Lakehead University Library Logo
    • Login
    View Item 
    •   Knowledge Commons
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations from 2009
    • View Item
    •   Knowledge Commons
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations from 2009
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    quick search

    Browse

    All of Knowledge CommonsCommunities & CollectionsBy Issue DateAuthorTitleSubjectDisciplineAdvisorCommittee MemberThis CollectionBy Issue DateAuthorTitleSubjectDisciplineAdvisorCommittee Member

    My Account

    Login

    Statistics

    View Usage Statistics

    An investigation of saccharide complexation by aqueous oxoacids. Can oxoacids mediate A1-2 quorum sensing in bacteria?

    Thumbnail

    View/Open

    VisB2012m-1b.pdf (4.747Mb)

    Date

    2013-02-12

    Author

    Vis, Bradley

    Degree

    M.Sc.

    Discipline

    Chemistry

    Subject

    A1-2 quorum sensing
    Saccharide complexation
    Aqueous oxoacids

    Metadata

    Show full item record

    Abstract

    The goal of this investigation was to determine whether it is plausible for bacterial AI-2 quorum sensing to be selectively regulated by environmentally available oxoacids. In particular, we investigated the ability of H2CO3 and H4SiO4 to bind molecules structurally analogous to the AI-2 signaling compound (a hydration product of (4S)-4,5-dihydroxy-2,3-pentanedione, S-DPD) which is known to be bound to H3BO3 in the AI-2 receptor site of V. harveyi. We report the first ever evidence of mono- and di-ester linked complexes formed spontaneously between carbonic acid and aqueous polyhydroxy hydrocarbons, providing support for the hypothesis that a complex between H2CO3 and some S-DPD derivative regulates AI-2 quorum sensing in S. gordonii. The carbonate centre in these novel complexes retains three-fold coordination. Additionally, we compared the binding affinity of silicic acid to that of boric acid and carbonic acid to several different alcohols and saccharides, and determined that the formation constants generally increase as H2CO3 < H4SiO4 < H3BO3. It seems entirely plausible, therefore, that silicic acid could modulate AI-2 quorum sensing in Sirich environments such as soil solutions. Finally, we determined that stannic acid is also complexed by a range of polyhydroxy hydrocarbons in aqueous solution and characterized of structures of many of the resulting mono-, bis- and tris-ligand complexes.

    URI

    http://knowledgecommons.lakeheadu.ca/handle/2453/442

    Collections

    • Electronic Theses and Dissertations from 2009

    Lakehead University Library
    Contact Us | Send Feedback

     


    Lakehead University Library
    Contact Us | Send Feedback