Show simple item record

dc.contributor.advisorTing, Fridolin
dc.contributor.authorPakylak, Aaron
dc.date.accessioned2012-11-11T02:18:17Z
dc.date.available2012-11-11T02:18:17Z
dc.date.created2009-09
dc.date.issued2012-11-10
dc.identifier.urihttp://knowledgecommons.lakeheadu.ca/handle/2453/246
dc.description.abstractI will study the existence of multi-vortex solutions of the Ginzburg-Landau equations with an external potential on R2. These equations model the equilibrium states of superconductors: the external potential, W, represents doped impurities or defects of the superconductor. I will show that if the critical points of the potential are spaced widely enough and if the potential W is "strong enough", then there exists a multi-vortex (perturbed) solution with each vortex centered near each critical point of W.en_US
dc.language.isoen_USen_US
dc.subjectSuperconductivityen_US
dc.subjectMathematicsen_US
dc.subjectSpheromaksen_US
dc.subjectVortex-motionen_US
dc.titlePinning of magnetic vortices subject to multi-well potential in the Ginzburg-Landau theory of superconductivityen_US
dc.typeThesisen_US
etd.degree.nameM.Sc.
etd.degree.levelMasteren_US
etd.degree.disciplinePhysicsen_US
etd.degree.grantorLakehead Universityen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record