Lakehead University Library Logo
    • Login
    View Item 
    •   Knowledge Commons
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations from 2009
    • View Item
    •   Knowledge Commons
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations from 2009
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    quick search

    Browse

    All of Knowledge CommonsCommunities & CollectionsBy Issue DateAuthorTitleSubjectDisciplineAdvisorCommittee MemberThis CollectionBy Issue DateAuthorTitleSubjectDisciplineAdvisorCommittee Member

    My Account

    Login

    Statistics

    View Usage Statistics

    Improving Novel Gene Discovery in High-Throughput Gene Expression Datasets

    Thumbnail

    View/Open

    PDF/A - 1a compliance (6.566Mb)

    Date

    2012-11-10

    Author

    Rosa, Bruce

    Degree

    Ph.D.

    Discipline

    Biotechnology

    Subject

    Gene discovery
    Gene expression datasets

    Metadata

    Show full item record

    Abstract

    High-throughput gene expression datasets (including RNA-seq and microarray datasets) can quantify the expression level of tens of thousands of genes in an organism, which allows for the identification of putative functions for previously unstudied genes involved in treatment/condition responses. For static (single timepoint) high-throughput gene expression experiments, the most common first analysis step to discover novel genes is to filter out genes based on their degree of differential expression and the amount of inter-replicate noise. However, this filtering step may remove genes with very high baseline expression levels, and genes with important functional annotations in the experiment being studied. Chapter 2 presents a novel knowledge-based clustering approach for novel gene discovery, in which known functionally important genes as well as genes with very high expression levels (which would typically be removed by a strict fold change filter) are saved prior to filtering.

    URI

    http://knowledgecommons.lakeheadu.ca/handle/2453/210

    Collections

    • Electronic Theses and Dissertations from 2009

    Lakehead University Library
    Contact Us | Send Feedback

     


    Lakehead University Library
    Contact Us | Send Feedback