Lakehead University Library Logo
    • Login
    View Item 
    •   Knowledge Commons Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations from 2009
    • View Item
    •   Knowledge Commons Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations from 2009
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    quick search

    Browse

    All of Knowledge CommonsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDisciplineAdvisorCommittee MemberThis CollectionBy Issue DateAuthorsTitlesSubjectsDisciplineAdvisorCommittee Member

    My Account

    Login

    Federated learning framework and energy disaggregation techniques for residential energy management

    Thumbnail
    View/Open
    KaspourS2023m-1a.pdf (13.24Mb)
    Date
    2023
    Author
    Kaspour, Shamisa
    Metadata
    Show full item record
    Abstract
    Residential energy use is a significant part of total power usage in developed countries. To reduce overall energy use and save funds, these countries need solutions that help them keep track of how different appliances are used at residences. Non-Intrusive Load Monitoring (NILM) or energy disaggregation is a method for calculating individual appliance power consumption from a single meter tracking the aggregated power of several appliances. To implement any NILM approach in the real world, it is necessary to collect massive amounts of data from individual residences and transfer them to centralized servers, where they will undergo extensive analysis. The centralized fashion of this procedure makes it time-consuming and costly since transferring the data from thousands of residences to the central server takes a lot of time and storage. This thesis proposes utilizing Federated Learning (FL) framework for NILM in order to make the entire system cost-effective and efficient. Rather than collecting data from all clients (residences) and sending it back to the central server, local models are generated on each client’s end and trained on local data in FL. This allows FL to respond more quickly to changes in the environment and handle data locally in a single household, increasing the system’s speed. On top of that, without any data transfer, FL prevents data leakage and preserves the clients’ privacy, leading to a safe and trustworthy system. For the first time, in this work, the performance of deploying FL in NILM was investigated with two different energy disaggregation models: Short Sequence-to-Point (Seq2Point) and Variational Auto-Encoder (VAE). Short Seq2Point with fewer samples as input window for each appliance, tries to simulate the real-time energy disaggregation for the different appliances. Despite having a light-weighted model, Short Seq2Point lacks generalizability and might confront some challenges while disaggregating multi-state appliances.
    URI
    https://knowledgecommons.lakeheadu.ca/handle/2453/5066
    Collections
    • Electronic Theses and Dissertations from 2009 [1409]

    Lakehead University Library
    Contact Us | Send Feedback

     

     


    Lakehead University Library
    Contact Us | Send Feedback