INIT_NUM_LOG
HASHLOG_RESIZE_RATIO))

{
/*

* Current hash log is too large. Reduce the number of logs so less
* time is spent iterating over logs only to find that they are empty.
*/

Self->wrSet.numLog--;

}
#endif

PROF_STM_COMMIT_END();
PROF_STM_SUCCESS();
gettimeofday(&(Self->stopTime), NULL);
Self->startTimeSaved = 0;
Self->localTxTime += (EHSAN_TIMER_DIFF_SECONDS(Self->startTime, Self-

>stopTime));
if(Self->UniqID !=0)
pthread_rwlock_unlock(&(rw_sync_lock));

return 1;
}

PROF_STM_COMMIT_END();
TxAbort(Self);
ASSERT(O);
return 0;

}

void
TxAbort (Thread* Self)
{

PROFSTMABORTBEGINQ;
Self->Mode = TABORTED;

#ifdefTL2_EAGER
WriteBackReverse(&Self->wrSet);
RestoreLocks(Self);

#else /* !TL2_EAGER */
if (Self->HoldsLocks) {

RestoreLocks(Self);
}

#endif/* ITL2 EAGER */

/* Clean up after an abort. Restore any modified locals */
if (Self->LocalUndo.put != Self->LocalUndo.List) {

WriteBackReverse(&Self->LocalUndo);

59

}

Self->Retries++;
Self->Aborts++;

/*

* Beware; back-off is useful for highly contended environments
* where N threads shows negative scalability over 1 thread.
* Extreme back-off restricts parallelism and, in the extreme,
* is tantamount to allowing the N parallel threads to run serially
* 1 at-a-time in succession.
*

* Consider: make the back-off duration a function of:
* - a random #
* - the # of previous retries
* - the size of the previous read-set
* - the size of the previous write-set
*

* Consider using true CSMA-CD MAC style random exponential backoff
*/

#ifndefTL2_NOCM
if (Self->Retries > 3) { /* TUNABLE */

backoff(Self, Self->Retries);
}

#endif

if (Self->UniqID != 0)
pthreadjrwlock_unlock(&(rw_sync_lock));

tmalloc_releaseAllReverse(Self->allocPtr, NULL);
tmalloc_clear(Self->freePtr);

gettimeofday(&(S elf->stopTime), NULL);
Self->startTimeSaved = 0;
Self->localTxTime += (EHSAN_TIMER_DIFF_SECONDS(Self->startTime,

>stopTime));

PROF_STM_ABORT_END();
SIGLONGJMP(*Self->envPtr, 1);
ASSERT(O);

}

INLINE long
TryFastUpdate (Thread* Self)
{

Self-

60

ifdefTL2_OPTIM_HASHLOG
long numLog = Self->wrSet.numLog;
Log* logs = Self->wrSet.logs;
Log* end = logs + numLog;
Log* wr;

endif/* !TL2_OPTIM_HASHLOG */

ifhdefXL2_EAGER
ifdef TL2_OPTIM_HASHLOG

Log* wr;
else /* !TL2_OPTIM_HASHLOG */

Log* const wr = &Self->wrSet;
endif/* !TL2_OPTIM_HASHLOG */

Log* const rd = &Self->rdSet;
long ctr;

endif/* !TL2_EAGER */

ASSERT(Self->Mode == TTXN);

/*

* Optional optimization — pre-validate the read-set.
=f=

* Consider; Call ReadSetCoherent() before grabbing write-locks.
* Validate that the set of values we've fetched from pure READ objects
* remain coherent. This avoids the situation where a doomed transaction
* grabs write locks and impedes or causes other potentially successful
* transactions to spin or abort.
*

* A smarter tactic might be to only call ReadSetCoherent() when
* Self->Retries > NN
*/

ifO
if (!ReadSetCoherent(Self)) {

return 0;
}

endif

ifndefTL2_EAGER

/*
* Consider: if the write-set is long or Self->Retries is high we
* could run a pre-pass and sort the write-locks by LockFor address.
* We could either use a separate LockRecord list (sorted) or
* link the write-set entries via SortedNext
*/

