Lakehead University Library Logo
    • Login
    View Item 
    •   Knowledge Commons
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations from 2009
    • View Item
    •   Knowledge Commons
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations from 2009
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    quick search

    Browse

    All of Knowledge CommonsCommunities & CollectionsBy Issue DateAuthorTitleSubjectDisciplineAdvisorCommittee MemberThis CollectionBy Issue DateAuthorTitleSubjectDisciplineAdvisorCommittee Member

    My Account

    Login

    Statistics

    View Usage Statistics

    Thermophilic anaerobic membrane bioreactor for pulp and paper sludge treatment

    Thumbnail

    View/Open

    JiangS2018m-1b.pdf (1.581Mb)

    Date

    2018

    Author

    Jiang, Shuomeng

    Degree

    Master of Science

    Discipline

    Engineering : Environmental

    Subject

    Thermophilic anaerobic membrane bioreactor
    Pulp and paper sludge
    Ultrasonic pretreatment
    Biogas production
    Organic loading rate

    Metadata

    Show full item record

    Abstract

    Pulp and paper mills generate a significant amount of organic waste (primary and secondary sludge) that requires treatment and disposal. Currently, pulp and paper sludge (PPS) is either dried for incineration or used for landfilling. However, the dewatering and drying of sludge before incineration is an energy extensive process and landfilling is associated with a high cost and low public acceptance, the practices of landfilling will tend to decrease. Recently, anaerobic digestion is considered a cost-effective alternative to a small environmental footprint and has been researched widely. Similarly, anaerobic digestion of PPS has the limitations of a large reactor size, high capital cost, and reduced quality of effluent. Thus, it is highly desirable to search novel technologies for PPS treatment and disposal. In this study, a new insight was that thermophilic anaerobic membrane bioreactor (ThAnMBR) was developed for PPS treatment and disposal for biogas production because it can overcome some advantages of conventional anaerobic digestors. In this study, a laboratory-scale ThAnMBR was operated for 328 days to assess the biological and membrane performance of the ThAnMBR at different hydraulic retention times (HRTs) and different types of pulp and paper secondary sludge. In the first part of this thesis, the biological performance of ThAnMBR are discussed by effluent, organic loading rate (OLR), chemical oxygen demand (COD), biogas production rate, biogas composition, biogas yield and suspended solid destruction. The results showed that the performance of a higher HRT is better than a low HRT, but the performance of ultrasonic pretreatment on PPS does not improve all properties. In the second part of this thesis, the membrane performance of ThAnMBR was discussed by: flux, transmembrane pressure (TMP), membrane fouling, particle size distribution, extracellular polymeric substances (EPS), soluble microbial products (SMP), morphology and pore size distribution. The results suggest that ThAnMBR is feasible for PPS treatment, but the membrane fouling should be minimized. Operating ThAnMBR at a higher HRT is more attractive than at a lower HRT from the biological performance point of view.

    URI

    http://knowledgecommons.lakeheadu.ca/handle/2453/4207

    Collections

    • Electronic Theses and Dissertations from 2009

    Lakehead University Library
    Contact Us | Send Feedback

     


    Lakehead University Library
    Contact Us | Send Feedback