Lakehead University Library Logo
    • Login
    View Item 
    •   Knowledge Commons
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations from 2009
    • View Item
    •   Knowledge Commons
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations from 2009
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    quick search

    Browse

    All of Knowledge CommonsCommunities & CollectionsBy Issue DateAuthorTitleSubjectDisciplineAdvisorCommittee MemberThis CollectionBy Issue DateAuthorTitleSubjectDisciplineAdvisorCommittee Member

    My Account

    Login

    Statistics

    View Usage Statistics

    Attitude control for a quadrotor UAV using adaptive fuzzy backstepping

    Thumbnail

    View/Open

    ZhaoK2017m-1a.pdf (8.830Mb)

    Date

    2017

    Author

    Zhao, Kaiyu

    Degree

    Master of Science

    Discipline

    Engineering : Electrical & Computer

    Subject

    Unmanned aerial vehicles (UAVs)
    Quadrotor UAV
    Control design
    Fuzzy adaptive integral backstepping design

    Metadata

    Show full item record

    Abstract

    With improvements on automation, computer, electronics and other technologies, applications of unmanned aerial vehicles (UAVs) have expanded from pure military field to civilian areas. As a multirotor aircraft, a quadrotor UAV has the advantages of simple structure, small size, high manoeuvrability, etc. On the basis of summarizing the current research situation of the quadrotor UAV, a deep research has been conducted on the attitude control system of the quadrotor UAV and two controllers are proposed to generate a stable performance: Back-stepping controller, adaptive fuzzy back-stepping nonlinear controller. The quadrotor UAV consists of two pairs of rotors and propellers, which can generate thrust and air drag. The dynamic model is derived using the Euler-Lagrangian method and Newton method with 6 degrees of freedom. To represent the model of the quadrotor, Euler angles representation is first derived. However, facing the gimbal lock drawback of Euler angles representation, unit quaternion representation is then discussed afterwards. In normal situations, model parameter uncertainties and external disturbances would affect the system output. Due to this problem, an adaptive fuzzy strategy is designed to approximate the uncertain model using back-stepping techniques with the Lyapunov stability theorem. Firstly, simulations are used to prove the mathematical feasibility. And then experimental results will be provided to illustrate the satisfactory performances of the proposed approach in real time.

    URI

    http://knowledgecommons.lakeheadu.ca/handle/2453/4282

    Collections

    • Electronic Theses and Dissertations from 2009

    Lakehead University Library
    Contact Us | Send Feedback

     


    Lakehead University Library
    Contact Us | Send Feedback