Show simple item record

dc.contributor.advisorAnisca, Razvan
dc.contributor.authorChlebovec, Christopher
dc.date.accessioned2012-11-10T19:06:23Z
dc.date.available2012-11-10T19:06:23Z
dc.date.created2010-08
dc.date.issued2012-11-10
dc.identifier.urihttp://knowledgecommons.lakeheadu.ca/handle/2453/149
dc.description.abstractThe aim of the thesis is to provide support to the following conjecture, which would provide an isomorphic characterization of a Hilbert space in terms of the approximation property: an infinite dimensional Banach space X is isomorphic to l₂ if and only if every subspace of l₂ (X) has the approximation property. We show that if X has cotype 2 and the sequence of Euclidean distances {dn(X *)}n of X * satisfies dn (X *) ≥ α(log2 n )β for all n ≥ 1 and some absolute constants α > 0 and β > 4, then [cursive l] 2 (X ) contains a subspace without the approximation property.en_US
dc.language.isoen_USen_US
dc.subjectMathematicsen_US
dc.subjectBanach algebrasen_US
dc.titleA Subspace of l2(X) without the approximation propertyen_US
dc.typeDissertationen_US
etd.degree.nameM.Sc.en_US
etd.degree.levelMasteren_US
etd.degree.disciplineMathematical Sciencesen_US
etd.degree.grantorLakehead Universityen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record