61

/*

* Lock-acquisition phase ...
*

* CONSIDER: While iterating over the locks that cover the write-set
* track the maximum observed version# in maxv.
* In GV4: wv = GVComputeWVQ; ASSERT wv > maxv
* In GV5|6: wv = GVComputeWV(); if (maxv >= wv) wv = maxv + 2
* This is strictly an optimization.
* maxv isn't required for algorithmic correctness
*/
Self->HoldsLocks = 1;
ctr = 1000; /* Spin budget - TUNABLE */
vwLock maxv = 0;
AVPair* p;

ifdef TL2_OPTIM_H ASHLOG
for (wr = logs; wr != end; wr++)

endif /* TL2_OPTIM_HASHLOG*/
{

AVPair* const End = wr->put;
for (p = wr->List; p != End; p = p->Next) {

volatile vwLock* const LockFor = p->LockFor;
vwLock cv;
ASSERT(p->Addr != NULL);
ASSERT(p->LockFor !=NULL);
ASSERT(p->Held == 0);
ASSERT(p->Owner== Sell);
/* Consider prefetching only when Self->Retries — 0 */
prefetchw(LockFor);
cv = LDLOCK(LockFor);
if ((cv & LOCKBIT) && ((AVPair*)(cv ^ LOCKBIT))->Owner == SelQ {

/* CCM: revalidate read because could be a hash collision */
if (FindFirst(rd, LockFor) !=NULL) {

if (((AVPair*)(cv ^ LOCKBIT))->rdv > Self->rv) {
Self->abv = cv;
return 0;

}
}
/* Already locked by an earlier iteration. */
continue;

}

/* SIGTM does not maintain a read set */
if (FindFirst(rd, LockFor) != NULL) {

/*

* READ-WRITE stripe

62

*/

if ((cv & LOCKBIT) = 0 &&
cv <= Self->rv &&
UNS(CAS(LockFor, cv, (UNS(p)|UNS(LOCICBIT)))) == UNS(cv))

{
if (cv > maxv) {

maxv = cv;
}
p->rdv = cv;
p->Held= 1;
continue;

I
/*

* The stripe is either locked or the previously observed read-
* version changed. We must abort. Spinning makes little sense.
* In theory we could spin if the read-version is the same but
* the lock is held in the faint hope that the owner might
* abort and revert the lock
*/

Self->abv = cv;
return 0;

} else
{

/*

* WRITE-ONLY stripe
* Note that we already have a fresh copy of *LockFor in cv.
* If we find a write-set element locked then we can either
* spin or try to find something useful to do, such as :
* A. Validate the read-set by calling ReadSetCoherent()
* We can abort earlier if the transaction is doomed.
* B. optimistically proceed to the next element in the write-set.
* Skip the current locked element and advance to the
* next write-set element, later retrying the skipped elements
*/

ifdefTL2_NOCM
/* wkbaek: no spinning in NOCM mode */
long c = 0;

else /* ITL2 NOCM */
long c = ctr;

endif/* !TL2_NOCM */
for(;;) {

cv = LDLOCK(LockFor);
/* CCM; for SIGTM, this IF and its true path need to be "atomic" */
if ((cv & LOCKBIT) == 0 &&

UNS(CAS(LockFor, cv, (UNS(p)lUNS(LOCKBIT)))) == UNS(cv))
{

63

if (cv > maxv) {
maxv = cv;

}
p->rdv = cv; /* save so we can restore or increment */
p->Held= 1;
break;

}
if(-c<0) {

/* Will fall through to TxAbort */
return 0;

}
/*

* Consider: while spinning we might validate
* the read-set by calling ReadSetCoherent()
*/

PAUSEO;
}

} /* write-only stripe */
} /* foreach (entry in write-set) */

}

endif/* !TL2_EAGER */

if (tMode == GV4 && !ReadSetCoherent(Self)) {
return 0;

}

/*

* CCM: for SIGTM, the read filter would have triggered an abort already
* if the read-set was not consistent.
*/

/*

* We are now committed - this txn is successful.
*/

ifndefTL2_EAGER
ifdef TL2_OPTIM_HASHLOG

for (wr = logs; wr != end; wr++)
endif /* TL2_OPTIM_HASHLOG*/

{
WriteBackForward(wr); /* write-back the deferred stores */

}
endif/* !TL2_EAGER */

MEMBARSTSTO; Ensure the above stores are visible */
DropLocks(Self); /* Release locks and increment the version */

64

/*

* Ensure that all the prior STs have drained before starting the next
* txn. We want to avoid the scenario where STs from "this" txn
* languish in the write-buffer and inadvertently satisfy LDs in
* a subsequent txn via look-aside into the write-buffer
*/

