Show simple item record

dc.contributor.advisorUddin, Mohammad
dc.contributor.authorLau, Jason W.
dc.date.accessioned2017-06-07T20:14:11Z
dc.date.available2017-06-07T20:14:11Z
dc.date.created2005
dc.date.issued2005
dc.identifier.urihttp://knowledgecommons.lakeheadu.ca/handle/2453/3290
dc.description.abstractPermanent magnet synchronous machines (PMSM) have shown increasing popularity in recent years for industrial drive applications due to the recent developments in magnetic materials, power converters, and digital signal processors. In particular, Interior Permanent Magnet Synchronous Motor (IPMSM) drives are widely used in high performance drive (HPD) applications. Fast and accurate speed response and quick recovery of speed from any disturbances are essential. The control of a high performance permanent magnet synchronous motor drive for general industrial application has received wide spread interest of researchers. In this work, a novel speed and position control scheme for an IPMSM is developed based on a nonlinear adaptive control scheme. The vector control scheme is used to simplify control of the IPMSM. System model equations are represented in the synchronously rotating reference frame and provide the basis for the controller which is designed using the adaptive backstepping technique. Using Lyapunov’s stability theory, it is also shown that the control variables are asymptotically stable. The complete system model is developed and then simulated using MATLAB/Simulink software. Performance of the proposed controller is investigated extensively at different dynamic operating conditions such as sudden load change, command speed change, command position change and parameter variations. The results show the global stability of the proposed controller and hence found to be suitable for high performance industrial drive applications. The real time implementation of the complete drive system is currently underway.
dc.language.isoen_US
dc.subjectNonlinear control theory
dc.subjectPermanent magnet motors (Automatic control)
dc.subjectAdaptive control systems
dc.titleAdaptive backstepping based nonlinear control of an interior permanent magnet synchronous motor drive
dc.typeThesis
etd.degree.nameMaster of Science
etd.degree.levelMaster
etd.degree.disciplineEngineering
etd.degree.grantorLakehead University


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record