Please use this identifier to cite or link to this item: https://knowledgecommons.lakeheadu.ca/handle/2453/4803
Title: Toward lightweight fusion of AI logic and EEG sensors to enable ultra edge-based EEG analytics on IoT devices
Authors: Tazrin, Tahrat
Keywords: Electroencephalogram (EEG);EEG signal processing;IoT-based EEG monitoring;Artificial intelligence (AI) techniques;Brain-computer interface (BCI)
Issue Date: 2021
Abstract: Electroencephalogram (EEG) analysis has garnered attention in the research domain due to its ability to detect various neural activities starting from brain seizures to a person’s concentration level. To make it more beneficial for the users, it is important to miniaturize the currently available clinical-grade large EEG monitors to wearables which can provide decisions at the edge. Traditionally, for performing such analysis, the raw EEG signals are collected at the edge which is then transferred to the cloud where the data is interpreted and forwarded accordingly. However, this method of transferring the user data for analysis poses a risk of security and privacy breach as well as consumes a considerable bandwidth and time which makes it inefficient in terms of scalability. In this vein, we investigated on transferring the Artificial Intelligence (AI)-logic of the analysis to the sensors, so that a localized decision can be made on the edge, without transferring the data, thus saving precious bandwidth and restoring privacy of the users. However, the main challenge in achieving such a scenario is the devices’ inability to perform complex computations due to its resource constraints. Hence, we have explored various AI-based techniques throughout this thesis to find out a lightweight model which will be able to give a decent performance while consuming lower resources. We have validated our candidate models in various use-cases throughout the chapters to compute the performance of the AI models. It is believed that, this type of analysis can encourage the sensor foundries to integrate AI-logic with wearable sensors, to conduct localized EEG analysis on the sensor level, which will be more practical, cheaper, and scalable.
URI: https://knowledgecommons.lakeheadu.ca/handle/2453/4803
metadata.etd.degree.discipline: Computer Science
metadata.etd.degree.name: Master of Science
metadata.etd.degree.level: Doctoral
metadata.dc.contributor.advisor: Fadlullah, Zubair Md.
Rahman, Quazi Abidur
Appears in Collections:Electronic Theses and Dissertations from 2009

Files in This Item:
File Description SizeFormat 
TazrinT2021m-1a.pdf1.03 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.