MEMBARSTLDO;

return 1; /* success */
}

intptr_t
TxLoad (Thread* Self, volatile intptr_t* Addr)
{

PROF_STM_READ_BEGIN();

intptr_t Valu = 0;

ifdefTL2_STATS
Self->TxLD++;

endif

ASSERT(Self->Mode == TTXN);

byte GV4_Accepted = 1;
volatile vwLock* LockFor = PSLOCK(Addr);
vwLock cv - LDLOCK(LockFor);
vwLock rdv = cv & -LOCKBIT;

if (tMode == GV4 && (cv & LOCKBIT) == 0 && Self->rv < rdv)
GV4_Accepted = 0;

if (tMode ==GV4) {
MEMBARLDLDO;
Valu = LDNF(Addr);
MEMBARLDLDO;

}

if ((GV4_Accepted && LDLOCK(LockFor) == rdv) ||
((cv & LOCKBIT) && (((AVPair*)rdv)->Owner == Self)))

{
if (!Self->IsRO) {

if (!TrackLoad(Self, LockFor, Addr, cv)) {
PROF_STM_READ_END();
TxAbort(Self);

65

}
}
if(tMode==TRC) {

MEMBARLDLDO;
Valu = LDNF(Addr);
MEMBARLDLDO;

}
PROF_STM_READ__END();
return Valu;

}

/*

* The location is either currently locked or has been updated since this
* txn started. In the latter case if the read-set is otherwise empty we
* could simply re-load Self->rv = _GCLOCK and try again. If the location
* is locked it's fairly likely that the owner will release the lock by
* writing a versioned write-lock value that is > Self->rv, so spinning
* provides little profit.
*/

Self->abv = rdv;
PROF_STM_READ_END();
TxAbort(Self);
ASSERT(O);

return 0;
}

void
TxStore (Thread* Self, volatile intptr_t* addr, intptr_t valu)
{

PROF_STM_WRITE_BEGIN();

ASSERT(Self->Mode == TTXN);
if (Self->IsRO) {

*(Self->ROFlag) = 0;
PROF_STM_WRITE_END();
TxAbort(Self);
ASSERT(O);

}

ifdefTL2_STATS
Self->TxST++;

endif

/*

66

* Try to acquire the lock. If we are not the owner, we spin a
* bit before deeiding to abort. If we acquire the lock, we
* set the lockbit in the lockword and use a temporary AVPair* value.
* Later we update it with a the actual AVPair*.
*/

volatile vwLock* LockFor = PSLOCK(addr);
vwLock cv = LDLOCK(LockFor);

if ((cv & LOCKBIT) && (((AVPair*)(cv ^ LOCKBIT))->Owner == Self)) {
/*
* We own this lock; update cv with the eorrect value for RecordStore.
*/

if (tMode == TRC)
((AVPair*)(cv ^ LOCKBIT))->duplicateEntry = 1;

else
cv = ((AVPair*)(cv ^ LOCKBIT))->rdv;

} else if (tMode-=GV4) {
long c = 100; /* TUNABLE */
AVPair* p = &(Self->tmpLockEntry);
for (;;) {

if ((cv & LOCKBIT) == 0)
{

if (UNS(CAS(LockFor, cv, (UNS(p)|UNS(LOCKBIT)))) == UNS(cv))
{

break;
}

}
cv = LDLOCK(LockFor);
if(-c<0) {

PROF_STM_WRITE_END();
TxAbort(Self);
ASSERT(O);

}
}

} else if (tMode == TRC) {
long c = 20; /* TUNABLE */
AVPair* p = &(Self->tmpLockEntry);
for (;;) {

if ((cv & LOCKBIT) == 0)

{
//If the previous mode was GV4, the loek must be set to 0 first,
if ((cv & GVMASK) && UNS(CAS(LockFor, cv, 0)) != UNS(cv)) {

cv = LDLOCK(LockFor);
if(-c<0) {

PROF_STM_WRITE END();

67

TxAbort(Self);
ASSERT(O);

}
continue;

}
if ((cv & ~Self->rdMask) == 0

&& UNS(CAS(LockFor, cv, (UNS(p)lUNS(LOCKBIT)))) == UNS(cv))
{

break;
}
else if ((cv & ~Self->rdMask) && c == 0)
{
if(Self->UniqID == 0)

rwConflict++;
}

}
cv = LDLOCK(LockFor);
if (—c < 0) {

PROF_STM_WRITE_END();
TxAbort(Self);
ASSERT(O);

