Show simple item record

dc.contributor.advisorNatarajan, Krishnamoorthy
dc.contributor.authorGubbels, Jason Matthew
dc.date.accessioned2017-06-05T19:20:23Z
dc.date.available2017-06-05T19:20:23Z
dc.date.created2011
dc.date.issued2011
dc.identifier.urihttp://knowledgecommons.lakeheadu.ca/handle/2453/1592
dc.description.abstractAs of 1996 there were 302 remote communities with a total population of 205,041 in Canada. These communities are not connected to the Bulk Electric System (BES) and as such are responsible for maintaining their own power systems to meet their energy requirements. As of 2010, 43 of the 302 remote communities were located in the province of Ontario. These remote communities are primarily powered with diesel generators which are a proven technology that are not limited by external environmental constraints. However this begets a dependency upon hydrocarbon based fuels which are: costly to purchase and transport, subject to volatility in the market, and diminishing in supply. These trends indicate that fuel prices will continue to escalate. Due to the relative isolation and cost of expanding the BES it is assumed that these communities will continue to operate as remote power systems for the foreseeable future. As such, this thesis focuses on increasing self-sufficiency within these communities to positively impact community welfare and the Canadian presence in the North. This is achieved through a technical feasibility and economical viability analysis of the application of remote hybrid power systems in Northern Ontario. To facilitate this research a model of a typical remote power system, located within Northern Ontario, is developed. This model may be employed for multitudinous tasks including the technical feasibility and economical viability analysis of this thesis. Using this model a base case representing the existing diesel based generation is performed. The technologies investigated for hybrid system implementation include: methods of energy storage, solar energy conversion systems, wind energy conversion systems, and fuel cells. The proposed hybrid power systems are compared to the base case to determine their relative viability. The investigated technologies are also analyzed to determine their technical feasibility in the North. This investigation was completed to aid with: the reduction of fossil fuel dependencies and of the net cost of power generation, the creation of localized employment opportunities, and the promotion of better planning and infrastructure development to increase community self sufficiency.
dc.language.isoen_US
dc.subjectHybrid power Ontario, Northern
dc.subjectHybrid power systems Ontario, Northern
dc.subjectDiesel electric power-plants Ontario, Northern
dc.titleTechnical feasibility and economical viability of remote hybrid power systems in Northern Ontario
dc.typeThesis
etd.degree.nameMaster of Science
etd.degree.levelMaster
etd.degree.disciplineEngineering
etd.degree.grantorLakehead University


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record