Lakehead University Library Logo
    • Login
    View Item 
    •   Knowledge Commons
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations from 2009
    • View Item
    •   Knowledge Commons
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations from 2009
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    quick search

    Browse

    All of Knowledge CommonsCommunities & CollectionsBy Issue DateAuthorTitleSubjectDisciplineAdvisorCommittee MemberThis CollectionBy Issue DateAuthorTitleSubjectDisciplineAdvisorCommittee Member

    My Account

    Login

    Statistics

    View Usage Statistics

    Plasmonic nanostructure on a tapered fiber for chemical detection

    Thumbnail

    View/Open

    TrevisanuttoJ2017m-1a.pdf (3.597Mb)

    Date

    2017

    Author

    Trevisanutto, Joshua Ottorino

    Degree

    Master of Science

    Discipline

    Physics

    Subject

    Optical fiber
    Tapered optical fiber
    Nanoparticles and nanorods

    Metadata

    Show full item record

    Abstract

    A simple, cost effective technique to manufacture plasmonic nanostructures as a Surface Enhanced Raman Spectroscopy (SERS) substrate was investigated. The plasmonic structure of gold nanorods was developed on the surface of a tapered fiber using the optical tweezing process from a colloidal solution. A unique grating like distribution of gold nanorods (GNRs) was formed. The effect of different laser wavelengths (632, 1064, and 1522 nm) on the assembly of the nanostructure was also investigated. The experiments were repeated with Gold nanospheres, which are referred to as gold nanoparticles (GNPs). However, no significant distribution of nanoparticles was observed. The tapered fiber was developed using dynamic and static chemical etching methods; a single-mode fiber (SMF 28), and a multimode fiber were used. The gold nanorods formed a grating like structure when optically tweezed using tapered multi-mode fiber. The potential use of the tapered fiber probe with nanostructure for application in SERS was investigated.

    URI

    https://knowledgecommons.lakeheadu.ca/handle/2453/4142

    Collections

    • Electronic Theses and Dissertations from 2009

    Lakehead University Library
    Contact Us | Send Feedback

     


    Lakehead University Library
    Contact Us | Send Feedback