}
}

}

Log* wr = &Self->wrSet;
if(tMode == GV4 && cv == 0)
{

cv = GVRead(Self);
if (cv > Self->maxv) {

Self->maxv = cv;
}

}

AVPair* e = RecordStore(wr, addr, *addr, LockFor, cv);

*LockFor = UNS(e) | UNS(LOCKBIT);

*addr = valu;

PROF_STM_WRITE_END();
}

A.2 PGVT

 INLINE int
perceptron_dir_lookup (Thread* Self, unsigned int address) {

68

int i, output, *w;
unsigned long long int mask;
struct perceptron_node *p;
struct perceptron_state *u;

u = &(Self->perceptron_state_buf);//[perceptron_state_buf_ctr++]);
p = percept_link_list_find(Self, address);
if(p == NULL)
p = percept_link_list_addNode(Self, address);

if(p->pc == 0)
p->pc = address;

w = &p->weights[0];

output = *w++;

for(mask=l,i=0; i<PERCEPTRON_HISTORY; i++,mask«=l,w++) {
if (Self->spec_global_history & mask)
output += *w;

else
output += -*w;

}

u->output = output;
u->perc = p;
u->history = Self->spec_global_history;
u->prediction = output > 0;//output >= 0;
u->dummy_counter = u->prediction ? 3 : 0;

Self->spec_global_history «= 1;
Self->spec_global_history |= u->prediction;
return u->prediction;//u;

}

 ENLINE void
perceptron_update (Thread* Self, int taken) {

int i, y,*w;
unsigned long long int mask, history;
struct perceptron_state *u;

u = &(Self->perceptron_state_buf);

Self->global_history «= 1;
Self->global_history |= taken;

69

if (u->prediction != taken) Self->spec global history = Self->global_history;

if (u->output > THETA)
y= 1;

else if (u->output < -THETA)
y = 0;

else
y = 2;

if (y == 1 && taken) return;
if (y == 0 && .'taken) return;

w = &u->perc->w eights [0];

if (taken)
(*w)++;

else
(*w)-;

if (*w > MAX_WEIGHT) *w = MAX_WEIGHT;
if (*w < MIN WEIGHT) *w = MIN_WEIGHT;

W++;

history = u->history;

for (mask=l,i=0; i<PERCEPTRON_HISTORY; i++,mask«=l,w++) {
if (!!(history & mask) == taken)

{
(*w)++;
if (*w > MAX WEIGHT)

*w = MAXWEIGHT;
} else
{
(*w)-;
if (*w < MIN WEIGHT)

*w = MINWEIGHT;
}

}
}

70

Appendix B

SAL Implementation Details

In this appendix, different implementation aspects of SAL are presented. The source code for
simulation in Gem5 is provided in this appendix.

B.l HW-SAL

typedef struct _lockNode{
uint64_t lock;
uint64_t addr;
Tick time;
int idx;

} lockNode;
int SimpleThread;:SALReadLockEntry(uint64_t addr);
uint64_t SimpleThread::SALIdxtoContent(int idx);
void SimpleThread::SALSetLockEntry(uint64_t value);
uint64_t SimpleThread::SALCAS(uint64_t value);

B.2 HW-SAL

In this section, we present the implementation detail of HW-SAL and the source code of HW-

SAL in Gem5.

B.2.1 New Instructions defined in HW-SAL.

#define XACTION_READ LOCK ENTRY (save, save2, idx, value) \

asm volatile ("mov $1, %0" : "==r"(save);;"memory");\
asm volatile ("mov $2, %0" : "=r"(save2)::"memory");\
asm volatile ("mov %0, $2" "r"(idx): "memory");\
asm volatile (".long (((0x02) « 26) | ((2) « 21) | ((0) « 16) | ((0x4) « 12) j ((14) « 5) |

(1))"::;"$1");\

asm volatile ("mov $1, %0" : "=r"(value)::"memory");\
asm volatile ("mov %0, $1" "r"(save):"memory");\
asm volatile ("mov %0, $2" :: "r"(save2):"memory");\
1

