Lakehead University Library Logo
    • Login
    View Item 
    •   Knowledge Commons
    • Electronic Theses and Dissertations
    • Retrospective theses
    • View Item
    •   Knowledge Commons
    • Electronic Theses and Dissertations
    • Retrospective theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    quick search

    Browse

    All of Knowledge CommonsCommunities & CollectionsBy Issue DateAuthorTitleSubjectDisciplineAdvisorCommittee MemberThis CollectionBy Issue DateAuthorTitleSubjectDisciplineAdvisorCommittee Member

    My Account

    Login

    Statistics

    View Usage Statistics

    Changes in physiology and reproductive success in fathead minnows (Pimephales promelas) exposed to pulp and paper mill effluent / by Jacob D. Ouellet.

    Thumbnail

    View/Open

    OuelletJ2008m-1b.pdf (1.794Mb)

    Date

    2008

    Author

    Ouellet Jacob Daniel Leonard

    Degree

    M.Sc.

    Discipline

    Biology

    Subject

    Fathead minnow
    Wood-pulp industry - Environmental aspects
    Fathead minnow - Effect of water pollution on
    Thunder Bay (Ontario)

    Metadata

    Show full item record

    Abstract

    As part of their manufacturing process, pulp and paper mills release effluent into waterways that may affect the fecundity, morphology, and physiology of invertebrates and vertebrates in the receiving ecosystem (Kovacs et al. 2006, McMaster et al. 2003, Munkittrick et al. 1998). Treatment systems within the pulp and paper mills are effective at removing many toxicants and improving effluent quality; however, pulp and paper mill effluents may still negatively impact the aquatic environment. Fathead minnows (Pimephales promelas) are a useful vertebrate model species for environmental monitoring because they spawn frequently, reproduction can easily be monitored, and a significant quantity of data has been published regarding their responses to chemicals and effluents (Rickwood and Dube 2007, Kovacs et al. 2005, Parrott and Wood 2004, among numerous others). Our research involved using a short-term fathead minnow reproductive bioassay (which includes a 15-day pre-exposure period and a 6-day exposure period) in order to assess consistency and predictability of spawning, determine reproductive and physiological changes resulting from exposure to 10% (v/v) untreated kraft mill effluent (UK), 25% (v/v) secondary treated kraft mill effluent (SK), and 100% (v/v) combined mill outfall (CMO), and analyze the applicability and relevance of our 6-day reproduction test. Two set of experiments were run: river water vs. kraft mill effluent, and river water vs. combined mill outfall (CMO) effluent. Pre-exposure and control fish showed predictable spawning, although a number of breeding pairs were required in order to ensure a sufficient sample size. Ten percent (v/v) UK decreased egg production dramatically, and 10% (v/v) UK and 25% (v/v) SK each caused masculinization in a female fathead minnow. While clarification and secondary effluent treatment appeared to improve the short-term reproductive impacts on fathead minnows observed in kraft mill effluent, these processes did not entirely remove the source of endocrine disruption causing masculinization. In contrast, the 100% (v/v) CMO effluent did not cause any observable reproductive or physiological changes. A short-term (6-day) exposure period appears to be sufficient for analysis of the effect of EDCs on vertebrate morphology and fecundity, although it is unclear whether responses were not observed in SK and CMO effluents because of the short observation period. Study site : AbitibiBowater mill in Thunder Bay, Northwestern Ontario (discharge into the Kaministiquia River).

    URI

    http://knowledgecommons.lakeheadu.ca/handle/2453/3896

    Collections

    • Retrospective theses

    Lakehead University Library
    Contact Us | Send Feedback

     


    Lakehead University Library
    Contact Us | Send Feedback