Lakehead University Library Logo
    • Login
    View Item 
    •   Knowledge Commons Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations from 2009
    • View Item
    •   Knowledge Commons Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations from 2009
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    quick search

    Browse

    All of Knowledge CommonsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDisciplineAdvisorCommittee MemberThis CollectionBy Issue DateAuthorsTitlesSubjectsDisciplineAdvisorCommittee Member

    My Account

    Login

    Modeling of a high frequency field effect transitor on indium gallium nitride: the metal oxide semiconductor capacitor 1=channel model

    Thumbnail
    View/Open
    PDF/A - 1a compliance (3.059Mb)
    Date
    2012-11-10
    Author
    Menkad, Tarik
    Metadata
    Show full item record
    Abstract
    Quantum devices are an important class of modern heterostructure devices in which quantum effects are exploited directly. A Gallium Nitride high frequency field effect transistor (FET), the subject of this work, exploits a newly found exciton source in Indium Gallium Nitride InxGa1-xN. These quasi-particles are used as a quantum electron source for the FET channel, made of Intrinsic Gallium Nitride (GaN). The present work addresses the natural need for providing this high frequency transistor with a device model. Following the same steps as those used in classical Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) modeling, a model for the metal oxide heterojunction capacitor; core of this high frequency field effect transistor, is first developed.
    URI
    http://knowledgecommons.lakeheadu.ca/handle/2453/314
    Collections
    • Electronic Theses and Dissertations from 2009 [1632]

    Lakehead University Library
    Contact Us | Send Feedback

     

     


    Lakehead University Library
    Contact Us | Send Feedback