#defme XACTION_ACQUIRELOCK (save, save2, idx, addr) \

asm volatile ("mov$l, %0" : "=r"(save):;"memory");\
asm volatile ("mov $2, %0” : "=r"(save2)::"memory");V
asm volatile ("mov %0, $2" "r"(addr): "memory");\
asm volatile (".long (((0x02) « 26) | ((2) « 21) | ((0) « 16) | ((0x4) « 12) | ((13) « 5)

(l))":;:"$r);\
asm volatile ("mov SI, %0" ; "=r"(idx):;"memory");\
asm volatile ("mov %0, $1" ;; "r"(save):"memory");\
asm volatile ("mov %0, $2" "r"(save2):"memory");\

71

}

#define XACTION_ WRITETOLOCK (save, save2, value) \
{\
asm volatile ("mov $1, %0" ; '-r"(save)::"memory");\
asm volatile ("mov %0, $1" :: "r"(value); "memory");\
asm volatile (".long (((0x02) « 26) | ((1) « 21) | ((0) « 16) | ((0x3) « 12) | ((14) « 5))");\
asm volatile ("mov %0, $1" :: "r"(save):"memory");\

#define XACTION SALCAS (save, save2, old_value, value ret)

asm volatile ("mov $1, %0" ; " =r"(save);:"memory");\
asm volatile ("mov $2, %0" : "=r"(save2)::"memory");\
asm volatile ("mov %0, $2" "r"(old_value) : "memory");\
asm volatile (".long (((0x02) « 26) 1 ((2) « 21) | ((0) « 16) | ((0x4) « 12) | ((15) « 5)

(1))"::;"$1");\
asm volatile ("mov $1, %0" : "=r"(value_ret)::"memory");\
asm volatile ("mov %0, $1" "r"(save):"memory");\
asm volatile ("mov%0, $2" :: "r"(save2):"memory");\

B.2.2 HW-SAL in Gem5

void XactionStartO
{
xaction_num_start++;
thread->XactionStart();

tick_xaction_begin = curTick();
}

void XactionCommitO
{
xaction_num_cominit++;
thread->XactionCommit();
xaction_cycles += tickToCycles(curXick() - tick_xaction_begin);

}

void XactionAbortO
{
xaction_num_abort++;

thread->XactionAbort();
xaction_cycles += tickToCycles(curXick() - tick_xaction_begin);

}

void setXactionActiveFlag(short mode)
{

72

thread->setXactionActiveFlag(mode);

}

int SALAddrtoIdx(uint64_t addr)
{
int id;

id = thread->SALAddrtoIdx(addr);

if(thread->readFalseConf())
xaction_num_false_conflict++;

return id;
}

uint64_t SALIdxtoContent(int idx)
{
return thread->SALIdxtoContent(idx);

}

void SALSetId(int idx)
{
return thread->SALSetId(idx);

}
void SALSetLockEntry(uint64_t value)
{
return thread->S ALS etLockEntry(value);

}

void SALSetCASNewVal(uint64_t value)
{
return thread->SALSetCASNewVal(value);

}

uint64_t SALCAS(uint64_t value)
{
return thread->SALCAS(value);

}

void initializelockQ
{
int i, j;

for(i=0; i<MAX_TABSZ; i++)
for(j=0; j<MAX_ ASSOCIATIVITY; j++)

{

73

lockArray[i][j].lock = 0;
lockArray[i][j].addr = 0;
lockArray[i][j].time = 0;

}

for(i=0; i<_TABSZ; i++)
for(j=0; j<ASSOCIATIVITY; j++)

{
lockArray[i]|j].idx = i*ASSOCIATIVITY + j;

}

SALIdx = 0;
CASNewVal = 0;
return;

}

int SALAddrtoIdx(uint64_t addr)
{
unsigned int row;
unsigned int j;

lockNode *unaccessed_node = NULL;
lockNode *unlocked_node = NULL;
lockNode *lru_node = NULL;

false_conflict = 0;

for (j=0; j<ASSOCIATIVITY; j++)
{
if(lockArray[row][j].addr == addr)

{
lockArray[row][j].addr = addr;
lockArray[row][j].time = curTickQ;
return lockArray[row][j].idx;

}
if(lru_node==NULL)

lru_node = &(lockArray[row][j]);
else

if(lru_node->time > lockArray[row][j].time)
Irunode = &(lockArray[row][j]);

if((lockArray[row][j].lock & ~LOCKBIT)==0)
unaccessed_node = &(lockArray[row][j]);

if((lockArray[row][j].lock & LOCKBIT)==0)
unlockednode = &(lockArray[row][j]);

