Lakehead University Library Logo
    • Login
    View Item 
    •   Knowledge Commons Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations from 2009
    • View Item
    •   Knowledge Commons Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations from 2009
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    quick search

    Browse

    All of Knowledge CommonsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDisciplineAdvisorCommittee MemberThis CollectionBy Issue DateAuthorsTitlesSubjectsDisciplineAdvisorCommittee Member

    My Account

    Login

    Computational investigations of vortex dynamics and dynamic stall of pitching airfoils at high Reynolds number

    Thumbnail
    View/Open
    WangH2025m-1a.pdf (4.311Mb)
    Date
    2025
    Author
    Wang, Hao
    Metadata
    Show full item record
    Abstract
    This study employs high-fidelity Detached Eddy Simulations (DES) and modal decompositions to elucidate dynamic stall mechanisms on a pitching NACA 0018 airfoil at 𝑅𝑒 = 160000. Proper Orthogonal Decomposition (POD) isolates leading‐edge separation bubbles, shear‐layer instabilities, and wake vortices by energy content, while Dynamic Mode Decomposition (DMD) and multiresolution DMD (mrDMD) reveal mode‐specific growth/decay rates and frequencies across reduced frequencies (𝑘 = 0.1,0.2,0.3) and amplitudes (𝛼=15−30°). DMD captures key events—LSB bursting, LEV formation, and DSV convection—with global modes sufficient for most cases, whereas mrDMD improves reconstruction only under deep stall (𝑘 = 0.1,𝛼=30°) These findings provide a low-order framework for predicting unsteady loads and guiding stall mitigation strategies.
    URI
    https://knowledgecommons.lakeheadu.ca/handle/2453/5472
    Collections
    • Electronic Theses and Dissertations from 2009 [1635]

    Lakehead University Library
    Contact Us | Send Feedback

     

     


    Lakehead University Library
    Contact Us | Send Feedback