Lakehead University Library Logo
    • Login
    View Item 
    •   Knowledge Commons Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations from 2009
    • View Item
    •   Knowledge Commons Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations from 2009
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    quick search

    Browse

    All of Knowledge CommonsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDisciplineAdvisorCommittee MemberThis CollectionBy Issue DateAuthorsTitlesSubjectsDisciplineAdvisorCommittee Member

    My Account

    Login

    A critical examination of chemical extremes in freshwater systems

    Thumbnail
    View/Open
    SerediakN2014d-1b.pdf (3.080Mb)
    Date
    2015-06-15
    Author
    Serediak, Nancy Anne
    Metadata
    Show full item record
    Abstract
    The objectives of this thesis are to explore and identify: 1) the causative factors for extreme endpoints in freshwater chemistry, specifically eutrophication and acidification, and 2) the convergence of anthropogenic pollution, watershed composition and climate effects that could contribute to the occurrence of freshwater chemical extremes. Eutrophication is reviewed as a well-studied water quality issue that remains relevant as a management challenge. Extra focus is given to acidification, quantified as a decrease in acid neutralizing capacity (ANC), because it has a strong influence on physical properties such as nutrient (i.e., phosphorus, nitrogen) resuspension that can potentially leading to chemical extremes. Data from lakes in the western Great Lakes region are examined with respect to effects of acid inputs on in-lake ANC and pH response. Although drainage systems are discussed, special attention is paid to softwater seepage lakes as being the most sensitive with regards to acidification risk. The challenges of using data-intensive mass balance models in lakes with intermittent sampling histories lead to development of a simpler model for estimating open-water ANC in data-sparse locations. Acid input sources are compared as combinations of area-weighted charge balances using publicly available data from long term monitoring programs. Weighted data combinations are then analyzed using maximum likelihood methods suitable for use with observational data. The final model correctly predicted low ANC events (ANC < 25 ìeq L-1 ) 20 out of 24 times (R2 = 0.50 adjusted for small sample size; 168 observations), but underestimates the severity of the lowest extremes. Three factors stand out as being strongly related to acidification risk during the open water season: 1) volume of snowmelt, 2) in-lake ANC following spring turnover, and 3) pulsed runoff from associated wetland soils following drought and re-wetting events. Recommendations for future research focus on quantifying acid and nutrient content in pulsed runoff events and their impacts on freshwater systems given antecedent conditions in both lakes and connected wetlands.
    URI
    http://knowledgecommons.lakeheadu.ca/handle/2453/642
    Collections
    • Electronic Theses and Dissertations from 2009 [1638]

    Lakehead University Library
    Contact Us | Send Feedback

     

     


    Lakehead University Library
    Contact Us | Send Feedback