74

}

if(imaccessed_node != NULL)
{
unaccessed_node->addr = addr;
unaccessed_node->time === curTick();
return unaccessed_node->idx;//unaccessed_node;

}

if(unlocked_node != NULL)
{
unlocked_node->addr = addr;
unlocked_node->time = curTickQ;
return unlocked_node->idx ;//unlocked_node;

}

assert(lru_node !=NULL);

lru_node->addr = addr;
lru_node->time = curTick();//_GCLOCK;
return lru_node->idx;//lru_node;

}

uint64_t SALJdxtoCoiitent(int idx)
{
int row, col;

row = (idx / ASSOCIATIVITY);
col = (idx % ASSOCIATIVITY);

return lockArray[row] [col] .lock;
}

75

Chapter 6 Bibliography

[1] J. L. Hennessy and D. Patterson, Computer Organization and Design; A Quantitative

Approach, Morgan Kauffman Publications, 2007.

[2] D. Patterson and J. L. Hennessy, Computer Organization and Design; The

Hardware/Software Interface, morgan kaufmann Publishers.

[3] Y. Tsividis, Operation and modeling of the MOS transistor, McGraw-Hill, 1999.

[4] N. S. Kim, T. M. Austin, D. Baauw, T. N. Mudge, K. Flautner, J. S. Hu, M. J. Irwin, M.

T. Kandemir and V. Narayanan, "Leakage current; Moore's law meets static power," in

IEEE Computer, Vol. 36, Issue 12, pp. 68-75, December 2003.

[5] S. Behling, The POWER4 Processor, Introduction and Tuning Guide, 2001.

[6] "Intel Has Double Vision; First Multi-Core Silicon Production Begins," Intel press room,

2005.

[7] "AMD Opteron^^''^ Processor Power and Thermal Data Sheet".

[8] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming, Morgan Kaufmann

Publications, 2008.

[9] M. Herlihy and J. E. B. Moss, "Transactional Memory; Architectural support for lock-free

data structures.," in Twentieth Annual International Symposium on Computer Architecture,

1993.

[10] M. Lupon, G. Magklis and A. Gonzalez, "FASTM: A log-based hardware transactional

memory with fast abort recovery," in Proceedings of the 18th International Conference on

Parallel Architectures and Compilation Techniques, September 2009.

[11] M. Lupon, G. Magklis and A. Gonzalez, "A Dynamically Adaptable Hardware

Transactional Memory," in 43rd Annual IEEE/ACM International Symposium on

Microarchitecture, Atlanta, Georgia, USA, December 2010.

76

[12] D. Dice, O. Shalev and N. Shavit, "Transactional locking ii," DISC, pp. LNCS, vol. 4167,

pp. 194-208. Springer, Heidelberg (2006), 2006.

[13] H. Avni and N. Shavit, "Maintaining Consistent Transactional States Without a Global

Clock," in Proceedings of 15th International Colloquium on Structural Information and

Communication Complexity, pp. 131-140. Springer-Verlag Lecture Notes in Computer

Science volume 5058, 2008.

[14] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir and D. Nussbaum, "Hybrid

transactional memory," in Proceedings of the 12th International Conference on

Architectural Support for Programming Languages and Operating Systems, pp. 336-346,

2006.

[15] M. Herlihy, "A Methodology for Implementing Highly Concurrent Data Objects," ACM

Transactions on Programming Languages and Systems (TOPLAS), vol. 15, no. 5, pp. 745 -

770,1993 .

[16] H. Massalin and C. Pu, "A lock-free multiprocessor OS kernel," Technical report CUCS-

005—91, Computer Science Department, Columbia University,, 1991.

[17] M. Herlihy, V. Luchangco and M. Moir, "Obstruction-Free Synchronization: Double-

Ended Queues as an Example," in Proceedings of the 23rd International Conference on

Distributed Computing Systems, Page 522,2003.

[18] D. E. Culler, J. P. Singh and A. Gupta, Parallel Computer Architecture: a

Hardware/Software Approach, Morgan Kaufmann Publishers, 1998.

[19] I. Corporation, Intel® 64 and IA-32 Architectures Software Developer’s Manual, Intel

Corporation, March 2013.

