Lakehead University Library Logo
    • Login
    View Item 
    •   Knowledge Commons Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations from 2009
    • View Item
    •   Knowledge Commons Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations from 2009
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    quick search

    Browse

    All of Knowledge CommonsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDisciplineAdvisorCommittee MemberThis CollectionBy Issue DateAuthorsTitlesSubjectsDisciplineAdvisorCommittee Member

    My Account

    Login

    Dark Current modeling and characterization of amorphous lead oxide-based x-ray photoconductive devices for applications in medical imaging

    Thumbnail
    View/Open
    ThibaultT2022m-1a.pdf (2.551Mb)
    Date
    2022
    Author
    Thibault, Tristen
    Metadata
    Show full item record
    Abstract
    High atomic number (Z) polycrystalline and amorphous photoconductors are currently being investigated to extend direct conversion X-ray detectors to real-time and high-energy lowdose applications. Amorphous lead oxide (a-PbO) is one of the most promising photoconductor candidates because of its negligible signal lag and high theoretical X-ray conversion efficiency. However, a-PbO layers are still experimental; PbO technology has been developed to the point where material science and engineering approaches must be applied to make a-PbO detector prototypes suitable for low-dose X-ray imaging. This includes determining the most appropriate a-PbO multilayer detector structures with specially designed blocking layers that will withstand the high electric fields needed for efficient (i.e., complete) collection of X-ray generated charge while maintaining an acceptable dark current (DC) level. DC is a source of noise in the detector structure that degrades the signal-to-noise ratio (SNR) of the detector system in low-exposure applications. Here we investigate the use of polyimide (PI) as a hole-blocking layer. PI blocking layers were proven successful in the only commercially used direct conversion detectors, which are based on layers of photoconductive amorphous selenium (a-Se). Experimentally, PI was shown to have the most suitable electrical and physical properties for our a-PbO technology. In addition, PI has a straightforward application process of spin coating. Therefore, PI was chosen as a hole blocking layer to decrease DC to tolerable levels in an a-PbO-based detector. [...]
    URI
    https://knowledgecommons.lakeheadu.ca/handle/2453/5058
    Collections
    • Electronic Theses and Dissertations from 2009 [1390]

    Lakehead University Library
    Contact Us | Send Feedback

     

     


    Lakehead University Library
    Contact Us | Send Feedback