Lakehead University Library Logo
    • Login
    View Item 
    •   Knowledge Commons Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations from 2009
    • View Item
    •   Knowledge Commons Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations from 2009
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    quick search

    Browse

    All of Knowledge CommonsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDisciplineAdvisorCommittee MemberThis CollectionBy Issue DateAuthorsTitlesSubjectsDisciplineAdvisorCommittee Member

    My Account

    Login

    Exploration of contrastive learning strategies toward more robust stance detection systems

    Thumbnail
    View/Open
    RajendranU2023m-1a.pdf (958.0Kb)
    Date
    2023
    Author
    Rajendran, Udhaya Kumar
    Metadata
    Show full item record
    Abstract
    Stance Detection, in general, is the task of identifying the author’s position on controversial topics. In Natural Language Processing, Stance Detection extracts the author’s attitude from the text written toward an issue to determine whether the author supports the issue or is against the issue. The studies analyzing public opinion on social media, especially in relation to political and social concerns, heavily rely on Stance Detection. The linguistics of social media texts and articles are often unstructured. Hence, the Stance Detection systems needed to be robust when identifying the position or stance of an author on a topic. This thesis seeks to contribute to the ongoing research on Stance Detection. This research proposes a Contrastive Learning approach to achieve the goal of learning sentence representations leading to more robust Stance Detection systems. Further, this thesis explores the possibility of extending the proposed methodology to detect stances from unlabeled or unannotated data. The stance of an author towards a topic can be implicit (through reasoning) or explicit; The proposed method learns the sentence representations in a contrastive fashion to learn the sentence-level meaning. The Contrastive Learning of sentence representations results in bringing similar examples in the Sentence Representation space belonging to the same stance close to each other, whereas the dissimilar examples are far apart. The proposed method also accommodates the token-level meaning by combining the Masked Language Modeling objective (similar to BERT pretraining) with the Contrastive Learning objective. [...]
    URI
    https://knowledgecommons.lakeheadu.ca/handle/2453/5065
    Collections
    • Electronic Theses and Dissertations from 2009 [1409]

    Lakehead University Library
    Contact Us | Send Feedback

     

     


    Lakehead University Library
    Contact Us | Send Feedback