[20] S. I. Inc., The SPARC Architecture Manual, SPARC International Inc..

[21] C. C. Corporation, Alpha Architecture Handbook, Compaq Computer Corporation.

[22] V. Haug and J. Indest, "RS/6000 7044 Model 270, Technical Overview and Introduction,"

IBM corporation, February, 2000.

77

[23] S. Tomic, C. Perfumo, C. Kuikarni, A. Armejach, A. Cristal, O. Unsal, T. Harris and M.

Valero, "EazyHTM: Eager-lazy hardware transactional memory," in MICRO

'09: Proceedings of the 2009 42nd IEEE/ACM International Symposium on

Micro architecture, 2009.

[24] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill and D. A. Wood, "LogTM: Log-based

Transactional," in Proceedings of the 12th International Symposium on HighPerformance

Computer Architecture, February 2006.

[25] L. Yen, J. Bobba, M. M. Marty, K. E. Moore, H. Volos, M. D. Hill, M. M. Swift and D.

A. Wood, "LogTMSE: Decoupling Hardware Transactional Memory from Caches," in

Proceedings of the I3th International Symposium on High Performance Computer

Architecture, February 2007.

[26] N. Shavit and D. Touitou, "Software Transactional Memory," in Proceedings of the Nth

Annual ACM Symposium on Principles of Distributed Computing (PODC'95), pages 204-

213, August 1995.

[27] M. Moir, "Transparent Support for Wait-Free Transactions," in Distributed Algorithms,

I Ith International Workshop, volume 1320 of Lecture Notes in Computer Science, pages

3057319. Springer-Verlag,, September 1997.

[28] A. Israeli and L. Rappoport, "Disjoint-access-parallel Implementations of Strong Shared

Memory Primitives," In Proceedings of the 13nd Annual ACM Symposium on Principles of

Distributed Computing (PODC ’94), 151-160., 1994.

[29] M. Herlihy, V. Luchangco, M. Moir and W, Scherer, "Software Transactional Memory

for Dynamic-Sized Data Structures," in Proceedings of the 22nd Annual ACM Symposium

on Principles of Distributed Computing (PODC '03), pages 92-101, 2003.

[30] M. F. Spear, V. J. Marathe, W. N. S. Ill and M. L. Scott, "Conflict Detection and

Validation Strategies for Software Transactional Memory," in Proceedings of the 20th

International Symposium on Distributed Computing (DISC), pages 179—193, September

2006.

78

[31] S. Mannarswamy and R. Govindarajan, "Making STMs Cache Friendly with Compiler

Transformations," in Proceedings of the 20th International Parallel Architectures and

Compilation Techniques (PACT2011), Galveston Island, TX, October 2011.

[32] T. Riegel, C. Fetzer and P. Felber, "Time-based transactional memory with scalable time

bases," in SPAA ’07: Proceedings of the nineteenth annual ACM symposium on Parallel

algorithms and architectures, pages 221—228, New York, NY, USA, 2007.

[33] E. Atoofian, "Set Associative Lock in Software Transactional Memory," in Proceedings

of 2nd Workshop on Applications for Multi and Many Core Processors, 2011.

[34] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson and S. Lie, "Unbounded

Transactional Memory," in Proceedings of the llth Inti Symp on High-Performance

Computer A rch itecture, February 2005.

[35] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg, M. K.

Prabhu, H. Wijaya, C. Kozyrakis and a. K. Olukotun, "Transactional Memory Coherence

and Consistency," in Proceedings of the 31st International Symposium on Computer

Architecture, June 2004.

[36] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. C. Minh, W. Baek, C. Kozyrakis

and K. Olukotun, "A Scalable, Non-blocking Approach to Transactional Memory," in

HPCA, pages 97-108,, 2007.

[37] B. Saha, A.-R. Adl-Tabatabai and a. Q. Jacobson, "Architectural Support for Software

Transactional Memory," in Proceedings of the 39th Annual lEEE/ACM International

Symposium on Microarchitecture, December 2006.

[38] L. Ceze, J. Tuck, C. Cascaval and J. Torrellas, "Bulk Disambiguation of Speculative

Threads in Multiprocessors," in Proceedings of the 33th International Symposium on

Computer Architecture, June 2006.

[39] I. N. Room, IBM Unveils zEnterprise EC 12, a Highly Secure System for Cloud

Computing and Enterprise Data, 2012.

