Lakehead University Library Logo
    • Login
    View Item 
    •   Knowledge Commons
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations from 2009
    • View Item
    •   Knowledge Commons
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations from 2009
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    quick search

    Browse

    All of Knowledge CommonsCommunities & CollectionsBy Issue DateAuthorTitleSubjectDisciplineAdvisorCommittee MemberThis CollectionBy Issue DateAuthorTitleSubjectDisciplineAdvisorCommittee Member

    My Account

    Login

    Statistics

    View Usage Statistics

    Synthesis and study of palladium-containing nanomaterials for hydrogen technologies

    Thumbnail

    View/Open

    AdamsB2010m-1b.pdf (5.683Mb)

    Date

    2010

    Author

    Adams, Brian D.

    Degree

    Master of Science

    Discipline

    Chemistry

    Subject

    Palladium
    Nanostructured materials
    Hydrogen

    Metadata

    Show full item record

    Abstract

    We are currently facing a climate change and global warming effect due to the emission of greenhouse gases from our existing energy sources. A hydrogen-based economy is one solution to uphold our standard of living while lowering our carbon emissions. Palladium has the potential to play a major role in many aspects of the hydrogen-based economy, from purifying hydrogen to harnessing the energy via fuel cells and storing hydrogen as PdH x . In my M.Sc. study, Pd-based nanomaterials have been synthesized and examined for their applications in various hydrogen technologies. Surface properties of the synthesized Pd-based nanomaterials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and N 2 gas adsorption/desorption. Electrochemical analysis of the fabricated materials was performed using cyclic voltammetry (CV), linear sweep voltammetry (LSV), and chronoamperometry (CA). Other characterization methods were also applied such as inductively-coupled plasma atomic emission spectroscopy (ICP-AES), density functional theory (OFT) calculations, and hydrogen gas adsorption/absorption. The adsorption of the catalytically poisoning species, carbon monoxide, was also examined on Pd, PdPt, and PdAu nanostructures. The relative quantities of CO molecules adsorbed to surface of the catalysts decrease in the order of: PdPt > Pd > PdAu. It was found that the possible adsorption sites of CO can be tuned by alloying Pd with metals to which CO has different binding strengths. The work done in this thesis shows that by alloying Pd with other metals, both geometric and electronic properties are changed drastically. This has a major influence on the applications of Pd for hydrogen technologies.

    URI

    http://knowledgecommons.lakeheadu.ca/handle/2453/214

    Collections

    • Electronic Theses and Dissertations from 2009

    Lakehead University Library
    Contact Us | Send Feedback

     


    Lakehead University Library
    Contact Us | Send Feedback