dc.description.abstract | Rising global energy consumption leads to increased environmental impacts. The continued use of current energy resources, e.g. fossil fuels, will exaggerate the cumulative nature of CO2 byproduct emissions in the atmosphere. The development and implementation of a hydrogen economy, as a solution to offset degradative environmental impacts, will likely enable opportunities for maintaining or improving standards of living while significantly lowering carbon emissions. Palladium has proven to be a strong contender as an enabling material that encompasses many aspects of a prospective hydrogen economy, lending promise to applications such as hydrogen purification, storage and fuel cell catalysis. In my M.Sc. study, Pd-based nanomaterials have been synthesized and examined for their applications in hydrogen storage and fuel cell catalysis. The surface properties of synthesized Pd-based nanomaterials
were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD), X-ray Photoelectron spectroscopy (XPS), and N2 gas adsorption/desorption. Electrochemical analysis of the fabricated materials was performed using cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). Inductively coupled plasma atomic emission spectroscopy (ICP-AES) was employed to characterize the composition of the formed samples.
Hydrogen electrosorption onto activated carbon materials modified with different trimetallic dissociation catalysts (Pd-Ag-Cd) was investigated in an acidic medium. A uniform distribution of the Pd-Ag-Cd catalysts was achieved using a facile room temperature sodium borohydride reduction method. By varying the composition of the alloys, synergistic effects between the metal and carbon support resulted in drastic increases in hydrogen sorption capabilities in contrast to bi-metallic PdAg and PdCd catalysts. Utilizing electrochemical methods, the optimal composition of the Pd-Ag-Cd alloys was determined to be Pd80Ag10Cd10, with the highest hydrogen sorption capacity at a hydrogen desorption charge of 18.49 C/cm2·mg.
Further enhancement of the electroactivity of synthesized titanium dioxide nanotubes (TiO2 NTs) was achieved using UV light and electrochemical pretreatment methods. The effects of these pretreatment methods on TiO2 NTs were systematically investigated and compared. Using Pd as a dispersed catalyst, Pd/TiO2 NT electrodes were examined in acidic medium, with both UV and electrochemical pretreatment methods revealing significant enhancements in the electroactivity of the TiO2 NT substrate. The UV pretreated samples were found to dominate, when compared to those that underwent electrochemical pretreatment, in terms of overall efficacy for hydrogen sorption and the electrooxidation of formic acid. Improvements in nanotube conductivity resulted in an effective reduction of noble metal coating loads.
Nanostructured PdPb electrocatalysts were loaded directly onto TiO2 NT substrates and tested for their activity towards formic acid oxidation. Comparative studies revealed the enhanced electrochemical oxidation of formic acid on Pd95Pb5/TiO2 NTs in comparison to Pd/TiO2 NTs, resulting in the successful reduction of Pd noble metal load. The work performed in this M. Sc. thesis project reveals that modifications to both Pd catalysts and their associated supports can drastically alter their geometric and electronic properties. This has a major influence on the development of more cost effective materials with enhanced activity for use towards the commercialization of fuel cells. | en_US |