Lakehead University Library Logo
    • Login
    View Item 
    •   Knowledge Commons Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations from 2009
    • View Item
    •   Knowledge Commons Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations from 2009
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    quick search

    Browse

    All of Knowledge CommonsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDisciplineAdvisorCommittee MemberThis CollectionBy Issue DateAuthorsTitlesSubjectsDisciplineAdvisorCommittee Member

    My Account

    Login

    An enhanced Teager Huang transform technique for bearing fault detection

    Thumbnail
    View/Open
    ChenZ2021m-1a.pdf (1.894Mb)
    Date
    2021
    Author
    Chen, Zihao
    Metadata
    Show full item record
    Abstract
    Rolling element bearings are widely used in rotating machinery. Bearing health condition monitoring plays a vital role in predictive maintenance to recognize bearing faults at an early stage to prevent machinery performance degradation, improve operation quality, and reduce maintenance costs. Although many signal processing techniques have been proposed in literature for bearing fault diagnosis, reliable bearing fault detection remains challenging. This study aims to develop an online condition monitoring system and a signal processing technique for bearing fault detection. Firstly, a Zigbee-based smart sensor data acquisition system is developed for wireless vibration signal collection. An enhanced Teager-Huang transform (eTHT) technique is proposed for bearing fault detection. The eTHT takes the several processing steps: Firstly, a generalized Teager-Kaiser spectrum analysis method is suggested to recognize the most representative intrinsic mode functions as a reference. Secondly, a characteristic relation function is constructed by using cross-correlation. Thirdly, a denoising filter is adopted to improve the signal-to-noise-ratio. Finally, the average generalized Teager-Kaiser spectrum analysis is undertaken to identify the bearing characteristic signatures for bearing fault detection. The effectiveness of the proposed eTHT technique is examined by experimental tests corresponding to different bearing conditions. Its robustness in bearing fault detection is examined by the use of the data sets from a different experimental setup.
    URI
    https://knowledgecommons.lakeheadu.ca/handle/2453/4819
    Collections
    • Electronic Theses and Dissertations from 2009 [1632]

    Lakehead University Library
    Contact Us | Send Feedback

     

     


    Lakehead University Library
    Contact Us | Send Feedback