Lakehead University Library Logo
    • Login
    View Item 
    •   Knowledge Commons
    • Electronic Theses and Dissertations
    • Retrospective theses
    • View Item
    •   Knowledge Commons
    • Electronic Theses and Dissertations
    • Retrospective theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    quick search

    Browse

    All of Knowledge CommonsCommunities & CollectionsBy Issue DateAuthorTitleSubjectDisciplineAdvisorCommittee MemberThis CollectionBy Issue DateAuthorTitleSubjectDisciplineAdvisorCommittee Member

    My Account

    Login

    Statistics

    View Usage Statistics

    Evolving neuro-fuzzy tools for system classification and prediction

    Thumbnail

    View/Open

    VrbanekJ2008m-1a.pdf (2.730Mb)

    Date

    2008

    Author

    Vrbanek, Josip Jr.

    Degree

    Master of Science

    Discipline

    Engineering

    Subject

    Neural networks (Computer science)
    Fuzzy logic

    Metadata

    Show full item record

    Abstract

    "Classification and prediction algorithims have recently become very powerful tools to a wide array of real-world applications. Some real world applications include system condition monitoring, bioinformatics, robotics, predictive control, earthquake prediction, weather forecasting, stock market and traffic pattern prediction, just to name a few. Within this work, several novel approaches, as well as modifications to some existing approaches, are introduced in order to improve the performance of current classification and prediction paradigms. In the first section of this work, a novel weighted recurrent neuro-fuzzy inference system is introduced alongside two existing neural networks. It is found that the novel design outperforms both the existing neural networks in terms of equal-step and sequential-step inputs for time-series forecasting. The second contribution of this work is the development of a novel evolving clustering algorithim for classification and prediction. This particular algorithim starts without any priori knowledge of the distribution of the data set. The novel design is capable of revealing the true cluster configuration in a single pass of the data, estimating the location and variance of each cluster. After a rigorous performance evaluation, it is found that the novel design outperforms many existing clustering approaches including the well-known potential-based evolving Takagi-Sugeno (eTS) clustering scheme. The third and fourth contributions of this work are the development of a second novel clustering technique and a novel hybrid training technique. The clustering technique is a combination of the aforementioned scheme and the potential-based technique. The new training algorithm is a combination of the decoupled-extended Kalman filter (for the backward pass) and the recursive least-sequares estimate (for the forward pass). It is found that the novel clustering technique outperforms many available clustering techniques. Also, the novel training algorithm is proven to outperform most existing training techniques."--Abstract

    URI

    http://knowledgecommons.lakeheadu.ca/handle/2453/3908

    Collections

    • Retrospective theses

    Lakehead University Library
    Contact Us | Send Feedback

     


    Lakehead University Library
    Contact Us | Send Feedback