Show simple item record

dc.contributor.advisorde Guise, Hubert
dc.contributor.authorNunes Martins, Alex Clesio
dc.date.accessioned2018-11-19T16:04:39Z
dc.date.available2018-11-19T16:04:39Z
dc.date.created2018
dc.date.issued2018
dc.identifier.urihttp://knowledgecommons.lakeheadu.ca:7070/handle/2453/4322
dc.description.abstractIn this thesis, I present a path to the correspondence rules for the generators of the su(3) symmetry and compare my results with the SU(2) correspondence rules. Using these rules, I obtain analytical expressions for the Moyal bracket between the Wigner symbol of a Hamiltonian H , where this Hamiltonian is written linearly or quadratically in terms of the generators, and the Wigner symbol of a general operator B. I show that for the semiclassical limit, where the SU(3) representation label tends to infinity, this Moyal bracket reduces to a Poisson bracket, which is the leading term of the expansion (in terms of the semiclassical parameter ), plus correction terms. Finally, I present the analytical form of the second order correction term of the expansion of the Moyal bracket.en_US
dc.language.isoen_USen_US
dc.subjectQuantum mechanicsen_US
dc.subjectWigner functionen_US
dc.subjectQuasi-distribution functionsen_US
dc.titleCorrespondence rules in SU (3)en_US
dc.typeThesisen_US
etd.degree.nameMaster of Scienceen_US
etd.degree.levelMasteren_US
etd.degree.disciplinePhysicsen_US
etd.degree.grantorLakehead Universityen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record