79

[40] I. Dobos, P. Hamid, G. Laumay, F. Nogal, V. R. Jr, A. Spahni, H. Wijngaard, W. Fries, O.

Lascu, S. S. Ng, F. Packheiser, K. Singh, E. Ufacik and Z. Zhang, IBM zEnterprise EC 12

Technical Introduction, IBM Redbooks, December 2012.

[41] I. N. Release, "IBM Announces Supercomputer to Propel Sciences Forward," IBM,

ARMONK, New York, 2011.

[42] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton, R. Silvera and M.

Michael, "Evaluation of Blue Gene/Q Hardware Support for Transactional Memories," in

Proceedings of 21st International Conference on Parallel Architectures and Compiler

Techniques, Minneapolis, Minnesota USA, 2012.

[43] A. Dragojevic, R. Guerraoui and M. Kapalka, "Stretching Transactional Memory," in

Proceedings of the ACM SIGPLAN conference on Programming language design and

implementation, 2009.

[44] C. C. Minh, J. Chung, C. Kozyrakis and K. Olukotun, "STAMP: Stanford Transactional

Applications for Multi-processing," in IISWC '08: Proceedings of The IEEE International

Symposium on Workload Characterization, September 2008.

[45] Y. Lev, V. Luchangco, V. Marathe, M. Moir, D. Nussbaum and M. Olszewski, "Anatomy

of a scalable software transactional memory," in TRANSACT '09: 4th Workshop on

Transactional Computing, February 2009.

[46] F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain

Mechanisms, Spartan, 1962.

[47] D. Jimenez and C. Lin, "Dynamic branch prediction with perceptrons," in HPCA 'OL

pages 197-206, 2001.

[48] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R.

Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill and D.

A. Wood, "The gem5 simulator," in ACMSIGARCH Computer Architecture News, 2011.

[49] W. Litwin, "Linear Hashing : A New Tool for File and Table Addressing," in IEEE, 1980.

80

[50] R. Pagh and F. F. Rodler, "Cuckoo Hashing," in Algorithms — ESA 2001. Lecture Notes

in Computer Science. 2161. pp. 121—133, December 2003.

[51] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi and S. K. Reinhardt,

"The m5 simulator: Modeling networked systems," in IEEE Micro, 26(4):52—60, 2006.

[52] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R. Alameldeen,

K. E. Moore, M. D. Hill and a. D. A. Wood, "Multifacet’s General Execution-driven

Multiprocessor Simulator (GEMS) Toolset," in ACM SIGARCH Computer Architecture

News, Vol. 33, No. 4, September 2005.

[53] J. Bobba, K. E. Moore, L. Yen, H. Volos, M. D. Hill, M. M. Swift and D. A. Wood,

"Performance pathologies in hardware transactional memory," in Proceedings of the 34th

Annual International Symposium on Computer Architecture, 2007.

[54] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras and S. Chatterjee,

"Software transactional memory: Why is it only a research toy?," in Queue, 6(5):46—58,

2008.

[55] W. N. S. Ill and M. L. Scott, "Advanced contention management for dynamic software

transactional memory," in Proceedings of the 24th ACM Symp on Principles of Distributed

Computing, July 2005.

[56] S. Kumar, M. Chu, C. J. Hughes, P. Kundu and A. Nguyen, "Hybrid Transactional

Memory," in Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, March 2006.

[57] A. Shriraman, S. Dwarkadas and M. L. Scott, "Flexible Decoupled Transactional Memory

Support," in Proceedings ofthe 35th International Symposium on Computer Architecture,

June 2008.

[58] D. Knuth, "An almost linear recurrence," in Fib. Quart., 4:117-128, 1966.

[59] E. W. Dijkstra, "Cooperating Sequential Processes," in Technical Report EWD-123,

Technical University, Eindhoven, 1965.

81

[60] D. B. Lomet, "Process Structuring, Synchronization, and Recovery Using Atomic

Actions," in In Proceedings of an ACM conference on Language design for reliable

software, pages 128—137, New York, NY, USA, 1977.

[61] J. Bartlett, "Assembly language for Power Architecture," www.ibm.com, October 2006.

[62] J. M. Mellor-Crummey and M. L. Scott, Algorithms for Scalable Synchronization on

SharedMemory Multiprocessors, ACM Transaction on Computer Systems, February 1991.

82

