Lakehead University Library Logo
    • Login
    View Item 
    •   Knowledge Commons
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations from 2009
    • View Item
    •   Knowledge Commons
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations from 2009
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    quick search

    Browse

    All of Knowledge CommonsCommunities & CollectionsBy Issue DateAuthorTitleSubjectDisciplineAdvisorCommittee MemberThis CollectionBy Issue DateAuthorTitleSubjectDisciplineAdvisorCommittee Member

    My Account

    Login

    Statistics

    View Usage Statistics

    Sub-1 V, 4 nA CMOS voltage references with digitally-trimmable temperature coefficient

    Thumbnail

    View/Open

    LuongP2014m-1b.pdf (7.158Mb)

    Date

    2014-12-12

    Author

    Luong, Peter

    Degree

    M.Sc.

    Discipline

    Engineering : Electrical & Computer

    Subject

    MOSFET transistors standard model
    Voltage reference
    Voltage reference design

    Metadata

    Show full item record

    Abstract

    Voltage references are fundamental to mixed signal converters which are widely used in elec- tronics. Hence there are signicant advantages in having the voltage reference operate with less power while minimizing area consumption and maintaining performance. Past designs have suered from issues related to process variations which adversely aect the temperature coe- cient of the circuit output. To compensate for these process variations, a means to modify the temperature coecient are proposed and experimentally veried with two circuit architectures. Five test chip samples implement these architectures in a 0.35 m CMOS process. Design methodologies for both architectures are presented. Design techniques include the use of a high-swing cascode to improve Line Sensitivity while minimizing additional power consumption, accounting for a well-matched layout, and the eect of leakage currents on the performance of the circuit. Layout schematics, performance gures, test methodologies and results are presented. Each circuit dissipates less than 4 nW and operates down to 0.9 V or better with Line Sensitivity and Power Supply Rejection Ratio of less than 0.15 %/V and -58 dB respectively, while consuming an area of 0.053 mm2 or less. The experimental average and median temperature coecient was less than 26 ppm/C and 22 ppm/C respectively in the 􀀀20 C to 80 C range, with the best performance being less than 8.1 ppm/C. Areas of improvement and potential areas of future research are then identied to facilitate advancement of this work.

    URI

    http://knowledgecommons.lakeheadu.ca/handle/2453/578

    Collections

    • Electronic Theses and Dissertations from 2009

    Lakehead University Library
    Contact Us | Send Feedback

     


    Lakehead University Library
    Contact Us | Send Feedback