A Subspace of l2(X) without the approximation property
Loading...
Date
Authors
Chlebovec, Christopher
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The aim of the thesis is to provide support to the following conjecture, which would provide an isomorphic characterization of a Hilbert space in terms of the approximation property: an infinite dimensional Banach space X is isomorphic to l₂ if and only if every subspace of l₂ (X) has the approximation property. We show that if X has cotype 2 and the sequence of Euclidean distances {dn(X *)}n of X * satisfies dn (X *) ≥ α(log2 n )β for all n ≥ 1 and some absolute constants α > 0 and β > 4, then [cursive l] 2 (X ) contains a subspace without the approximation property.
Description
Keywords
Mathematics, Banach algebras
